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Abstract: Myocarditis is an inflammatory disease of the myocardium with heterogeneous etiology,
clinical presentation, and prognosis; when it is associated with myocardial dysfunction, this identifies
the entity of inflammatory cardiomyopathy. In the last few decades, the relevance of the immune sys-
tem in myocarditis onset and progression has become evident, thus having crucial clinical relevance
in terms of treatment and prognostic stratification. In fact, the advances in cardiac immunology have
led to a better characterization of the cellular subtypes involved in the pathogenesis of inflamma-
tory cardiomyopathy, whether the etiology is infectious or autoimmune/immune-mediated. The
difference in the clinical course between spontaneous recovery to acute, subacute, or chronic progres-
sion to end-stage heart failure may be explained not only by classical prognostic markers but also
through immune-pathological mechanisms at a cellular level. Nevertheless, much still needs to be
clarified in terms of immune characterization and molecular mechanisms especially in biopsy-proven
myocarditis. The aims of this review are to (1) describe inflammatory cardiomyopathy etiology,
especially immune-mediated/autoimmune forms, (2) analyze recent findings on the role of different
immune cells subtypes in myocarditis, (3) illustrate the potential clinical relevance of such findings,
and (4) highlight the need of further studies in pivotal areas of myocarditis cellular immunology.

Keywords: myocarditis; immune system; immunosuppressive therapy; autoimmune disease;
systemic immune-mediated disease

1. Introduction

Myocarditis is an inflammatory disease of the myocardium, diagnosed through well-
established histological, immunological, and immunohistochemical criteria. It presents
with a broad spectrum of etiologies, clinical manifestations, and outcomes [1,2]. Acute
myocyte damage may trigger the activation of both innate and adaptive immune responses,
leading to an inflammatory response. In most patients, the immune reaction is eventually
downregulated, and the myocardium recovers. In a sizable portion of cases, however,
persistent inflammation leads to ongoing myocyte damage, resulting in ventricular dilation,
reduced contractility, and end-stage heart failure [3,4]. When associated with myocardial
dysfunction, biopsy-proven myocarditis is termed inflammatory cardiomyopathy [1], a
complex and clinically relevant disorder.

In recent years, extensive research efforts have been made to elucidate the underlying
immunopathogenesis of myocarditis, employing a variety of methodologies, including
animal models [5,6] and human studies on patients and healthy controls [7–9]. These inves-
tigations aimed to provide a comprehensive understanding of how both innate immune
cells (e.g., macrophages and dendritic cells) and adaptive immune cells (e.g., T cells and B
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cells) initiate and amplify the immune response [10–12]. However, despite these advances,
many aspects, particularly the immune characterization and molecular mechanisms under-
lying biopsy-proven autoimmune myocarditis and inflammatory cardiomyopathy, remain
poorly understood.

The aims of this review are to (1) describe inflammatory cardiomyopathy etiology,
with a focus on immune-mediated/autoimmune forms, (2) analyze recent findings on the
role of different immune cells subtypes in myocarditis, (3) illustrate the potential clinical
relevance of these findings, and (4) highlight the need for further studies in pivotal areas of
myocarditis cellular immunology.

2. Clinical Presentation of Myocarditis and Inflammatory Cardiomyopathies

Myocarditis encompasses a heterogeneous spectrum of clinical manifestations, ranging
from mild to severe forms. This variability complicates diagnosis, risk assessment, and
therapeutic management [2]. The majority of the cases of clinically suspected infarct-
like cases occur in men (60–80%), with a median age of presentation between 30 and
45 years [13,14]. However, the incidence of myocarditis, especially with elusive clinical
presentations such as arrhythmias or chronic heart failure, is difficult to assess due to the
inconsistent use of the diagnostic gold standard, endomyocardial biopsy (EMB).

In fact, myocarditis may even be paucisymptomatic, with a slow and insidious course,
thereby often leading to delayed diagnosis. Conversely, it may present with a sudden onset
of unexplained cardiac signs and symptoms or progress rapidly to a fulminant form [2,15].
Commonly reported symptoms include chest pain (82% to 95% of cases), fever (58–65% of
cases), dyspnea (19–49% of cases), and syncope (5–7% of cases) [16,17]. In approximately
7% to 12% of acute myocarditis cases, the onset is fulminant, characterized by cardiogenic
shock (CS) or acute heart failure (HF) and left ventricular (LV) dysfunction, with or without
malignant ventricular arrhythmias and/or conduction abnormalities [18,19].

