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Abstract: Objectives: Dementia is becoming a major health problem in the world, and chronic
brain ischemia is an established important risk factor in predisposing this disease. Astrocytes, as
one major part of the blood–brain barrier (BBB), are activated during chronic cerebral blood flow
hypoperfusion. Reactive astrocytes have been classified into phenotype pro-inflammatory type A1 or
neuroprotective type A2. However, the specific subtype change of astrocyte and the mechanisms of
chronic brain ischemia are still unknown. Methods: In order to depict the phenotype changes and
their possible roles during this process, a rat bilateral common carotid artery occlusion model (BCAO)
was employed in the present study. Meanwhile, the signaling pathways that possibly regulate these
changes were investigated as well. Results: After four-week occlusion, astrocytes in the cortex of
BCAO rats were shown to be the A2 phenotype, identified by the significant up-regulation of S100a10
accompanied by the down-regulation of Connexin 43 (CX43) protein. Next, we established in vitro
hypoxia models, which were set up by stimulating primary astrocyte cultures from rat cortex with
cobalt chloride, low glucose, or/and fibrinogen. Consistent with in vivo data, the cultured astrocytes
also transformed into the A2 phenotype with the up-regulation of S100a10 and the down-regulation
of CX43. In order to explore the mechanism of CX43 protein changes, C6 astrocyte cells were handled
in both hypoxia and low-glucose stimulus, in which decreased pERK and pJNK expression were
found. Conclusions: In conclusion, our data suggest that in chronic cerebral ischemia conditions, the
gradual ischemic insults could promote the transformation of astrocytes into A2 type instead of A1
type, and the phosphorylation of CX43 was negatively regulated by the phosphorylation of ERK and
JNK. Also, our data could provide some new evidence of how to leverage the endogenous astrocytes
phenotype changes during CNS injury by promoting them to be “protector” and not “culprit”.
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1. Introduction

Dementia is becoming a major health problem, with a large population affected by this
disease in the world. According to statistics from the World Health Organization (WHO),
more than 55 million people have dementia globally. Dementia includes vascular dementia,
Alzheimer’s disease (AD), Lewy body disease (LBD), etc. [1]. Among small vascular dis-
eases and AD, most of them were accompanied by chronic cerebral blood hypoperfusion
and glucose hypometabolism, which could lead to cognitive/memory decline [2,3]. Reduc-
tions in cerebral blood flow are associated with early subjective cognitive decline, even in
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healthy older adults [4]. Therefore, chronic brain ischemia is a well-recognized risk factor
in predisposing dementia.

Chronic cerebral hypoperfusion could lead to breakdown of the blood–brain barrier
(BBB) and neurodegeneration [5]. As one part of the BBB, astrocyte and astrocyte-derived
factors were proposed to drive BBB formation and maintenance, and also could regulate
blood flow in and out of the CNS [6]. Astrocytes are the most abundant cell type in the
brain, and they provide critical roles in CNS homeostasis. Astrocytes are involved in
glutamate metabolism, glucose metabolism, Aβ degradation, and the regulation of neuron
excitability, etc. [7]. Chronic hypoperfusion-induced ischemia and hypoxia could over-
activate neuroinflammation, boost cytokines released by harmful activated microglia and
aggravated neuroinflammation eventually [8]. It is well established that astrocytes are
activated and actively participate in the above process [9]. Astrocytes have been found to
divide into two phenotypes [10], in which one is the A1 cell type that plays an adverse
role in the pathogenesis of AD [11], Huntington’s disease (HD) [12], Parkinson’s disease
(PD) [13], etc. In AD, the activated microglia cells secrete some pro-inflammatory cytokines,
which induce more astrocytes transformed into A1 type [11]. Currently, researchers believe
that during an ischemic insult, astrocytes are activated promptly and could have both
either a detrimental or a protective role depending on which type they turn into. Studies
found that in cerebral ischemia and reperfusion, astrocytes transformed to the neurotoxic
type A1 in the initial stage due to neuroinflammation and then into the neuroprotective A2
type, which could exert beneficial effects on CNS repair [14,15]. Therefore, it is imperative
to know the phenotype transformation during chronic cerebral hypoperfusion and the
underlying mechanism.

Here, we used a BCAO rat model to observe the phenotypes of astrocytes during
chronic cerebral blood hypoperfusion. We found that astrocytes took on a protective role
by transformation into type A2, and revealed some relevant signaling pathway possibly
responsible for this protection.

