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ABSTRACT

Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive technique that safely
alters neural activity, reaching deep brain areas with good spatial accuracy. We investigated
the effects of TUS in macaques using a recent metric, the synergy minus redundancy rank
gradient, which quantifies different kinds of neural information processing. We analyzed
this high-order quantity on the fMRI data after TUS in two targets: the supplementary motor
area (SMA-TUS) and the frontal polar cortex (FPC-TUS). The TUS produced specific changes
at the limbic network at FPC-TUS and the motor network at SMA-TUS and altered the
sensorimotor, temporal, and frontal networks in both targets, mostly consistent across
macaques. Moreover, there was a reduction in the structural and functional coupling after both
stimulations. Finally, the TUS changed the intrinsic high-order network topology, decreasing
the modular organization of the redundancy at SMA-TUS and increasing the synergistic
integration at FPC-TUS.

AUTHOR SUMMARY

This article aims to elucidate how the transcranial ultrasound stimulation (TUS) could
reorganize the brain as measured by the computation of redundancy and synergy. Our results
showed that the TUS produced target-specific changes in the synergy minus redundancy rank
gradient distribution at the limbic network at the frontal polar cortex (FPC-TUS) and the motor
network at the supplementary motor area (SMA-TUS) and alterations in common, independent
of the target, on the sensorimotor, temporal, and frontal networks. Moreover, the TUS changed
the intrinsic high-order network topology, reducing the modular organization of the
redundancy at SMA-TUS and increasing the synergistic integration at FPC-TUS.
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INTRODUCTION

Low-intensity transcranial ultrasound stimulation (TUS) is a promising and noninvasive neuro-
modulation technique that can safely alter neural activity and reach both cortical and deep
areas with good spatial accuracy in comparison with other noninvasive brain stimulation
methods (Bystritsky et al., 2011; Darmani et al., 2022; Legon et al., 2020). Although the exact
mechanisms of TUS are still a matter of debate, some hypotheses have been suggested. At a
microscopic level, TUS alters brain cells without causing a significant heating increase in the
tissue (Naor, Krupa, & Shoham, 2016) through mechanical stimulation of sodium and calcium
channels (Kubanek et al., 2016; Kubanek, Shukla, Das, Baccus, & Goodman, 2018; Tyler et al.,
2008) and/or microcavitation resulting in local depolarization and alteration of the glia-neuron
decoupling (Krasovitski, Frenkel, Shoham, & Kimmel, 2011; Oh et al., 2019; Plaksin, Kimmel,
& Shoham, 2016). On a macroscopic level, TUS is related to an increased brain’s temperature
without causing oedema or impairing the blood–brain barrier (Webb, Wilson, Odéen, &
Kubanek, 2023) and to an increased excitability following a reduced GABA inhibition (Yaakub
et al., 2023). TUS has also shown functional network alterations depending on the structural
coupling of the target, with an increase in brain functional connectivity with the strongly con-
nected areas and a decrease in correlations in the less-connected regions (Folloni et al., 2019;
Verhagen et al., 2019) as well as behavioral changes (Fouragnan et al., 2019; Hameroff et al.,
2013; Mahmoodi et al., 2024; Nakajima et al., 2022; Sanguinetti et al., 2020) from several
minutes to several days following the stimulation.

However, studies are now required to understand how TUS could contribute to brain reor-
ganization through high-order interdependencies explorations under the two types of interac-
tions: redundancy and synergy. Redundancy can be understood as the repeated information
we can obtain from any of the variables (X1 _ X2 _ … _ XN), where each of these variables
represents a measure of brain activity for N brain regions (e.g., BOLD signals). Synergy is the
extra information we get if we only observe the whole together (X1, X2, …, XN). Several math-
ematical and computational tools have been proposed to estimate them, whereas different
studies have pointed out their relevance (Lizier, 2014; Rosas, Mediano, Gastpar, & Jensen,
2019; Timme, Alford, Flecker, & Beggs, 2014; Williams & Beer, 2010). A recent study reported
redundancy linked with lower level sensorimotor processing and synergy with higher level
cognitive tasks (Luppi et al., 2022), results that have also been replicated with a different
decomposition framework of redundancy and synergy (Varley, Pope, Puxeddu, Faskowitz, &
Sporns, 2023). Furthermore, they exhibited different network organization, with redundancy
being more segregated and correlated with structural connectivity (SC). In contrast, synergy
was associated with the wiring distance matrix between pairs of regions and favored integrated
processing (Luppi et al., 2022). In healthy aging, redundancy increased in the older population
(Camino-Pontes et al., 2018; Gatica, Cofré, et al., 2021) and could be explained by a nonlinear
neurodegenerative model applied to the SC (Gatica, Rosas, et al., 2021). Furthermore, these
high-order methods have been used in a wide range of studies, such as neurodegeneration
(Herzog et al., 2022), artificial neural networks (Proca et al., 2024), spiking neurons (Stramaglia,
Scagliarini, Daniels, & Marinazzo, 2021), and elementary cellular automata (Orio, Mediano, &
Rosas, 2023; Rosas, Mediano, Ugarte, & Jensen, 2018).