Clinical manifestations may also mimic those of other cardiomyopathies, including
Takotsubo syndrome (TS) [20,21] and arrhythmogenic right ventricular cardiomyopathy
(ARVC). In a non-negligible proportion of cases, ARVC patients may present with acute
chest pain episodes and elevated myocardial enzyme levels, frequently with preserved
biventricular systolic function, during so-called ‘hot phases’, which have been observed in
5% of a previously reported ARVC cohort [22,23]. This is even more relevant considering
the newly identified phenotypes of arrhythmogenic cardiomyopathy (ACM), including
the “left-dominant” and “biventricular” disease subtypes [24], in which a phenotypical
and clinical overlap with inflammatory cardiomyopathy should be carefully investigated,
in order to promptly define a correct diagnostic and therapeutic patient work-up. Since
histological evidence of inflammatory infiltrates in ARVC patients has been provided since
the 1990s, multi-parametric assessment of myocarditis in the context of ACM, especially
during the so-called “hot phases”, is encouraged [25].

3. Challenges in Diagnosis: The Role of Endomyocardial Biopsy and
Imaging Techniques

EMB is the diagnostic gold standard for myocarditis. According to the 2013 position
statement of the European Society of Cardiology Working Group on Myocardial and Peri-
cardial Diseases, EMB should not be restricted to hemodynamically or electrically unstable
patients but should instead be considered for any clinically suspected myocarditis case
where a definitive etiological diagnosis could impact the outcome. This has been reinforced
by the latest consensus statement by the three leading international HF societies [19]. EMB
should be performed following the exclusion of other potential cardiac or extracardiac con-
ditions that could explain the symptoms and imaging findings, particularly coronary artery
disease, which can be ruled out through invasive coronary angiography or coronary CT,
according to the patients’ pretest probability of relevant coronary atherosclerosis [2,26,27].
The EMB examination is based on conventional histopathological analysis according to
the Dallas criteria [28,29], supplemented by immunohistochemical characterization of the
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inflammatory infiltrate and polymerase chain reaction (PCR) detection of infectious agents.
The type of inflammatory infiltrate—whether eosinophilic, polymorphous, lymphocytic,
or granulomatous—plays a critical role in both prognostic stratification and therapeutic
decision-making [2,3,26].

When EMB is not initially performed during clinical evaluation—particularly in cases
where any markers of severe prognosis are present and specific etiological treatment is
not required—the 2013 ESC criteria allow for a diagnosis of clinically suspected myocardi-
tis [2,19]. This diagnosis is largely based on ruling out coronary artery disease through
coronary angiography and identifying myocarditis typical findings on CMR imaging.

Over the past two decades, CMR has emerged as a reliable and accurate non-invasive
diagnostic technique to support clinical suspicions of myocarditis, due to its ability to
provide volume quantification, contractility assessment, and myocardial tissue characteri-
zation [30,31]. In 2009, the original Lake Louise criteria (LLC) were established to enhance
CMR diagnostic accuracy for suspected myocarditis through uniform protocols. These
criteria included (1) global or regional myocardial systolic dysfunction, (2) myocardial
edema, and (3) myocardial hyperemia or increased vascular permeability, as indicated
by early (EGE) or late gadolinium enhancement (LGE) on CMR [32]. The diagnosis of
myocarditis required at least two of the three aforementioned criteria, with one being either
myocardial edema or myocardial LGE. To improve diagnostic accuracy, the latest revisions
to the LLC have integrated new mapping techniques and now require both myocardial
edema (one T2-based criterion) and non-ischemic myocardial injury (one T1-based crite-
rion) to be present in order to raise suspicion of myocardial inflammation [33,34] (Figure 1).
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myopathy. Inflammatory cardiomyopathy presents a high grade of clinical heterogeneity (clinical Figure 1. Overview of a guideline-based clinical and diagnostic approach to inflammatory car-
diomyopathy. Inflammatory cardiomyopathy presents a high grade of clinical heterogeneity (clinical
presentation may range from chronic heart failure to abrupt onset of life-threatening ventricular
arrhythmias) and phenotypical diversity (non-invasive findings may mimic other cardiomyopathies
such as ARVC, DCM, etc.). Autoimmune biomarkers may suggest an immune-mediated etiology and
identify patients with worse phenotype and follow-up [35,36]. A diagnosis of clinically suspected
myocarditis is mostly based on CMR findings, but only EMB can achieve a definitive and etiological
diagnosis, possibly identifying candidates for tailored immunosuppression in virus-negative cases.
ARVC: left ventricular cardiomyopathy; CAD: coronary artery disease; DCM: dilated cardiomyopa-
thy; ECG: electrocardiogram; HCM: hypertrophic cardiomyopathy. Created with Biorender.
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While CMR is valuable in various clinical scenarios, especially in distinguishing
between coronary-ischemic and inflammatory myocardial damage, it does not provide
information about the underlying etiology or the histological subtype of myocarditis [15].