2. Materials and Methods
2.1. Animals and Surgery

Male Sprague Dawley 8 weeks old rats (Vital-River, Beijing, China) were raised in
the Experimental Animal Center of Capital Medical University under a 12:12 h light/dark
cycle. The rats were randomly divided into BCAO group and sham-operated control
group (7 rats per group). The detailed operations of BCAO surgery were as described
previously [16]. The bilateral common carotid arteries were carefully separated and ligated
with thin threads. The control group performed the same procedure, but the vessels were
not ligated. After 4 weeks of ligation, the rats were used for experiments. All procedures
involving animals complied with the guidelines of Ministry of Science and Technology of
China and approved by the Animals Care and Use Committee at Capital Medical University
(AEEI-2019-081, approval on 17 June 2019), Beijing, China.

2.2. Morris Water Maze Test

Morris water maze test was used to estimate spatial memory of rats, as previously
described [17]. Rats were tested for 6 days consecutively in this test. In the first 2 days,
the rats were trained to search the hidden platform. Each rat was placed facing the wall
at the quadrant opposite to the platform. The rats who failed to find the platform within
120 s were placed on the platform for 10 s for reinforcement. Thereafter, in the following
3 days, the rats were evaluated to find the hidden platform, and the escape latency was
recorded. On the sixth day, the platform was moved away, the number of target platform
crossings and the time spent in the quadrant where the platform was previously placed
were recorded.
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2.3. Real-Time Quantitative PCR

Total mRNA was isolated from the parietal lobe of the rat brains, culture of rat cortical
astrocytes, or C6 cells using an RNAsimple Total RNA Kit (TIANGEN, Beijing, China),
and mRNA was reverse-transcribed using a FastQuant RT Kit (with gDNase) (TIANGEN,
China) according to the manufacturer’s manual. Real-time Quantitative PCR was carried
out with a ChamQTM SYBR qPCR Master Mix (Vazyme, Nanjing, China). The total reaction
system was 20 µL, 95 ◦C 3 min, 40 cycles for 95 ◦C 10 s, 56 ◦C 30 s, and 72 ◦C 30 s. GAPDH
and the average value of the controls were set as the internal parameter, and the relative
mRNA levels were calculated with the 2−∆∆Ct method. The primers are listed in Table 1.

Table 1. List of qPCR primers.

Primer Name Primer Sequence

H2D1
forward: ATGGAACCTTCCAGAAGTGGG

reverse: GAAGTAAGTTGGAGTCGGTGGA

Serping1
forward: TGGCTCAGAGGCTAACTGGC

reverse: GAATCTGAGAAGGCTCTATCCCCA

H2T23
forward:ATTGGAGCTGTTGTGAGGAGG

reverse: CCACGAGGCAACTGTCTTTTC

Ggta1
forward: TCTCAGGATCTGGGAGTTGGA

reverse: GAGTTCTATGGAGCTCCCGC

Iigp1
forward: ATTTGGCTCGAAGCCTTTGC

reverse: ACGGCATTTGCCAGTCCTTA

Gbp2
forward: TAAAGGTCCGAGGCCCAAAC

reverse: AACATATGTGGCTGGGCGAA

Clcf1
forward: GACTCGTGGGGGATGTTAGC

reverse: CCCCAGGTAGTTCAGGTAGGT

Ptx3
forward: CATCCCGTTCAGGCTTTGGA

reverse: CACAGGGAAAGAAGCGAGGT

S100a10
forward: GAAAGGGAGTTCCCTGGGTT

reverse: CCCACTTTTCCATCTCGGCA

Sphk1
forward: AAAGCGAGACCCTGTTCCAG

reverse: CAGTCTGCTGGTTGCATAGC

Cd109
forward: GTCGCTCACAGGTACCTCAA

reverse: CTGTGAAGTTGAGCGTTGGC

Ptgs2
forward: CTCAGCCATGCAGCAAATCC

reverse: GGGTGGGCTTCAGCAGTAAT

GAPDH
forward: GACCACCCAGCCCAGCAAGG

reverse: TCCCCAGGCCCCTCCTGTTG

2.4. Western Blot

Parietal lobes of rat cortexes, astrocytes of primary cultures, or C6 cells were lysed
in RIPA lysate containing phosphatase inhibitor mixture and protease inhibitor cocktail
(Applygen, Beijing, China). C6 cells were kindly provided by Professor Zhi-Qing David
Xu. Supernatant proteins were separated using SDS-PAGE on 10%, 12%, or 15% gels
and transferred onto PVDF membranes. After blocking with 5% non-fat milk in 1× Tris-
buffered saline, pH7.5, containing 0.1% Tween 20 (TBST) for 2 h at room temperature,
blots were incubated with primary antibodies in 1× TBST overnight at 4 ◦C. The primary
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antibodies included rabbit anti-S100a10 (1:1000), Connexin 43 (1:4000), Aquaporin 4 (1:1000)
antibody (Proteintech, Rosemont, IL, USA), mouse anti-GFAP (1:5000), GAPDH (1:5000),
β-actin (1:5000) antibody (Proteintech), mouse anti-C3 (1:200), Apolipoprotein E (1:200)
(Santa, Dallas, TX, USA), and rabbit anti-phospho-ERK (1:1000), ERK (1:1000), phospho-
JNK (1:1000), JNK (1:1000), phospho-AKT (1:1000), and AKT (1:1000) (Cell Signaling,
Boston, MA, USA). Then, blots were washed with 1× TBST three times and incubated
with horseradish peroxidase-conjugated secondary antibody (goat anti-rabbit or goat anti-
mouse) (Jackson, West Grove, PA, USA) at RT for 2 h. Finally, the blots were rinsed
and visualized using SuperEnhanced chemiluminescence detection reagents (Applygen)
according to the manufacturer’s instructions. Optical densities of individual blot were
quantified using Image J software (version 1.38). Ratios of target antibody to GAPDH
or β-actin were calculated for each sample, and fold-changes were shown compared to
the control.