This article aims to elucidate how the TUS could reorganize the brain as measured by the
computation of redundancy and synergy at the individual level. In this direction, we reanalyze
the TUS effect on resting-state fMRI data of three macaques under anesthesia, on a time period
from 30 to 150 min following the stimulation (Verhagen et al., 2019). We independently char-
acterized the high-order quantities at the control condition (non-TUS) and after applying TUS

Transcranial ultrasound stimulation:
A noninvasive neuromodulation
technique that reaches deep brain
areas and has high spatial resolution.

Redundancy:
The repeated information we can
obtain from any of the variables in
the system.

Synergy:
The extra information we get if we
observe all the variables in the
system together.

Structural connectivity:
Anatomical links connecting two
brain regions.
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at two targets: the supplementary motor area (SMA-TUS) and the frontal polar cortex (FPC-
TUS). Our results showed that the TUS produced target-specific changes in the rank gradient
distribution at the limbic network at FPC-TUS and the motor network at SMA-TUS and alter-
ations in common, independent of the target, on the sensorimotor, temporal, and frontal net-
works. Next, the differences were mostly consistent across macaques. Moreover, the TUS
decreased the structural and functional coupling independent of the stimulated target. Finally,
the TUS changed the intrinsic high-order network topology, reducing the modular organiza-
tion of redundancy at SMA-TUS and increasing synergistic integration at FPC-TUS.

RESULTS

We first developed a simple example of two noisy sinusoids to give an interpretation of how
the redundancy and synergy change when modifying one of the signals. The two random var-
iables started highly correlated, resulting in high redundancy and synergy zero (Figure 1A),
and after modifying the second one gradually, the redundancy decreased, and the synergy
increased (Figure 1B) until the interaction is purely synergistic (Figure 1C). However, both
quantities were annulled when the second random variable was noise-dominated (Figure 1D).
Therefore, if we modulated one of the signals, we observed that the redundancy and synergy
nulled at low and complete synchrony, respectively. In contrast, there was a region where both
quantities coexisted.

Despite its lack of biological relevance, the inspiration from sinusoids aligns with works on
coupled oscillators models (Cabral et al., 2014, 2022), where a zone of maximum metastabil-
ity has been reported. Metastability consists of the brain transition between different configu-
rations of synchronized states, quantified as the standard deviation of the Kuramoto order
parameter (KOP), as a global variation between different states of synchrony (Orio et al.,
2018; Tognoli & Kelso, 2014). Using a Hopf model (Coronel-Oliveros et al., 2024; Deco et al.,
2019), we simulated BOLD-like signals with N = 140 oscillators coupled with the average SC
(across the three macaques), reproducing regions where signals are globally synchronized
over time (being fully synchronized when the mean of KOP is 1; Supporting Information Figure

Figure 1. Given two random variables X(t) = sin(10t) + 0.05η(t) and Y(t) = sin(10t + it2) + 0.05η(t), with i = {0, 0.02, 0.3}, t 2 [0, 2π], and
η e N 0; 1ð Þ. (A) Full redundancy and zero synergy. (B) The redundancy decreases when i = 0.02. (C) Full synergy and zero redundancy
when i = 0.3. (D) Synergy and redundancy are zero when Y(t) = sin(10t + 0.02t2) + η(t).
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S1A), decreasing as noise is added (the extreme case, when mean of KOP is 0). Moreover,
there is a zone with maximum metastability (Supporting Information Figure S1B; defined as
the standard deviation of KOP) where neither redundancy nor synergy reaches their maximum
values (Supporting Information Figure S1C).

