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Abstract: Background: The development of composite resins has led to novel materials aimed at
improving restoration longevity. This study evaluates the surface roughness of four tooth-colored
restorative materials after thermal aging. Methods: Eighty Class V preparations were restored with
Admira Fusion, Beautifil II, Equia Forte HT, and Filtek. The samples underwent thermocycling, and
their surface roughness was measured with a 3D non-contact profilometer at 24 h post-restoration
and after simulation for 1, 3, and 5 clinical years. Results: Equia Forte HT showed the highest surface
roughness and significant surface deterioration over time, while Admira Fusion maintained the lowest
roughness across all intervals. Conclusions: Admira Fusion, Filtek, and Beautifil II demonstrated
superior surface stability, with Equia Forte HT showing the least favorable performance.

Keywords: ormocer; resin-modified glass ionomer; glass ionomer hybrid; resin composite;
tooth-colored materials

1. Introduction

The development of tooth-colored restorative materials has rapidly gained popularity
due to their aesthetics and bonding ability [1]. Some dental materials exhibit superior prop-
erties relative to others, particularly in terms of surface roughness, which can significantly
impact the long-term survival of restorations. Although many tooth-colored restorative
materials are based on a single type of resin, hybrid materials (resin and glass ionomers)
integrate advantageous characteristics from multiple resins, resulting in enhanced over-
all performance [2]. Despite numerous claims regarding their superior qualities, these
materials must be evaluated under various conditions to assess their true durability.

Several new hybrid restorative materials are available for clinical use; examples include
nano-hybrid ormocers that consist of a ceramic base, Surface Pre-reacted Glass Ionomers
(S-PRGs), and hybrid glass ionomers [3–5].

“Ormocer” is an abbreviation for “organically modified ceramic”. It features a
methacrylate-free matrix formulation developed for applications in science and technology.
Ormocers are distinct from conventional composites due to their matrix, which incorporates
both organic and inorganic components [6,7]. The synthesis of the ormocer matrix is a
three-dimensional cross-linked copolymer structure [8]. The introduction of ormocers in
dentistry was achieved by combining ormocer technologies with nanohybrid materials,
which, as a result, significantly enhanced the bonding compatibility of the material when
compared to traditional composites [9]. This is attributed to the high degree of cross-linking
between the chemical elements within the matrix, providing superior mechanical properties
and durability [9,10]. A prominent example of a dental ormocer is Admira Fusion (VOCO
GmbH), introduced in 2015. This material is notable for its pure ormocer matrix chemistry,
which excludes conventional dimethacrylates [6,11]. The ceramic base of Admira Fusion
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(ormocer) offers high biocompatibility and features a universal shade with a chameleon
effect, enabling it to blend seamlessly with adjacent tooth structures [3].

The term “giomer” refers to a class of restorative materials in dentistry that integrates
the beneficial properties of glass ionomer cement, such as fluoride release, with the su-
perior aesthetics and long-term clinical performance of composite resins. [12,13]. Giomer
restorative materials have been one of the most reliable restorative options over the last
years [13]. The production of giomer materials involves acid-reactive, fluoride-containing
glass particles that react with poly acids in the presence of water. This reaction forms a
durable matrix that releases fluoride and enhances the material’s structural integrity and
longevity [12,13]. The formulation of giomers is based on Pre-Reacted Glass Ionomer (PRG)
technology, which involves pre-reacting fluoro-aluminosilicate glass fillers with polyacrylic
acid. This reaction forms a stable glass ionomer phase called a wet siliceous hydrogel. The
resulting glass ionomer is then freeze-dried, milled, silane-treated, and ground to form the
PRG fillers [14]. Giomer restorative materials provide several unique advantages, including
enhanced wear resistance, high radiopacity, and continuous fluoride release and recharge
capabilities. These benefits are attributed to the stable glass ionomer phase formed before
integrating into the resin matrix [15]. Importantly, unlike other fluoride-containing dental
adhesives, the fluoride ion release in giomers does not lead to material degradation. This
unique feature, where the release mechanism mirrors that of conventional glass ionomers,
makes giomers a superior and intriguing choice for dental restorations, reassuring dental
professionals [14]. PRG fillers are categorized into surface-reaction PRG (S-PRG) fillers
and full-reaction PRG (F-PRG) fillers. In F-PRG fillers, the entire filler particle reacts with
polyacrylic acid, resulting in a higher fluoride release as the particle’s core is completely
reacted. This high fluoride release can be beneficial in certain cases, but it also means that
F-PRG fillers degrade more rapidly than S-PRG fillers [4,12,15]. This rapid degradation
could affect the restoration’s longevity, as the filler may lose its structural integrity sooner.
In contrast, S-PRG fillers undergo surface reactions with polyacrylic acid, leaving the glass
core intact, slowing the degradation process, and potentially leading to longer-lasting
restorations [14]. Beautifil II incorporates S-PRG technology, which facilitates fluoride
recharge and provides anti-plaque effects by integrating the benefits of both glass ionomer
and conventional composite materials [4,13].