2.5. The Enzyme-Linked Immunosorbent Assay (ELISA)

Parietal cortical tissues of rats were homogenized and sonicated in cold PBS containing
a protease inhibitor cocktail (Applygen, China), centrifuged for 10 min at 5000× g, and
then the supernate was assayed according to the manufacturer’s manual from the Enzyme-
linked Immunosorbent Assay Kit for Complement Component 3 (C3) (Cloud-Clone, Wuhan,
China) or for S100 Calcium-Binding Protein A10 (S100A10) (Mlbio, Shanghai, China).

2.6. Primary Culture of Rat Cortex Astrocytes

The cultures of rat cortex astrocytes were prepared from the brain of 1-day-old neonatal
Sprague Dawley rats. The brainstem, cerebellum, and diencephalons were removed in
cold PBS buffer and then the meninges were peeled off. The cortex was minced using
scissors, incubated with 0.25% trypsin–EDTA at 37 ◦C for 5 min, and filtered through a
200 mesh strainer. After incubating at 37 ◦C in 5% CO2 for 1 h, the culture mediums were
collected and re-suspended in DMEM/F12 supplemented with 10% fetal bovine serum, 1%
penicillin/streptomycin and plated on dishes at 37 ◦C in 5% CO2. About 2 weeks later, the
cultures reached confluence and were shaken at 250 rpm for 18 h at 37 ◦C to dislodge cells
adhering to the astrocyte layer. The confluent cultures were trypsinized and sub-plated
onto dishes. In this present study, astrocytes were used at passage 3. When astrocytes were
transformed, cobalt chloride, fibrinogen (Merck, Rahway, NJ, USA), or low-glucose DMEM
was added in the medium.

2.7. Cytotoxicity Assay

Sensitivities of astrocytes or C6 cells to various chemicals were examined using the
Cell counting Kit-8 (CCK-8, Applygen). Cells were plated in 96-well plates, incubated at
37 ◦C in 5% CO2 for 24 h, culture medium were replaced with new medium and drugs,
and incubated for an additional 24 h. In total, 10µL CCK-8 reagent was added into each
well and incubated at 37 ◦C in 5% CO2 for 2 h before reading at a wavelength of 450 nm.
Absorbances were converted to percentages for comparison with the vehicle group.

2.8. Immunofluorescence

Astrocyte cultures on poly-L lysine-coated glass coverslips were rinsed twice with
0.01M PBS, pH 7.2–7.4, and fixed with 4% paraformaldehyde for 15 min at room tem-
perature (RT). The cells were rinsed three times with 0.01M PBS, incubated with 0.01M
PBS containing 0.3% Triton X-100 for 30 min, blocked in 10% normal goat serum for 1 h,
incubated with primary monoclonal anti-GFAP mouse antibody (1:350) (Sigma, St. Louis,
MO, USA) overnight at 4 ◦C. The cells were rinsed three times with PBS, incubated with
secondary goat anti-mouse Alexa Fluor 488 (Invitrogen, Waltham, MA, USA) for 2 h at
RT, rinsed three times with 0.01M PBS, mounted with anti-fade mounting solution, and
observed under a confocal microscope (Leica, Teaneck, NJ, USA).
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2.9. Statistical Analysis

Results were presented as means ± SEM. Data were evaluated using ANOVA or
Student’s t-test. A value of p < 0.05 was considered statistically significant.

3. Results
3.1. Artery Occlusion Caused Significant Memory and Cognitive Function Deficit

In order to determine the effects of chronic ischemia and hypoxia on rat brain cogni-
tive function, a Morris Water Maze test was performed among the BCAO rats and their
counterpart control rats. As shown in Figure 1, after ligation for 4 weeks, the BCAO rats
showed higher average escape latency from day 3 to day 5 (Figure 1A), although there
were no differences in the average swimming speed of rats between these two groups
(Figure 1B). More importantly, the BCAO rats demonstrated significantly less time and
number crossing in the target quadrant where the platform was previously established
on day 6 of the memory retrieval test (Figure 1C,D). These results consistently imply that
artery occlusion caused significantly memory and cognitive deterioration in these animals.