Next, we analyzed fMRI data of three macaques at non-TUS, SMA-TUS, and FPC-TUS from
30 to 150 min following the stimulation (Figure 2A). To capture a region’s prevalence of redun-
dancy or synergy, we performed a dynamical extension to the synergy minus redundancy rank
gradient (Figure 2B–C). Redundancy and synergy were estimated using the integrated informa-
tion decomposition (ΦID) that decomposes the time-delay mutual information of two random
variables (BOLD signals) into redundancy, synergy, and unique information (see the Materials
and Methods section for details). The matrices are averaged across rows and then ranked. The
result of that synergy minus redundancy vectors is the rank gradient (Luppi et al., 2022).
Finally, to answer if some areas were shifted to more redundant or synergistic interactions after
the stimulation, we compared the rank gradient distribution between each TUS experiment
and the control condition per brain region (Figure 2D).

Synergy-Redundancy Rank Gradient Disruption After SMA-TUS

To investigate the whole-brain effects of the stimulation at the SMA, we compared the synergy
minus redundancy rank gradient between the non-TUS condition and the SMA-TUS. First, we
grouped the three macaques and compared the gradient rank distribution between the control
(non-TUS) and the SMA-TUS. Several networks were affected after the stimulation at SMA
(Figure 3A). The sensorimotor area was altered in the right secondary somatosensory cortex
(SII, es = −0.94) toward redundancy and the left inferior parietal lobule (area_7_in_IPL, es =

Figure 2. (A) Three macaques participated in FPC-TUS, SMA-TUS, and non-TUS. (B) We computed the redundancy and synergy matrices
over 60 sliding windows of 500 s with 99% overlap. (C) The matrices are averaged across rows and then ranked. The result of those synergy
minus redundancy vectors is the rank gradient (Luppi et al., 2022). (D) Per Region of interest (ROI), we compared the gradient rank distribution
over time (dotted line) between the control and TUS, obtaining a shift to more redundant (blue arrow) or synergistic (red arrow) interactions.
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0.92) to synergy. The temporal area in the left fundus of the superior temporal sulcus (STSf,
es = −0.80) participated in more redundant interactions. The frontal cortex, particularly the
right lateral orbital frontal cortex (lat_OFC, es = 1.03) and the right ventrolateral prefrontal
cortex (vlPFC, es = 1.80), shifted toward synergy. The motor area was altered to redundancy
in the right pallidum (Pd, es = −0.87) and left posterior thalamus (PThal, es = −1.06). The
effect size comparisons (SMA-TUS minus non-TUS) of those regions are shown on brain
maps (Figure 3B). Moreover, at the individual level, the differences are homogeneous across
two or three macaques (Figure 3C). Therefore, we found differences between non-TUS and

Figure 3. (A) Synergy minus redundancy rank gradient distribution after the TUS of the SMA target. The left shift (blue arrow) represents a
region participating in more redundant (or less synergistic) interactions over time after TUS. In contrast, the right shift (red arrow) represents a
more synergistic (or less redundant) interaction over time after TUS. (B) The brain maps illustrate the shift to the left (blue color) or right (red
color), and the magnitude is the effect size. We compared the gradient rank distribution of each ROI over time between the control (non-TUS)
and the TUS experiment among the three macaques together, using a Wilcoxon rank-sum test and correcting by Bonferroni and effect size
bigger than 0.8. (C) Similar to B, but for each macaque separately.
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SMA-TUS across the sensorimotor (↑ redundancy and ↑ synergy), frontal (↑ synergy), tempo-
ral (↑ redundancy), and motor (↑ redundancy) networks at group and individual levels.