Furthermore, the prognostic role of LGE in myocarditis is still open to debate. While
studies on non-ischemic cardiomyopathy found LGE to be quantitively associated with
worse outcomes [37], a recent single-center study on 207 clinically suspected or biopsy-
proven myocarditis patients showed that higher biventricular systolic function and a greater
extent of LGE on CMR at diagnosis were associated with better outcomes when assessed
at any follow-up point. Conversely, larger biventricular volumes, CMR-based dilated
cardiomyopathy (DCM) features, and the presence of an ischemic LGE pattern at diagnosis
were predictors of worse outcomes [38].

Regarding nuclear imaging techniques, positron emission tomography with 2-deoxy-2-
fluoro-D-glucose (FDG-PET) can be used to evaluate the inflammatory activity of the heart
and monitor treatment responses specific conditions, such as cardiac sarcoidosis [39–41].
However, data regarding the use of FDG-PET in myocarditis evaluation remain limited.
Only a few case reports and series have documented FDG findings in viral myocardi-
tis [42–46], eosinophilic myocarditis [43], and GCM [44,45].

4. Etiology of Myocarditis: Viral and Toxic Causes

The etiopathogenesis of myocarditis is complex, primarily categorized as either viral
or autoimmune/immune-mediated [2]. Myocarditis can result from various infectious
agents, with viruses being the most common culprits, though bacteria and parasites may
also play a role. While viral infections dominate in Western countries, Central and South
America present a higher incidence of Chagas disease, which is caused by the protozoan
Trypanosoma Cruzi [15]. Notably, around 27% of patients may present with multiple viral
infections affecting the myocardium [4].

Viral myocarditis can be categorized based on the viral tropism. Viruses that are
primarily cardiotropic, such as adenoviruses and enteroviruses, directly target the my-
ocardium, while others like parvovirus B19 (PVB19) are vasculotropic and may persist
lifelong. Lymphotropic viruses, including cytomegalovirus (CMV) and Epstein–Barr virus
(EBV), target lymphatic tissues, and certain strains like Influenza A and B can exert car-
diotoxic effects on the myocardium [4]. Accurate diagnosis of viral myocarditis is essential
and should be based on PCR testing from myocardial tissue rather than serological markers,
which may not reliably indicate current infection [4,47]. Given the complexity of viral
pathogens, treatment strategies should be multidisciplinary, with close collaboration with
infectious disease specialists to ensure tailored antiviral therapy, especially in cases of
chronic or recurrent infections [19,48].

Toxic causes of myocarditis are a minority, occurring either as hypersensitivity my-
ocarditis, which is unrelated to drug dosage, or as dose-dependent direct cardiac toxicity.
Among these less common causes is mesalazine, an established first-line treatment for
inflammatory bowel disease (IBD) and mainstay therapy for mild-to-moderate ulcerative
colitis (UC) [49]. While mesalazine has been associated with myocarditis, with a reported
incidence as high as 0.3% and potentially fatal outcomes [50], data from a single-center
experience and a literature review suggest that, in the absence of EMB-based confirmation,
the true incidence may be overestimated [51].

An immune-mediated pathological reaction may arise from clear toxic myocardial
damage. A clear example of a toxic myocarditis with an underlying autoimmune mech-
anism is myocarditis induced by immune checkpoint inhibitors (ICIs), which warrants
particular attention due to the relevant morbidity and mortality [52]. Over the past decade,
ICIs have significantly improved outcomes for cancer patients. However, ICIs can also
trigger a wide range of potentially life-threatening immune-related adverse events (irAEs)
including fulminant myocarditis [53].
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5. Focus on Immune-Mediated Myocarditis and Inflammatory Cardiomyopathy

The role of autoimmunity in myocarditis is well established, occurring either as
post-infectious immune-mediated myocardial damage or as a primary organ-specific au-
toimmune disease [2]. Additionally, non-infectious autoimmune myocarditis may occur
in various systemic immune-mediated diseases (SIDs) [54], which include autoimmune
and autoinflammatory diseases affecting at least two organ systems [55], such as systemic
lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), and mixed
connective tissue disease (MCTD). Myocarditis is a hallmark of SIDs, often associated with
worse prognoses and necessitating an intensified immunosuppressive regimen [39,56,57].