Brain Sci. 2024, 14, x FOR PEER REVIEW  5  of  19 
 

3. Results 

3.1. Artery Occlusion Caused Significant Memory and Cognitive Function Deficit 

In order to determine the effects of chronic ischemia and hypoxia on rat brain cogni-

tive function, a Morris Water Maze test was performed among the BCAO rats and their 

counterpart control rats. As shown in Figure 1, after ligation for 4 weeks, the BCAO rats 

showed higher average escape  latency from day 3 to day 5 (Figure 1A), although there 

were no differences  in  the average swimming speed of rats between  these  two groups 

(Figure 1B). More importantly, the BCAO rats demonstrated significantly less time and 

number crossing in the target quadrant where the platform was previously established on 

day 6 of  the memory retrieval  test  (Figure 1C,D). These results consistently  imply  that 

artery occlusion  caused significantly memory and  cognitive deterioration  in  these ani-

mals. 

 

Figure 1. Cognitive performance tested using a Morris Water Maze in bilateral common carotid ar-

tery occlusion (BCAO) rats after 4 weeks of ligation. The rats were tested at a designed time for five 

consecutive days. (A) Mean escape latency, (B) mean swimming speed, (C) time in target quadrant, 

(D) number of platform crossover measured. Data were expressed as mean ± SEM, * p < 0.05 versus 

the control rats; ns, no significance (n = 7). 

3.2. Artery Occlusion Inhibited the Gene Expression of Marker Proteins of Both Types of 

Astrocyte, but Increased the Protein Level of S100a10 

Astrocyte reactivation in ischemic insults has been reported in a previous study [18]. 

In order to validate the cellular level changes of astrocytes in our BCAO rats, we employed 

a Western blot assay to study the reactivation of astrocytes after 4 weeks of ligation. We 

found that the protein content of GFAP was up-regulated significantly in the BCAO rat 

cortex  (Figure 2A,B). To  further elaborate  the characteristics of  these  reactivated astro-

cytes, phenotype markers for both A1- and A2-reactive astrocytes were measured with 

Real-time Quantitative PCR and ELISA assays. Using Real-time Quantitative PCR, we 

found that mRNA transcripts of both A1 type and A2 type astrocyte markers were simul-

taneously significantly down-regulated, including serpin family G member 1 (Serping1) 

and RT1 class Ib (H2T23) for A1 phenotype (Figure 2C) and cardiotrophin-like cytokine 

Figure 1. Cognitive performance tested using a Morris Water Maze in bilateral common carotid
artery occlusion (BCAO) rats after 4 weeks of ligation. The rats were tested at a designed time for five
consecutive days. (A) Mean escape latency, (B) mean swimming speed, (C) time in target quadrant,
(D) number of platform crossover measured. Data were expressed as mean ± SEM, * p < 0.05 versus
the control rats; ns, no significance (n = 7).

3.2. Artery Occlusion Inhibited the Gene Expression of Marker Proteins of Both Types of Astrocyte,
but Increased the Protein Level of S100a10

Astrocyte reactivation in ischemic insults has been reported in a previous study [18].
In order to validate the cellular level changes of astrocytes in our BCAO rats, we employed
a Western blot assay to study the reactivation of astrocytes after 4 weeks of ligation. We
found that the protein content of GFAP was up-regulated significantly in the BCAO rat
cortex (Figure 2A,B). To further elaborate the characteristics of these reactivated astrocytes,
phenotype markers for both A1- and A2-reactive astrocytes were measured with Real-time
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Quantitative PCR and ELISA assays. Using Real-time Quantitative PCR, we found that
mRNA transcripts of both A1 type and A2 type astrocyte markers were simultaneously
significantly down-regulated, including serpin family G member 1 (Serping1) and RT1
class Ib (H2T23) for A1 phenotype (Figure 2C) and cardiotrophin-like cytokine factor 1
(Clcf1) and S100 calcium-binding protein A10 (S100a10) for A2 phenotype (Figure 2E) after
4 weeks of ligation. Interestingly, on the protein level, we found that the marker protein of
the A2 phenotype, S100a10, was significantly up-regulated in the BCAO rat cortex, while
the content of C3 in the A1 type marker protein showed an obvious reducing trend, albeit
no significant difference (Figure 2D,F), with ELISA analysis after 4 weeks of ligation. These
results suggest that astrocytes in the present model were promoted to A2 phenotypes.
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protein levels of GFAP were tested using Western blot, and the data were normalized to Gapdh blot.
(C) A1 reactive astrocyte phenotypes were tested using Real-time Quantitative PCR. (D) C3 protein
concentration was tested using Elisa. (E) A2 reactive astrocyte phenotypes were tested using QPCR.
(F) S100a10 protein concentration was tested using Elisa. Data were expressed as mean ± SEM,
* p < 0.05 versus the control rats; ns, no significance (n = 6).