Synergy-Redundancy Rank Gradient Disruption After FPC-TUS

To explore the network alterations of the stimulation at the FPC, we compared the synergy
minus redundancy rank gradient between the control condition and the FPC-TUS. We found
differences in the gradient rank distribution across several networks at the group level
(Figure 4A). The sensorimotor network incremented the redundancy at the right secondary
somatosensory cortex (SII, es = −1.07). In contrast, the sensorimotor region was altered toward
synergy at the right primary somatosensory cortex (SI, es = 1.21) and the left inferior parietal
lobule (area_7_in_IPL, es = 1.02). The temporal area shifted to redundancy at the left caudal
superior temporal gyrus (STGc, es = −0.91). The frontal cortex switched toward synergy at the
right lateral orbital frontal cortex (lat_OFC, es = 0.87). The limbic network shifted to redun-
dancy at the left striatum (Str, es = −0.99), right hippocampus (paraHipp, es = −1.23), and right
anterior cingulate cortex (ACC, es = −0.89). Additionally, the limbic network changed toward
synergy at the left ventral midbrain (VMid, es = 1.03). The effect size comparisons of those
regions are shown on brain maps (Figure 4B) for the group analysis. Most differences are con-
sistent across two or three macaques, except the left amygdala, left pons, right lateral orbital
frontal cortex, and right hypothalamus, which were statistically significantly different at only
one macaque (Figure 4C). In conclusion, the stimulation at the FPC produced an effect on the
somatosensory (↑ redundancy and ↑ synergy), temporal (↑ redundancy), frontal (↑ synergy), and
limbic (↑ redundancy and ↑ synergy) networks.

Structural and Functional Coupling

To understand if there is an alteration in the functional and structural coupling produced by
TUS, we quantified the similarities between the high-order quantities with the SC and the
Euclidean distance (ED). The SC-redundancy correlation in controls was ρ = 0.24 and
decreased to ρ = 0.198 at FPC-TUS. Moreover, it decayed to ρ = 0.196 at SMA-TUS, on group
average (Figure 5A), and those differences persisted in all the macaques. Likewise, the ED-
synergy correlation at non-TUS was ρ = 0.20 and decreased to ρ = 0.11 after FPC-TUS. Addi-
tionally, the differences were consistent in Macaques 2 and 3 (Figure 5B). Nevertheless, the
similarity increased from ρ = 0.20 (non-TUS) to ρ = 0.24 at SMA-TUS, on average, across
macaques. The consistent differences were observed in Macaques 1 and 3 (Figure 5B). Finally,
the ED-synergy correlation was more significant than SC-synergy, and there was no apparent
disruption in SC-synergy after TUS (Supporting Information Figure S2A). Similarly, the SC-
redundancy correlation was more prominent than ED-redundancy and without significant dis-
ruptions at the ED-redundancy after any stimulation (Supporting Information Figure S2B). In
conclusion, the SC-redundancy correlation decreased independent of the target. The ED-
synergy similarity increased at SMA-TUS and decayed at FPC-TUS.

Network Reorganization After TUS

To further understand if a network reorganization exists in the functional high-order interac-
tions, we seek to characterize the network topology of redundancy and synergy before and
after the stimulation. We used modularity and global efficiency based on the pioneer topolog-
ical characterization of redundancy and synergy. Redundancy exhibited a modular organiza-
tion (Figure 6A), and synergy presented an integrated topology (Figure 6B). At the same time,
the modularity in the synergy and the global efficiency in the redundancy were near zero in
non-TUS or TUS experiments. Interestingly, the modularity of the redundancy decreased after

Modularity:
A quantification of the network’s
capability to be segregated into
clusters.

Global efficiency:
A quantification of the network
communication efficiency.
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Figure 4. (A) Synergy minus redundancy rank gradient distribution after the TUS of the FPC target. The left shift (blue arrow) represents a
region participating in more redundant (or less synergistic) interactions over time after TUS. In contrast, the right shift (red arrow) represents a
more synergistic (or less redundant) interaction over time after TUS. (B) The brain maps illustrate the shift to the left (blue color) or right (red
color), and the magnitude is the effect size. We compared the gradient rank distribution of each ROI over time between the control (non-TUS)
and the TUS experiment among the three macaques together, using a Wilcoxon rank-sum test and correcting by Bonferroni and effect size
bigger than 0.8. (C) Similar to B, but for each macaque separately.
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the SMA stimulation (Figure 6A) in two macaques, with inconsistent changes in the synergistic
global efficiency, presenting a decrease in the first macaque, an increase in the second, and no
difference in the third (Figure 6B). In contrast, the FPC-TUS increased the synergistic integra-
tion (Figure 6B) without consistent alteration at the modular organization in the redundancy
(Figure 6A). To compute modularity, we used the Newman algorithm for community detection
that includes a resolution parameter, gamma. We reported the results for the default parameter

Figure 5. (A) Correlation between SC and redundancy. (B) Correlation between the ED and synergy per experiment and macaque (at each
column). The y-axis values contain the Spearman’s rank correlation coefficient. The colors represent the control (non-TUS) and the two exper-
iments: SMA-TUS and FPC-TUS. We corrected by Bonferroni and effect size bigger than 0.8.