A recently introduced restorative material that gained clinical acceptability due to
its enhanced mechanical and biomimetic properties was the high-viscosity glass ionomer
cement (HVGIC) [16]. The development of HVGIC addresses the mechanical limitations of
traditional glass ionomer cement (GIC) by offering improved physical characteristics such
as flexural, compressive, and tensile strengths, along with superior wear resistance [17,18].
One notable example of HVGIC is the EQUIA® system, introduced by GC Corporation
in 2009, followed by the next-generation EQUIA Forte® in 2014 [19]. Recent clinical trials
have demonstrated that HVGIC materials, such as Equia Forte Fil (GC America), yield ex-
cellent outcomes in both permanent and primary teeth [20–23]. A recently introduced and
enhanced high-viscosity glass ionomer (HVGI) material, Equia Forte HT, offers significant
advancements over its predecessor. This system incorporates a higher molecular weight
polyacrylic acid, contributing to improved structural integrity, and it features a novel
coating agent containing an advanced monomer that provides enhanced protection during
the critical early maturation phase [24]. Additionally, the particle size distribution of Equia
Forte HT has been optimized compared to the earlier Equia Forte formulation [24]. These
improvements have increased flexural and compressive strength, attributed to superior
matrix loading, thereby expanding its suitability for stress-bearing and non-stress-bearing
restorations [25]. This comparison provides dental professionals with confidence in the
effectiveness of HVGIC [20,25,26]. Equia Forte HT glass ionomer has properties includ-
ing no polymerization shrinkage, excellent marginal seal, and fluoride release for up to
6 months [24]. Many of these products have new features that will be beneficial, but
the surface profile remains of utmost importance to the life and overall performance of
the restoration.
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One recent advancement in composite resin restorations is the Filtek™ Supreme Ultra
Universal Restorative, a dental composite material designed for anterior and posterior
restorations. It offers a combination of esthetics, strength, and polish retention. Available
in 36 shades and four opacities—dentin, body, enamel, and translucent—it ensures precise
color matching to natural dentition.

In the oral cavity, rough surfaces facilitate plaque formation and maturation, which
leads to greater bacterial accumulation and often contributes to a progression towards
disease [27]. An optimal surface profile is essential for a restorative material’s capacity to
endure the masticatory forces encountered in stress-bearing regions of the oral cavity [28]. It
significantly contributes to the mechanical durability of restorative materials and is critical
for minimizing dental plaque accumulation, thereby enhancing the restoration’s clinical
aesthetics and longevity [29]. Furthermore, achieving appropriate surface topography is
fundamental to any restorative material’s overall success and durability [30].

The comparison between these materials regarding surface roughness could give quan-
titative evidence for dentists to guide their restorative decisions. Given Filtek Supreme’s
widespread use and extensive examination in meta-analyses, it was used as the reference
standard for comparison in this study. This study’s hypothesis is that there is no difference
in surface roughness of Class V restorations when using novel tooth-colored restorative
materials compared to standard resin-based restorative materials. The present study aims
to evaluate the effects of thermal aging on the surface roughness of different restorative
materials, namely Filtek, Admira Fusion, Beautifil II, and Equia Forte.