In both organ-specific myocarditis and systemic immune-mediated myocardial dam-
age, the role of humoral immunity is well established. Research dating back to the late 1980s
and early 1990s reported the presence of anti-heart autoantibodies (AHAs) [58–61] in cases
of acute and chronic myocarditis or DCM [62–64]. These biomarkers are present in 60–80%
of patients with biopsy-proven organ-specific autoimmune myocarditis/inflammatory car-
diomyopathy across its full spectrum of clinical presentations, including fulminant, acute,
subacute, chronic heart failure, pseudo-infarction, and arrhythmic presentation [3,62,65],
and their presence is correlated with poor prognosis [66]. Furthermore, their detection in
asymptomatic relatives of patients with idiopathic DCM may serve as a predictive marker
for disease development [65,67]. AHA antigens are the α and β isoforms of the cardiac
myosin heavy chain and are therefore considered cardiac-specific autoantigens [59].

AHAs and anti-intercalated disc autoantibodies (AIDAs) serve as disease-specific
markers of immune-mediated myocardial damage also in the context of SIDs, such as
systemic sclerosis [68] and sarcoidosis with cardiac involvement. [69]. Future studies are
warranted to clarify whether or not AHAs and AIDAs play a direct pathogenic role in
systemic immune-mediated myocardial damage, as suggested in organ-specific myocardi-
tis [70]. Other autoimmune biomarkers, such as anti-Desmoglein-2 antibodies, have been
identified in myocarditis and various other cardiac and non-cardiac immune-mediated
diseases. These biomarkers not only correlate with specific disease features and prognostic
markers but also suggest a potentially pivotal role in disease pathogenesis [71–73].

6. Interplay of Genetic Predisposition and Autoimmunity

Autoimmune diseases typically arise from the interaction between genetic predispo-
sition and environmental triggers. This interplay results in immune dysregulation and
a failure to recognize self-antigens, ultimately leading to a loss of tolerance. Similarly,
in autoimmune myocarditis, numerous studies have sought to clarify the relationship
between environmental factors, genetic background, and disease development [74–76].
Genetic factors may significantly influence both susceptibility to myocarditis and its clinical
evolution, particularly in patients with severe left ventricular (LV) dysfunction who may
progress to DCM [77].

Genetic polymorphisms in the major histocompatibility complex (MHC) genes can
affect antigen binding affinities, with specific MHC genes linked to an increased risk of
certain autoimmune diseases [78]. In humans, alleles such as HLA (human leukocyte
antigen)-DR4, HLA-DR12, and HLA-DR15 have been associated not only with the develop-
ment of myocarditis but also with a higher risk of progression to DCM [79,80]. Furthermore,
recent transcriptomic studies have revealed a higher prevalence of HLA-DQ1 expression
in patients with myocarditis compared to those to those without. In fact, transgenic mice
expressing human HLA-DQ8 or HLA-DR4 have been shown to spontaneously develop
fatal autoimmune myocarditis [5,81]. Besides HLA polymorphism, recent data suggest an
overlap between certain genetic cardiomyopathies and myocarditis. A population-based
cohort study that included 336 consecutive myocarditis patients, mainly with a clinically
suspect diagnosis, revealed that pathogenic mutations in cardiomyopathy-related genes
(i.e., pathogenic or likely pathogenic variants in genes related to specific cardiomyopathies)
were present in 8% of the myocarditis cases and in less than 1% of healthy controls [74].
These genetic variants were detected in both genes associated with DCM, such as TTN, and
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those linked to ARVC, like DSP. Importantly, patients carrying these genotype-positive
mutations showed a poorer prognosis and increased 5-year mortality rates [74].

7. Immunosuppressive Regimens for Myocarditis: Current Evidence and
Future Challenges

Effective management of myocarditis requires a comprehensive therapeutic approach
designed to address both cardiovascular complications and the specific underlying etiology,
whether viral or autoimmune.

Immunosuppressive therapy (IS) is a cornerstone in the management of biopsy-proven
(BP) autoimmune myocarditis, aiming to attenuate inflammation and prevent myocardial
injury [2,82]. Typical immunosuppressive regimens involve corticosteroids combined with
agents like azathioprine or cyclosporine over a six-month period. Alternatively, other
immunosuppressive drugs such as mycophenolate mofetil or methotrexate may be used
alongside steroids [82–84].

Evidence supporting the efficacy of IS for treating heart failure in lymphocytic virus-
negative myocarditis mainly derives retrospective studies and meta-analyses [82,83,85,86].
A recent propensity-score-based study assessed the long-term safety and effectiveness of
personalized IS therapy in 91 patients with BP immune-mediated myocarditis. The study
found comparable survival rates and heart function at the 5-year follow-up in IS-treated
patients with BP immune-mediated myocarditis, compared to 267 controls receiving only
optimal medical therapy (OMT). Minor manageable adverse reactions occurred in just 13%
of IS patients [35].