Brain Sci. 2024, 14, 1256 7 of 19

3.3. Artery Occlusion Inhibited the Protein Expression of CX43, Not AQP4 and APOE

Besides the phenotype change in astrocytes, we further used Western blot to study
the function proteins of astrocytes especially related to the blood–brain barrier. Connexin
43 (CX43), aquaporin 4 (AQP4), and apolipoprotein E (APOE) are generally considered
to be astrocyte-derived proteins and are closely associated with pathogenesis of ischemia
or stroke [19–21]. We found that after 4 weeks of chronic ischemia and hypoxia, the
expression of CX43 was significantly down-regulated; however, the levels of AQP4 and
APOE expression had no change compared to the control group (Figure 3).
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Actin were calculated and compared. Data were expressed as mean ± SEM, * p < 0.05 versus the
control rats; ns, no significance (n = 6).

3.4. In Vitro Hypoxia Inhibited the Gene Expression of Marker Protein of Both Types of Astrocyte,
but Increased the Protein Level of S100a10

To further confirm the findings of the in vivo studies and illustrate the possible un-
derlying mechanisms relevant to the changes, we employed in vitro cell culture models of
astrocytes by treating them with cobalt chloride (CoCl2) to mimic the ischemic insults in
culture conditions [22]. Brain insults and astrocyte phenotype changes have been found to
be closely related to BBB dysfunction, which could be reflected in a culture model by using
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fibrinogen to stimulate the cells [23]. In these culture models, the toxicity of cobalt chloride
and fibrinogen to astrocytes were tested using a CCK-8 kit first, which used a formazancon
centration produced by vital cell numbers to reflect the toxicity of substance. The results
show that the toxicity of CoCl2 was dose-dependent. In total, 100 µM CoCl2 caused 17%
astrocytes to die compared to the control group, while 300 µM CoCl2 caused 23% astrocytes
to die, and only 10% astrocytes survived at 1 mM CoCl2 treatment (Figure 4A). Meanwhile,
we also found that the effects of fibrinogen were not dose-dependent. Low concentra-
tions of fibrinogen, such as 0.5 mg/mL, caused astrocyte hyperplasia, about 8% higher
than the control group, while high concentrations of fibrinogen, such as 5 mg/mL and
10 mg/mL, caused 7% astrocytes to die (Figure 4B). Therefore, 250 µM CoCl2, 0.5 mg/mL,
and 5 mg/mL fibrinogen were used in the following studies.
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Figure 4. Cobalt chloride and fibrinogen induced toxicity in cultured cortical astrocytes of rats for
24 h. (A,B) Cell viability was determined using a CCK assay. (A) CoCl2 caused a dose-dependent
effect on astrocyte viability (n = 3). (B) The effect of fibrinogen was not concentration-dependent or
prominent (n = 9). Data were expressed as mean ± SEM, ** p < 0.01 versus the control group; ns,
no significance.