2. Materials and Methods

Class V preparations (5 × 2 × 2 mm) were made on the buccal surface of 80 newly
extracted molars [Figure 1]. All molars were free of any caries and defects. All cavities were
prepared 1 mm above the cementoenamel junction using a high-speed Bien Air handpiece
(Bien-Air USA, Inc., Irvine, CA, USA). A 330 bur was used initially, then a 57 straight bur
was used to correct undercuts made by the inverse taper of the 330.
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Figure 1. (a) Single Class V preparation close-up; (b) Class V preparations in putty.

The teeth were standardized by measuring each prep with a UNC-15 Perio probe
(Hu-FriedyGroup, Chicago, IL, USA) at five different locations: mesiodistal width of 5 mm,
cervico-occlusal width of 2 mm at the mesial and distal locations, and a 2 mm depth of the
prep at the same mesial and distal locations. A total of 90 teeth were initially prepared,
but 10 did not fit the standardization protocol, resulting in a total of 80 preparations. The
teeth were randomly divided into four groups, with 20 teeth per group. As discussed, four
restorative materials were used: ormocer (Admira Fusion), fluoride-releasing universal
nanohybrid composite (Beautifil II), a glass hybrid restorative material (Equia Forte HT),
and the standard universal nanoparticle composite (Filtek Sup. Ultra) [Table 1]. Following
the manufacturer’s instructions, a bevel in the prepared teeth was included for Beautifil II
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and Filtek Supreme Ultra. Admira Fusion indicates a bevel only in anterior teeth, which
were not used in this study. All restorations were performed following each of the product’s
unique manufacturing instructions.

Table 1. Type and composition of the examined materials.

Material (Group) Type Composition Manufacturer Lot

Admira Fusion
x-base (Group A) Ormocer

Ormocer, photoinitiators, pigments,
barium aluminum borosilicate glass,

pyrogenic silica (20–50 nm)

VOCO, Cuxhaven,
Germany 2217143

Beautifil II (Group B) Giomer restorative
material

Bis-GMA, TEGDMA, multifunctional
glass filler and S-PRG filler based on

aluminofluoro-borosilicate glass

Shofu Inc., Kyoto,
Japan 072277

Equia Forte HT.
(Group C)

High-viscosity glass
ionomer cement

Fluoro Alumino Silicate (FAS) glass,
reactive silicate particle,
high-molecular-weight

polyacrylic acid.

GC, America Inc.,
Alsip, IL, USA 2106151

Filtek Supreme Ultra.
(Group D)

Nanoparticle
composite resin

Bis-GMA and TEGDMA, along with a
high percentage of inorganic fillers,
including nano-sized particles and

radiopaque agents

3M, Saint Paul,
MN, USA NF27582

Filtek Restoration Procedure: The preparation for the Filtek restoration was first
treated with 3M ESPE Scotchbond Universal Etchant, which was applied for 15 s, followed
by a 15 s rinse with water. The tooth was then gently dried, taking care to avoid excessive
desiccation of the dentin. Subsequently, 3M ESPE Scotchbond Universal Adhesive was
applied to the preparation and scrubbed in for 20 s. The adhesive was lightly air-dried
for 5 s to facilitate solvent evaporation before being light-cured for 10 s. The restorative
material was then placed, shaped, and light-cured for 20 s.

Equia Forte HT Restoration Procedure: The restoration procedure using Equia Forte
HT began with the application of GC Cavity Conditioner, which was left on the cavity
surface for 10 s. After rinsing and gently drying the conditioned area, the Equia Forte HT
material was mixed by pressing the plunger for 10 s using a dental amalgamator. It was
then placed into the capsule applier, primed by clicking the capsule twice, and dispensed
within 10 s. The material’s working time is approximately 1 min and 15 s. After the material
was added and contoured, Equia Forte HT Coat was applied and light-cured for 20 s.