For other less common histological forms of myocarditis such as GCM [44], eosinophilic
myocarditis [87], and cardiac sarcoidosis [88], data on the efficacy of IS come from retrospec-
tive observational registries, and further studies are needed for a complete characterization
of the optimal types and duration of a tailored IS in these settings.

Despite advances in diagnostic techniques, a standardized treatment approach for
myocarditis remains elusive, and individual responses to IS treatment vary, with some
patients showing significant improvement, while others remain refractory to therapy [36].
This is primarily due to the unknown mechanisms governing host immune responses,
which can either eliminate the virus and resolve inflammation or lead to persistent immune-
mediated damage with or without viral clearance. Therefore, predictors of a favorable
response to IS in myocarditis, including peripheral non-invasive biomarkers, are still
under investigation.

8. Role of Different Immune Cell Populations and Cytokines in Myocarditis

Cardiomyocytes are the major cellular component in the heart, but many other cell
types are present to allow proper cardiac functionality (Figure 2, Table 1). Among these
are resident immune cells, such as macrophages. Resident monocytes, mainly CX3CR1+
and of embryonic origin, establish physical contact with neighboring cardiomyocytes. At
basal conditions, these cells exert a tissue remodeling role. On the other hand, cardiac
dysfunction induces cardiomyocytes to secrete monocytes recruiting chemokines. These re-
cruited monocytes differentiate into CCR2+ macrophages, which are pro-inflammatory [89]
and have been identified in EMB of myocarditis patients [90]. Indeed, in experimental
autoimmune myocarditis (EAM) models, as well as in human EMB, macrophages are the
predominant infiltrating cells, and their pro-inflammatory M1 polarization can be driven
by mitochondrial fission [91]. In EAM models, the infiltration kinetics of classical mono-
cytes, contributing to CCR2+MHCII+ macrophage compartment, peaked at 14 days of
immunization, while the non-classical monocytes peaked at 21 days [92,93]. This double
recruitment of CD11b+ monocytes resulted both in a strong pro-inflammatory signal in
the first peak as well as a suppression of myosin heavy chain (MyHC)-specific Th17 T
cell responses in the second peak through a disease-induced limiting IFN-γ-triggered
negative feedback loop [93]. Autoreactive T cells recruited monocytes either directly, as in
the case of Th17 cells, or by IL-3 secretion, which incites tissue macrophages to produce
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monocyte-attracting chemokines [92,94]. Recently, it has been demonstrated that mono-
cyte recruitment can be blocked by siRNA silencing of CCR2 in EAM, leading to reduced
myocardial inflammation [90].
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Treg: T regulatory cell. Created with Biorender.

Many other myeloid cells contribute to myocarditis onset/progression, including
granulocytes and dendritic cells. Regarding granulocytes, neutrophil extracellular traps
(NETs) have been identified in EMB samples from patients and EAM mice, and their
inhibition can reduce inflammation, including in giant cell myocarditis, the most fatal
form [95,96]. Moreover, eosinophils can strongly infiltrate the myocardium, as observed in
transgenic mice overexpressing IL-5, leading to fatal eosinophilic myocarditis, which is one
of the most aggressive forms of myocarditis in humans [97]. Eosinophils are not essential
for myocarditis initiation, but they are fundamental in mediating DCM evolution through
IL-4 secretion and a Th2 deviation [97,98].