Cultured astrocytes were used to mimic the hypoxia condition via cobalt chloride
treatment at different time of points. In total, 10 µM, 100 µM, or 250 µM of cobalt chloride
caused increased S100a10 expression level at both 24 h (Figure 5C) and 96 h (Figure 5F),
and 250 µM CoCl2 had the most significant difference. But the C3 protein expression was
not significantly changed in all the doses (Figure 5B,E), which made 250 µM CoCl2 the
favorable condition for mechanism study since it had a similar protein expression pattern
to the in vivo study. Therefore, 250 µM CoCl2 and 24 h were used in the culture model
for further tests to match the results from the in vivo studies. In chronic hypoperfusion
of cerebral blood flow, both hypoxia and low glucose usually happened simultaneously.
After 250 µM cobalt chloride, 500 mg/l glucose or both were given to astrocyte culture for
24 h [24]. As expected, astrocytes under these stimulates also turned out to be A2 reactive
astrocyte instead of A1. S100a10 protein concentration was increased in all conditions
(cobalt chloride or low glucose alone or together) (Figure 6C), but there was no change
in C3 protein level (Figure 6B). We also found that both mRNA of A1 and A2 transcripts
were down-regulated, such as Serping1, glycoprotein alpha-galactosyltransferase 1 (Ggta1),
similar to interferon-inducible GTPase (Iigp1), and guanylate binding protein 2 (Gbp2)
for A1 phenotype (Figure 6E), as well as S100a10 and CD109 molecule (Cd109) for the
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A2 phenotype (Figure 6F), especially in hypoxia conditions for 24 h. BBB disruption is
usually subsequent to the hypoperfusion of cerebral blood flow, such as stroke along with
leakage of blood components, including fibrinogen, into the brain parenchyma, leading to
immune and neuroinflammatory responses [25]. In our study, astrocytes in cultures were
then given 0.5 mg/mL or 5 mg/mL fibrinogen for 24 h. Similar to the results of hypoxia
and low glucose (see Supplementary Materials Figure S1), compared to the control group
(Figure 7E), the morphology of astrocyte had no obvious change in the low-concentration
fibrinogen group (Figure 7F), but high-concentration fibrinogen caused astrocyte hyper-
trophy (Figure 7G,H), and S100a10 protein concentration elevated, but C3 had no changes
(Figure 7B). mRNA of A1 transcripts such as Iigp1, and mRNA of A2 transcripts such as
Clcf1, pentraxin 3 (Ptx3), and sphingosine kinase 1 (Sphk1) were down-regulated, especially
in the 5 mg/mL fibrinogen group compared to the low concentration of fibrinogen group
(Figure 7C,D) for 24 h. The results in vitro models were partly consistent with in vivo
models, both suggesting that the A2 phenotype was the predominant type.
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Figure 5. Reactive phenotype in cultured cortical astrocytes of rats by different concentrations of CoCl2
and time duration. (A–C) After 24 h, the protein levels of C3 and S100a10 were tested using Western
blot, and the data were normalized to Gapdh or Actin blot. (D–F) After 96 h, the protein levels of C3
and S100a10 were tested using Western blot, and the data were normalized to Gapdh or Actin blot. Data
are expressed as mean ± SEM, * p < 0.05 versus the control group; ns, no significance (n = 3).
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Figure 6. Reactive phenotype in cultured cortical astrocytes of rats by cobalt chloride and low glucose
for 24 h. (A–D) The protein levels of C3, S100a10, and GFAP were tested using Western blot and the
data were normalized to Gapdh or Actin blot. (E,F) A1 and A2 reactive astrocyte phenotypes were
tested using QPCR. Data were expressed as mean ± SEM, * p < 0.05,** p < 0.01 versus the control
group; ns, no significance (n = 3).

3.5. In Vitro Hypoxia Inhibited the Expression of CX43 Protein, Not AQP4 and APOE, in Primary
Cultures of Astrocytes and C6 Cell Lines

Next, we explored whether the expression levels were changed among proteins re-
lated with astrocyte function in the culture models by measuring CX43, aquaporin 4, and
aolipoprotein E. After under the chronic condition of hypoxia and low glucose for 72 h,
cultured astrocyte still could maintain reactivation featured with elevated GFAP expression.
We found the expression of CX43 was significantly down-regulated in the model cells, but
the levels of aquaporin 4 and aolipoprotein E showed no significant changes compared to
the control group, which sit well with our results from the in vivo model (Figure 8).
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Figure 7. Reactive phenotype in cultured cortical astrocytes of rats by fibrinogen for 24 h. (A,B) The
protein levels of C3, S100a10, and GFAP were tested using Western blot, and the data were normalized
to Gapdh or Actin blot. (C,D) A1 and A2 reactive astrocyte phenotypes were tested using QPCR.
(E–G) Immunofluorescence staining of GFAP using control (E). Low concentration of fibrinogen and
(F) high concentration of fibrinogen (G). (H) Analysis of cell area in immunofluorescence staining of
GFAP. Data are expressed as mean ± SEM, * p < 0.05, ** p < 0.01 versus the control group; # p < 0.05,
high concentration versus low concentration of fibrinogen group; ns, no significance (n = 3).
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Figure 8. Function of reactive cultured cortical astrocytes of rats by cobalt chloride and low glucose for
72 h. (A) Representative blots of CX43, Aqua4, ApoE, and GFAP. (B–E) Ratios of CX43, Aqua4, ApoE,
and GFAP to Actin or Gapdh were calculated and compared. Data were expressed as mean ± SEM,
* p < 0.05 versus the control group; ns, no significance (n = 3).

We also used astrocyte cell line C6 to further validate the effects of hypoxia and low
glucose. The toxicity effects of cobalt chloride on C6 cells were similar with those from
astrocyte cultures (Figure 9A), and, therefore, 250 µM CoCl2 concentration was also used
as before. After undergoing hypoxia and low glucose challenges for 24 h, theses C6 cells
expressed significant lower level of CX43 as the primary astrocyte cultures (Figure 9C), but
comparable levels of aquaporin 4 and apolipoprotein E to the control group, which was
also consistent with the results from astrocyte cultures (Figure 9D,E).
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Figure 9. Effects of C6 cells by cobalt chloride or low glucose for 24 h. (A) Cell viability was
determined using a CCK assay, and CoCl2 caused a dose-dependent effect on C6 cell viability.
(B) Representative blots of CX43, Aqua4, and ApoE. (C–E) Ratios of CX43, Aqua4, and ApoE to
Gapdh or Actin were calculated and compared. Data were expressed as mean ± SEM, * p < 0.05,
** p < 0.01 versus the control group; ns, no significance (n = 3).