Admira Fusion Restoration Procedure: The preparation for Admira Fusion restoration
was etched with 35% phosphoric acid, then applied to the enamel for 20 s and to dentin
for 15 s. The etchant was then rinsed off for 20 s, and the tooth was carefully dried. A
thin, even layer of “Admira Bond” (one-component dentine and enamel bond) adhesive
was applied, left for 30 s, and gently air-dried with a faint air stream. The adhesive was
polymerized using a curing light for 20 s. The Admira Fusion material was placed in the
tooth cavity, shaped, and light-cured for an additional 20 s.

Beautifil Restoration Procedure: For the Beautifil restoration, BeautiBond adhesive was
applied uniformly to the entire inner surface of the cavity preparation. After a 10 s waiting
period, gentle air-drying for 3 s was performed, followed by a more forceful air stream to
ensure the adhesive layer was uniformly distributed. The adhesive was light-cured for 5 s.
Beautifil material was then dispensed from a syringe using the provided tip, shaped within
the cavity preparation, and light-cured for 10 s.

Standardization of Methodology: To minimize potential variability and human er-
ror, all cavity preparations, restorations, and data collection were conducted by a single
operator. A Kerr Demi Plus curing light (Kerr Corporation, Brea, CA, USA) was used
for all light-curing procedures. Finishing was carried out using burs and a Onegloss pol-
ishing point, which were used to polish each restorative material post-curing. A putty
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matrix was employed to prevent cross-contamination between materials and to maintain
proper grouping.

Surface roughness measurements were conducted using a non-contact 3D profilometer
(VR-3100; Keyence, Keyence Corporation, Osaka, Japan), targeting two specific points on
each composite restoration and calculating the average surface roughness (Ra) over the
total area between those selected points [Figure 2b]. These same points were measured at
different intervals following thermal aging. Thermal aging was performed using a thermo-
cycling machine (Thermocycler, SD Mechatronik, Feldkirchen-Westerham, Germany) with
pure distilled water baths alternating between 5 ◦C and 55 ◦C at 20 s intervals [Figure 2a].
Images and measurements were taken post-restoration, after 10,000, 30,000, and 50,000 cy-
cles, corresponding to 0, 1, 3, and 5 estimated clinical years, respectively [31]. Readings
for surface roughness were recorded 24 h post-restoration and after 1, 3, and 5 estimated
clinical years. When not in use, the specimens were stored in artificial saliva (Pickering
Laboratories, CA, USA) at 37 ◦C in a temperature-controlled unit, simulating the human
body’s internal temperature. Statistical analysis was performed using a one-way analysis
of variance (ANOVA) and post hoc Tukey HSD with significance set at p < 0.05.
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3. Results

All of the examined restorations exhibited a change in the surface profile after five
clinical years [Figure 3]. Admira Fusion showed the smallest changes in surface roughness
(0.108 µm) when comparing post-restoration to 5 clinical years (or 50,000 thermocycles).
Admira Fusion also demonstrated the least overall surface roughness (on average) for each
measurement cycle.

Equia Forte HT showed the most significant surface roughness deterioration change
(p-value = 0.001) after 5 clinical years (0.22 µm), as well as the highest overall surface
roughness (on average) for each clinical year [Table 2]. Using a one-way ANOVA with a
post hoc Tukey HSD test, the results showed that the difference between Admira Fusion
and the Equia Forte HT was highly significant across the different time intervals [Table 2].

Using a one-way ANOVA with post hoc Tukey HSD test, the results indicated a highly
significant difference (p < 0.001) between group C and the other materials examined across
the different time intervals [Table 2]. This change is also visually evident in Figure 3, where
the graph illustrates an increase in surface roughness for all materials after five clinical
years. Notably, there was a marked increase in surface roughness between the third and
fifth years for three materials: C, B, and D [Figure 3].
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Figure 3. Average surface roughness (Ra) after thermocycling.