Historically, myocarditis was defined as a T-cell-mediated diseases, but given the large
amount of studies proving the role of nearly all inflammatory cell types in myocarditis
development, nowadays myocarditis pathogenesis should be described as a state of general
immune dysregulation, including both adaptive and innate immunity, with the latter play-
ing a fundamental role in antigen presentation to T cells [9,99–101]. Among the key players,
dendritic cells (DCs) are a heterogeneous type of professional antigen presenting cells that
might derive from myeloid precursors, as well as from monocytes. Alterations in various
DC subsets have been observed in the peripheral blood of myocarditis patients. In acute
myocarditis, higher levels of DCs with a stronger expression of co-stimulatory proteins
have been reported compared with healthy controls, suggesting a higher immunogenic
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state that might prime better T cells [7]. Conversely, in a mixed cohort of patients with
suspected and biopsy-proven myocarditis, with DCM evolution, a strong reduction in
plasmacytoid and myeloid dendritic cells has been described in peripheral blood, with a
concomitant accumulation in patients’ myocardium [8]. These opposite results could be due
to different patients’ enrollment criteria, as well as different panels for DC characterization,
but they are indicative of a potential pathogenetic role of DCs in myocarditis, a hypothesis
supported by several myocarditis mouse models. In fact, DCs can induce T lymphocytes
and exacerbate the mouse myocardial inflammation through the glycoprotein Tenascin-C,
which induces inflammatory cytokine expression and activation of Th17 cells via Toll-like
receptor 4 [102]. Moreover, after EAM induction, type 2 conventional DCs (cDC2) have
been reported to specifically present α-myosin and induce Th1 and Th17 cell differentia-
tion [101]. The accumulation of cDC2 and plasmacytoid DCs in inflamed myocardial tissue
and their immune-related pathway activation have been recently described by an integrated
single-cell RNA sequencing analysis of two different EAM model gene expression data
sets [103]. The generation of tolerogenic (t)DCs demonstrated the pathogenicity of DCs and
opened new potential therapeutic options. Specifically, myosin-pulsed tDCs can ameliorate
EAM by antigen-specific Treg cell stimulation, as they overexpress the long noncoding
RNA MALAT1 [104,105]. Treg cell stimulation is fundamental to restore normal cardiac
immunity, as these cells have been demonstrated to be reduced and less functional in DCM
and acute myocarditis [9,106–108]. Moreover, human extracellular vesicles, isolated from
media conditioned with human-heart-derived stromal/progenitor cells, can induce Treg
cell differentiation and promote the secretion of anti-inflammatory cytokines, as IL-10, both
in vitro and in EAM models [109].

Table 1. Cytokines and chemokines, listed in alphabetical order, that are relevant in myocardi-
tis pathogenesis.

Cytokine Role in Myocarditis

CCL5 Pro-inflammatory: CTL chemoattracting agent

IFN-γ Pro-inflammatory: secreted by infiltrating T lymphocytes and increases cardiac tissue inflammation

IL-1β Pro-inflammatory: important for innate immunity

IL-4 Pro-inflammatory: linked to Th2 cell differentiation

IL-5 Pro-inflammatory in eosinophilic myocarditis

IL-6 Pro-inflammatory: fundamental for myocarditis development and Th17 cell differentiation

IL-10 Anti-inflammatory: reduced in myocarditis

IL-17 Pro-inflammatory: secreted by Th17 cells and mediates myeloid cells recruitment, fibrosis, and favors DCM evolution

IL-22 Pro-inflammatory: secreted by Th22 cells

IL-23 Pro-inflammatory: fundamental for myocarditis development and Th17 cell differentiation

MIP-1α Pro-inflammatory: macrophages and CTL chemoattracting agent

TGF-β1 Pro-inflammatory: favors Th17 cell differentiation

TNF-α Pro-inflammatory

Dysfunctional Treg cells are strictly related to the strong activation and increase in
Th17 cells, which so far have been the most extensively studied cells and proved to play
a pathogenic role in myocarditis/DCM; thus, the Th17/Treg ratio is in favor of Th17
cells in myocarditis [9]. This imbalance might be linked to increased miR-155 levels in
inflamed hearts, since in EAM models, it could facilitate Th17 cell differentiation as well as
Treg suppression, and its inhibition rebalances the Th17/Treg ratio [110]. This imbalance
has also been targeted with small molecules, such as fenofibrate, and with antibodies
against the Th17 cell cytokines, such as IL-17 and IL-23, leading to an improvement of
cardiac inflammation in models [111–113]. The most relevant role played by Th17 cells
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is the contribution to DCM evolution; in particular, IL-23 and IL-6 signaling induce Th17
cells to differentiate and infiltrate the heart, and, in fact, their silencing blocks EAM on-
set/evolution [114–116]. IL-6 is a fundamental cytokine for myocarditis development,
since EAM models IL-6−/− are resistant to myocarditis development [117]. Recently,
a temporal characterization of heart-infiltrating CD45+ cells in EAM mice showed that
Th17 cells, overexpressing Hypoxia Inducible Factor (Hif)1α was the predominant T-cell
population during the acute inflammatory phase, whereas Treg cells are detected at the
subacute inflammatory phase, and γδ T cells releasing Il-17 are the main T-cell population
observed at the myopathy phase [118]. IL-17A, produced by infiltrating Th17 cells, induces
the production of monocyte-chemoattracting chemokines by cardiac fibroblasts to recruit
inflammatory monocytes, underlining the fine immune cell cross-talk taking place in my-
ocarditis evolution [119]. Moreover, Th17 cells further enhance their own differentiation
through a positive feedback loop, since IL-17-A induces a heart-specific upregulation of
IL-6, TNF-α, and IL-1 and promotes the recruitment of CD11b+ monocyte and Gr1+ granu-
locyte populations to the heart. Furthermore, IL-17A-deficient mice had reduced interstitial
myocardial fibrosis [111]. The pathogenicity of Th17 cells has also been demonstrated in
human myocarditis. A higher presence of a small noncoding RNA, i.e., hsa-Chr8:96, a
homolog of the murine mmu-miR-721 produced by Th17 cells in EAM models and not
in acute myocardial infarction, has been found in patients with acute myocarditis and
biopsy-proven myocarditis [120]. Moreover, Th17 cells are found to be increased in the
peripheral blood of suspected myocarditis/DCM patients with persistent heart failure
and are detected also in EMB, correlating with higher levels of cardiac fibrosis. A proof
of concept for the role of Th17 cells in disease progression can be obtained by evaluating
Th17-associated cytokines in patients’ plasma: IL17-A is increased only after 6 months
of disease onset, while IL-6 and TGF-β1 (cytokines relevant for Th17 cell differentiation)
are increased at diagnosis. Th17 cell differentiation might be induced by cardiac myosin
in human myocarditis, because human cardiac myosin S2 hinge region (S2-16 and S2-28)
peptides act as endogenous ligands for Toll-like receptor 2, leading to an exaggerated
response from CD14+ monocytes to secrete Th17-differentiating cytokines [9].