3.6. In Vitro Hypoxia Inhibited the Phosphoraltion of ERK and JNK Not AKT

CX43 expression reportedly could be regulated by the MAPK/ERK and PI3K–pAKT
signaling pathways [26,27]. Therefore, we also carried out Western blot assays to investigate
if these signaling pathways were possibly involved in the CX43 expression changes under
our culture models. We found that pERK and pJNK in C6 cells were significantly down-
regulated after hypoxia and low glucose exposure, while pAKT protein expression was not
affected by these insults (Figure 10). Also pSTAT3 signal pathway was not affected, but
pCREB was activated by cobalt chloride alone (see Supplementary Materials Figure S2).
Therefore, we could claim that the reduced expression of CX43 might be attributed to the
suppression of pERK and pJNK due to ischemic insults.
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sentative blots of pERK, pJNK, pAKT. (B–D) Ratios of pERK, pJNK, pAKT to ERK, JNK, and AKT
were calculated and compared. Data were expressed as mean ± SEM, * p < 0.05, ** p < 0.01 versus the
control group; ns, no significance (n = 3).

4. Discussion

In many neural system pathologies, such as trauma, stroke, and neurodegenerative dis-
eases, astrocytes activation is quite often, namely as “astroglisosis”. During the activation,
the cell bodies and cellular processes of astrocytes become hypertrophied, and intermediate
filament protein, particularly glial fibrillary acidic protein (GFAP), are up-regulated [28,29].
Reactive astrocytes have been classified into two phenotypes: A1 type (neurotoxic) and A2
type (neuroprotective) [10]. In the pathogenesis of any CNS disease, the different factors
involved may lead to the different preferring polarizations of astrocytes [30].

Reactive astrocytes are triggered during acute ischemic insult, but the reactive profile
during chronic ischemia remains elusive. Under chronic cerebral hypoperfusion condition,
A1 astrocytes were the predominant astrocyte type in the white matter [31,32]. However, in
a study of astrocytes derived from hippocampus, the transcripts of A1 type were down-
regulated in chronic cerebral hypoperfusion mice [33]. In our study, BCAO rats were used
to mimic chronic brain ischemia in vivo. In chronic hypoperfusion of cerebral blood flow,
both hypoxia and low glucose usually happened simultaneously, and BBB disruption is
usually subsequent to the hypoperfusion, such as leakage of blood components, so CoCl2,
low glucose, and fibrinogen were used in in vitro models. In all the models, S100a10 was
significantly up-regulated, which meant the astrocytes were likely transformed into an



Brain Sci. 2024, 14, 1256 15 of 19

A2 phenotype in different types of nerve cell insults. S100a10 was a member of the S100
EF-hand protein family, which connected certain membrane proteins with annexin A2
as a bridge [34,35]. Studies show that S100a10 could negatively regulate TLR signaling
pathways in macrophages, suggesting an important role in regulating inflammatory re-
sponse [36]. S100a10 was also found in astrocytes [37]. Up-regulation of S100a10 may
promote the survival of neurons through secretion of neuroprotective factors in astrocytes
upon MPTP exposure [38]. The up-regulation of S100a10 may come from A1 phenotype
reactive astrocyte transformation, or even from ependymal cells [39].

Furthermore, a single indicator, such as S100a10, only showed part of an integrated
effect, and studies have found that the functions of astrocytes are complicated. During
brain injury, reactive astrocytes could re-uptake glutamate from synapses cleft, preventing
excitotoxicity to neurons, but also were capable of producing pro-inflammatory cytokines
and matrix metalloproteinase (MMP), which could cause subsequent BBB disruption [40].
Although glial scars, mainly formed by reactive astrocytes, were thought to act as a phys-
ical barrier to encapsulate damaged tissue, they also had an inhibitory effect on axonal
regrowth [41]. In mice after transient focal cerebral ischemia, astrocytes could transfer
mitochondria to adjacent neurons to help neuron survival [42]. And in a mouse model of
focal cerebral ischemia, astrocytes trans-differentiated to neural progenitor cells to help
CNS repair [43]. Mostly in the acute phase of stroke, astrocytes could limit tissue damage,
but in the chronic phase, reactive gliosis seems to inhibit neural axonal sprouting [44].
Astrocytes also took a role of astrogliosis with pro-inflammatory phenotypes in AD, PD,
and HD [45]. Even in a healthy condition, astrocytes have different molecular expression
pattern in different regions of the brain [46]. In our study, we also found that inducible
nitric oxide synthase (iNOS) was down-regulated and Glutamate cysteine ligase catalytic
subunit (GCLC) was up-regulated in cultured astrocytes (see Supplementary Materials
Figure S3), which suggests that astrocytes took on a protective role.