Table 2. Comparison between the examined materials using one-way ANOVA with post hoc Tukey
HSD test.

Material
Post-Restoration 1st Year 3rd Clinical Year 5th Clinical Year

Mean ±SD Mean ±SD Mean ±SD Mean ±SD

1. Group A 0.2465 0.1001 0.2835 0.1184 0.3128 0.1176 0.3356 0.1287

2. Group B 0.3910 0.2092 0.4116 0.2151 0.4152 0.1622 0.4529 0.1953

3. Group C 0.6280 0.2413 0.6938 0.2262 0.7217 0.3272 0.8484 0.3473

4. Group D 0.3226 0.0861 0.3574 0.1387 0.3630 0.1302 0.4038 0.1648

p value # <0.001 ** <0.001 ** <0.001 ** <0.001 **

Material A vs. B 0.048 * 0.122 0.386 0.358

Material A vs. C <0.001 ** <0.001 ** <0.001 ** <0.001 **

Material A vs. D 0.508 0.571 0.862 0.773

Material B vs. C <0.001 ** <0.001 ** <0.001 ** <0.001 **

Material B vs. D 0.595 0.779 0.847 0.901

Material C vs. D <0.001 ** <0.001 ** <0.001 ** <0.001 **
# = * p < 0.05: significant; ** p < 0.001: highly significant.

Figure 4 presents the surface profile and surface roughness measured using a 3D
profilometer immediately post-restoration and after five clinical years. The results reveal
an apparent deterioration in the surface profile of the Group C restoration shown in
Figure 4G,H.

Figure 5 displays the confidence intervals for the averages of all examined materials.
EQUIA Forte HT demonstrated a statistically significant difference compared to the other
materials evaluated.
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Figure 4. (A) Post restoration profile (1.202 mm) and surface roughness of Group A restora-
tion. (B) Profile (1.202 mm) and surface roughness after 5 clinical years of Group A restoration.
(C) Post-restoration profile (1.202 mm) and surface roughness of the Group D restoration. (D) Profile
(1.202 mm) and surface roughness after 5 clinical years of the Group D restoration. (E) Post-restoration
profile (1.202 mm) and surface roughness of the Group B restoration. (F) Profile (1.202 mm) and sur-
face roughness after 5 clinical years of the Group B restoration. (G) Post-restoration profile (1.202 mm)
and surface roughness of the Group C restoration. (H) Profile (1.202 mm) and surface roughness after
5 clinical years of the Group C restoration.
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4. Discussion

The demand for esthetic restorations is rising due to the development of new and
innovative restorative materials. The inherent properties of these materials, along with their
ability to achieve a smooth surface, are fundamental for maintaining esthetic outcomes [32].
Surface roughness is a critical criterion for patient satisfaction and the aesthetic appearance
of composite resins within the dynamic oral environment [33].

Eliminating surface irregularities in restorative materials is essential for their clinical
longevity and aesthetic appeal. A smooth surface reduces plaque retention, thereby mini-
mizing the risk of gingival irritation, surface staining, patient discomfort, and secondary
caries [34]. However, the challenges posed by surface roughness in dental materials also
create opportunities for advancement. Factors such as inadequate polymerization, poor
oral hygiene, and thermal fluctuations in the oral environment can influence surface tex-
ture. Thermocycling, a widely used artificial aging technique, simulates the response of
restorative materials in the oral environment and presents an area where further insights
can drive significant improvements. Thermocycling, or thermal aging, is a method that
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exposes the material to a wide range of temperatures to determine the compatibility and
strength of composite materials. Thermal aging has a notable impact on the roughness
of composite-based materials, highlighting the importance of optimizing their properties
for durability and esthetic stability [35]. Thermal cycling, through temperature variations,
simulates the entrance of hot and cold substances in the oral cavity and shows the rela-
tionship of the linear coefficient of thermal expansion between the tooth and restorative
material [36].