The relevance of other T helper subtypes has been more debated than Th17 cells, de-
spite CD4+ cells being known to be fundamental to myocarditis pathogenesis, as the treat-
ment of EAM rats with anti-CD4 antibodies blocks the development of the disease [100]. In
a T cell receptor (TCR) transgenic mouse model specific for myosin heavy chain α (residue
614–629) spontaneously developing myocarditis, heart-infiltrating CD4+ T cells secrete
IFN-γ and IL-17, indicating their Th1/Th17 phenotype. In particular, IFN-γ signaling is
needed for spontaneous myocarditis development, while IL-17A, also in this model, has
been linked to disease severity and DCM development [121]. The same findings have been
described in in vitro stimulation of EAM mouse splenocytes with a recombinant fragment
of cardiac myosin (1074–1646), obtaining lymphocytes secreting more IFN-γ, IL-6, and
IL-17 than IL-4 [122]. This evidence underlines the importance of Th1 cells in myocarditis,
even if their precise role is still debated. In classical EAM models, MyHC-α-specific Th cells
more frequently differentiate towards IFN-γ-secreting cells [123]. Moreover, the transfer of
CD4+ T cells specific to influenza hemagglutinin (HA) into transgenic mice expressing HA
under the MyHC-α promoter gives rise to a cytotoxic Th1 phenotype, given the increased
secretion of chemokines, i.e., Macrophage Inflammatory Protein (MIP)-1α and CCL5, which
stimulates CD8+ cell migration [124]. On the other hand, Th2 lymphocytes, for the first
time, have been implicated in the pathogenesis of EAM models developing eosinophilic or
giant cell myocarditis, and the treatment with anti-IL-4 reduced the disease severity [125].
Conversely, in keeping with most of the studies on Th1 cells, another study with EAM rats
showed that Th1 cytokines were increased in the acute phase, while they decreased during
the recovery phase, when Th2 cytokines and IL-10 levels increased [126]. The clear role
of Th2 cells is still to be clearly determined, but a recent study describe that, in advanced
stages of EAM myocarditis, Bcl2-like protein (Bcl2L)12, by complexing the master regulator
of Th2 differentiation GATA3, favors Th2 cells differentiation by IL-4 expression and blocks
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Th2 apoptosis inhibiting the expression of p53, leading to a Th2-mediate inflammation in
the heart [127].