After a long time of cerebral hypoperfusion in vivo, and low oxygen and glucose
in astrocytes or C6 cells in vitro, we also found that CX43 was down-regulated, but no
changes in AQP4 and APOE expression were found on protein levels. Aquaporin 4
(AQP4) is primarily expressed in astrocyte foot processes, which are involved in water
movement, clearance of brain metabolic waste, cell migration, and neuroexcitation [47,48].
AQP4 concentration and polarization were changed in the acute phase of cerebral chronic
hypoperfusion, but in the chronic phase, it recovered to normal status [49,50]. These
results sat well with our findings and further supported the establishment of our chronic
hypoxia models.

Apolipoprotein E (APOE) is expressed richly in astrocyte cell processes and could
be secreted by astrocytes [51]. The APOE gene variant is the strongest genetic risk factor
for AD. APOE plays an important role in Aβ clearance, phosphorylation of tau, and neu-
roinflammation enhancement [52]. APOE-deficient mice exerted more neural death and
decreased white matter integrity and cognitive function after chronic cerebral hypoperfu-
sion, which suggests a protect effect of APOE in ischemia [53]. APOE level was found to be
elevated in synaptic protein under chronic cerebral hypoperfusion [54]. In our study, APOE
did not have significant changes in our chronic hypoxia models, which might suggest that
APOE did not play a role in chronic hypoxia injury.

Connexin 43 (CX43), as the major astrocytic gap junction protein, is expressed mainly in
astrocytes in vivo and in vitro, and it is critical for buffering K+, regulation of cell migration,
proliferation, and survival [55]. The surface and mitochondrial expression of CX43 under
chronic cerebral hypoperfusion were increased in rats [56]. But inhibition of CX43 protected
myelin integrity and rescued cognitive decline in the chronic cerebral hypoperfusion
mice [57]. The expression change in Cx43 after ischemic stroke remained debated due to
inconsistent reports from different labs [58]. It had been well known that Cx channels,
including Cx43, can facilitate the transfer of toxic signals from dying cells to healthy
neighbors under certain pathologic conditions [59]. In our data, the down-regulation of
CX43 in the brain cortexes, astrocyte cultures, and C6 cells may be an adaptive response to
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both hypoxia and low glucose. Reduced-expression Cx43 were equal to “close” the channels
between astrocyte–astrocyte and other cells, which could lead to de-amplifying of injury
spreading. This also was consistent with the fact that astrocytes turned to the A2 phenotype
under hypoperfusion conditions in the in vivo and in vitro models in the present study
because of the neuroprotective role of this A2 type of astrocyte. A previous study has shown
that CX43 has three bands on SDS PAGE assays, which include the phosphorylated state of
CX43, referred to as P1 and P2, and non-phosphorylated CX43, referred to as P0 [60]. In our
data, all of the densities of the three bands decreased, especially the phosphorylation bands
in BCAO rats and C6 cells, which was in line with a previous report [61]. Since ERK1/2
had been found to modulate phosphorylation of CX43 [26], JNK inhibitors decreased the
expression of phosphorylation of CX43 in C6 cells [27]. Under hypoxia and low glucose
in our models, we found that the phosphorylation of ERK1/2 and JNK were decreased.
And, therefore, the down-regulation of phosphorylated CX43 might be caused by the
inhibition of ERK1/2 and JNK due to hypoxia injury. Since glutamate could be released
from astrocytes via CX43 [62], the down-regulation of CX43 may decrease the injury to
neurons by mitigating the spreading of glutamate toxicity. A study also demonstrated that
inhibiting CX43 degradation could transit astrocytes to anti-inflammatory status during
ischemic stress [63], which was consistent with our findings here of astrocytes turning into
the A2 type instead of the A1 type. But more data from genetically modified animal models
are required from future studies with knocking in or knocking down strategies to further
validate this hypothesis. Based on the data from the present study, we hypothesize that
Cx43 could be one of the key players in CNS during ischemia.

5. Conclusions

Our data suggest that in the pathological condition of chronic cerebral hypofusion,
astrocytes could tend to preferably transform themselves more to the neuroprotective type
A2 instead of A1. CX43 protein was also down-regulated in ischemic stress, which might
be attributed to the inhibition of MAPK/ERK and PI3K–pAKT signaling pathways. These
findings might lay some of the foundations for subsequent research on the roles of CX43
in ischemic insults and how to leverage this protein to better study the hypoxia injury in
the CNS.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Signal pathway proteins of C6 cells by cobalt chloride or low glucose for 24 h; Figure S3. Reactive
function in cultured cortical astrocytes of rats by cobalt chloride and low glucose for 72 h.
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