The 3D non-contact laser profilometer used in the present investigation offers a higher
resolution than traditional mechanical stylus methods. The laser confocal technique was uti-
lized as a viable alternative for non-contact and non-destructive surface measurements, thus
addressing the limitations associated with the stylus method. For measurement precision,
the laser profilometer offers a high accuracy for 3D topographical analysis, effectively mea-
suring surface roughness and profile with reliable repeatability. However, it may be limited
in its ability to detect extremely fine details. Scanning Electron Microscopy (SEM) is pri-
marily qualitative and often requires complementary techniques such as energy-dispersive
X-ray Spectroscopy (EDS) for quantitative surface analysis. In terms of applicability, SEM is
limited in quantitative height measurements compared to profilometry. The laser profilome-
ter eliminates the risk of surface damage caused by mechanical sensor contact, which could
introduce errors in the results. The laser confocal sensor used in this study is equipped
with both vertical and lateral scanning capabilities. This method overcomes the challenges
posed by autofocus systems, which typically require the scanning unit to move with each
sectioning step. Additionally, while traditional stylus measurements are conducted at a
speed of 1 mm/s, the present 3D non-contact laser confocal system achieves measurement
speeds of up to 3 mm/s, enabling in situ surface roughness assessment [37,38].

Patient comfort can be associated with a smooth and well-polished restoration in
which a mean roughness of 0.50 µm can be detected by the patient [39]. In the present
investigation, after five years of clinical use, all of the examined materials showed a
linear increase in surface roughness, remaining within or below the 0.50 µm threshold,
which is the level of roughness detectable by patients [39]. However, the hybrid glass
(Equia Forte) exhibited a significant increase in surface roughness, which has significant
implications for the longevity and patient satisfaction of these restorations. These findings
align with previous studies, which have concluded that the surface topography of hybrid
glass deteriorates over time, especially when exposed to varying environmental conditions,
leading to a marked increase in surface roughness [40].

Previous studies have reported that water sorption and solubility in glass-hybrid
restorative materials can reduce their mechanical properties, with surface coatings provid-
ing protection against initial water contamination [41,42]. Other studies have compared the
mechanical properties and surface degradation of Equia Forte restorative materials with
and without surface coatings, finding that minimal weight loss occurred in the surface-
coated Equia Forte HT group [25,43]. In the present study, the Equia Forte HT material was
handled according to the manufacturer’s instructions, with the restoration surface coated
using the recommended coating material. The null hypothesis of this study was rejected
due to the considerable difference in surface roughness observed with Equia Forte HT.

Previous studies have also established a significant positive correlation between aver-
age filler size and surface roughness [44,45]. Filler size and aging procedures have been
shown to impact surface properties [45]. The surface roughness of composite resins is
closely related to and influenced by the size of the filler particles [46]. In the present study,
Admira ormocer restorations exhibited the smallest changes in surface roughness, followed
by nanohybrid composites. This can be attributed to the type of filler; ceramic fillers, with
their high abrasion resistance, confer superior polishability to the composite resin [47].

Further research is necessary to examine the clinical performance of such materials.
While surface roughness remains a crucial aspect of successful materials, there are other
factors that also contribute to the clinical effectiveness of such restorations. Materials must
be exposed to different environmental changes that mimic the oral environment, such
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as brushing simulation and food/drink exposure. The importance of color stability, a
key element of patient satisfaction, cannot be overstated and should be a focus of future
research. Based on the results of the present study, the surface roughness of the hybrid
glass ionomer Equia Forte HT exceeds the confidence intervals of the other tested materials.
Despite this, glass ionomer materials may still be advantageous in specific clinical scenarios
due to their ability to form adhesive micromechanical interlocking and chemical bonds
with the tooth structure [48].

5. Conclusions

Within the limitations of the present study, the surface topography of all restorative
materials changed after thermal aging. The ormocer material (Admira Fusion) exhibited the
least changes in the average surface roughness and overall surface alteration. In contrast,
the hybrid glass ionomer material (Equia Forte HT) showed a statistically significant
increase in surface roughness, with noticeable surface alterations.
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