Other types of CD4+ lymphocytes, such as Th22 cells, have been reported to be in-
creased in peripheral blood of DCM patients, indicating that a broader range of T helper
cells might be involved in myocarditis/DCM pathogenesis [128]. Even if the clear patho-
genetic mechanisms are not fully understood, this review has clearly described the double-
edged sword role of CD4+ cells in both initiating and mediating recovery in myocarditis;
this dual role could be due to TNF-α signaling, which promotes myocarditis develop-
ment by activating cardiac endothelial cells to recruit T cells, but it can also trigger the
activation-induced cell death pathway in cardiac-reactive T cells [129]. Moreover, a type of
CD4+ cell that preferentially migrates to the heart has been described. These cells express
hepatocyte growth factor receptor c-mesenchymal epithelial transition factor (c-Met) and
chemokine receptors CXCR3 and CCR4 and present unique features, as they are able to
secrete a mixture of cytokines from the different T helper cells described so far, such as IL-
4/IL-13, IL-17, and IL-22, both in EAM models and acute myocarditis cases. c-Met+/CD4+
memory T cells have been identified in both inflammatory DCM and hereditary forms
of other cardiomyopathies, suggesting that the immune system’s involvement should be
considered even in cases where it is not the primary pathogenetic mechanism. On the
other hand, c-Met+/CD8+ memory T cells are more specifically present in DCM. This
could be due to the crucial role of CD8+ T cell responses in viral containment during viral
infections [106]. Recently, an increased presence of exhausted CD8+ lymphocytes has been
identified in both EMB and peripheral blood of patients with inflammatory DCM, with
higher levels correlating with a worse prognosis in a combined cohort of inflammatory
and non-inflammatory DCM cases [130]. Nonetheless, in models of T cell receptor (TCR)
transgenic (Tg) mice specific to cardiac myosin heavy chain (MyHC)-α 334–352, CD4+ T
cells have been shown to harbor a cytotoxic phenotype, since they express CD107a, IFN-γ,
granzyme B, and natural killer cell receptors (NKG)2A and NKG2D [131].

The T cell compartment in myocarditis may develop distinct features due to expansion
of cells equipped with a TCR specifically targeting myocardium. In various models,
including in vitro studies, it has been shown that T cells often target the α isoform of
MyHC, which is the predominant antigen detected in this context [121,123,124,131,132].
Interestingly, although α-MyHC constitutes only a small fraction of MyHC in the human
heart, it has been evidenced that in EAM and in humans, medullary thymic epithelial cells,
which are critical for central T cell tolerance, lack the expression of α-MyHC, leading to a
defective control over α-MyHC autoantigens, allowing the increased presence of α-MyHC-
T cells specifically in peripheral blood [99]. In addition to reduced immune tolerance,
structural and immunological mimicry with viral and bacterial infections can contribute to
the development of T cells targeting the myocardium, as streptococcal M protein-reactive T
cells can target cardiac myosin [133]. Moreover, the evaluation of EMB from DCM patients
reveals a preferential use of TCRVβ in infiltrating T cells, particularly in case of DCM with
a viral etiology [134].

9. Future Perspectives and Clinical Applications: Targeted Immunosuppression

Among novel approaches to immune-mediated myocarditis, monoclonal antibodies
represent a promising option, including rituximab, which acts against CD20+ B cells [135,136],
and mepolizumab, which inhibits the binding of interleukin-5 (IL-5) to its receptors ex-
pressed on eosinophils, improving cardiac function [137–139].

IL-1β, a proinflammatory cytokine in the innate immune pathway that is crucial
for host defense, represents another possible target for pharmacological intervention in
myocardial inflammation. While neutralizing IL-1β has shown promise in reducing in-
flammation, interstitial fibrosis, and adverse cardiac remodeling in experimental animal
studies [140–142], the ARAMIS (Anakinra versus placebo double-blind Randomized con-
trolled trial for the treatment of Acute Myocarditis) phase 3 placebo-controlled trial did not
show a net benefit in terms of in terms of heart failure episodes, chest pain, left ventricular
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ejection fraction < 50%, and ventricular arrythmias in patients with clinically suspected
acute myocarditis of unspecified etiology presenting with chest pain and normal left ventric-
ular (LV) function [143]. This is likely due to the low adverse event rate in the trial, and to
the prevalent involvement of autoimmune, rather than autoinflammatory mechanisms in a
sizable proportion of myocarditis cases. Further studies are needed to clarify the role of IL-1
receptor antagonists in patients with biopsy-proven immune-mediated acute myocarditis,
considering the evidence supporting the role of innate immunity in myocarditis [144].

10. Conclusions

Myocarditis has been increasingly recognized as common cause of sudden cardiac
death in young adults and heart failure overall.

Despite advancements in both experimental and clinical research, the immunological
background of myocarditis remains only partially understood. Exploration of the specific
cytokines and molecular pathways, both within myocardium and at the peripheral level,
as well as the assessment of genetic predisposition, warrants further studies. Furthermore,
the predictors of IS response in myocarditis are still under investigation.

The success of future trials for immunosuppressive treatments in myocarditis will
depend also on immunophenotyping characterization of patients with myocarditis. This
will help identify individuals with ongoing inflammation or abnormal immune responses,
who are the most likely candidates to benefit from IS therapy.
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