Figure 6. (A) Modularity (segregation) of the redundancy matrix. (B) Global efficiency (integration) of the synergy matrix. The colors represent
the experiment or control condition, and each column depicts a macaque. We corrected by Bonferroni and effect size bigger than 0.8.
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gamma = 1. However, the cluster size would not be critical in altering the statistically signif-
icant modularity differences as long as there are at least two communities (Supporting Infor-
mation Figure S3). While the absolute values of modularity change as the gamma parameter
varies, the differences between TUS and control are qualitatively similar. Altogether, the intrin-
sic modularity in the redundancy decreased after SMA-TUS, and the integration in the synergy
increased after FPC-TUS.

DISCUSSION

This article presented three main results: (a) The TUS produced high-order changes depending
on the target at the limbic network at FPC-TUS and the motor network at SMA-TUS and
altered, in both targets, the sensorimotor, frontal, and temporal networks (Figure 7A). (b)
The differences were mostly consistent across macaques. (c) The TUS decreased the functional
and structural coupling independent of the targets and modified the intrinsic high-order topo-
logical organization. The SMA-TUS decreased the modularity of the redundancy, and the FPC-
TUS increased the synergistic integration (Figure 7B).

Figure 7. Overview. (A) The TUS produced target-specific changes in the rank gradient distribution at the limbic network at FPC-TUS and the
motor network at SMA-TUS and alterations in common, independent of the target, on the sensorimotor, temporal, and frontal networks. (B) The
TUS decreased the structural and functional coupling and altered, depending on the target, the intrinsic high-order network topology.
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SMA-TUS Changes the Rank Gradient Mostly Consistently Across Macaques

We found some regions changing to more redundant interactions at the sensorimotor (secondary
somatosensory cortex), temporal (fundus of the superior temporal sulcus), and motor (pallidum
and thalamus) networks. In contrast, some networks presented a shift to synergistic interactions,
such as the sensorimotor (inferior parietal lobule) and frontal (ventrolateral prefrontal cortex and
lateral orbital frontal cortex) networks (Figure 3). Although we used a high-order analysis instead
of Pearson correlations, some regions are consistent with the previous study that analyzed the
same data, reporting changes in the sensorimotor networks, prefrontal cortex, anterior temporal,
and anterior and posterior cingulate at SMA-TUS onmacaques (Verhagen et al., 2019). Moreover,
targeting motor circuits on transcranial magnetic stimulation (TMS) produces changes not only
in the somatosensory network (Bestmann, Baudewig, Siebner, Rothwell, & Frahm, 2004; Jung,
Bungert, Bowtell, & Jackson, 2020) but also spread across different areas, for example, in the
lateral frontotemporal cortex, including the inferior frontal gyrus (Pineda-Pardo et al., 2019),
on human fMRI data.

FPC-TUS Changes the Rank Gradient Mostly Consistently Across Macaques

There are some networks shifted to more redundant interactions at FPC-TUS, such as the sen-
sorimotor (secondary somatosensory cortex), temporal (caudal superior temporal gyrus), and
limbic (striatum, hippocampus, and anterior cingulate cortex). In contrast, other networks
switched to more synergistic interdependencies, such as the sensorimotor (primary somatosen-
sory cortex and the inferior parietal lobule), frontal (lateral orbital frontal cortex), and limbic
(ventral midbrain; Figure 4). Even though we assessed a high-order analysis instead of Pearson
correlations, several of these areas corresponded with the previous study that analyzed the
same macaque fMRI data showing changes in the lateral prefrontal areas, the superior tempo-
ral sulcus, the posterior cingulate cortex, and the sensorimotor networks that presented func-
tional connectivity differences after the FPC-TUS (Verhagen et al., 2019). On the other hand,
the limbic network, particularly the striatum, thalamus, and amygdala, has modulated their
functional connectivity after TMS at the frontopolar cortex in human data (Hanlon et al.,
2013; Riedel et al., 2019). That network is also relevant for macaques, where the prefrontal
cortex and the limbic network are widely connected (Carmichael & Price, 1995; Petrides &
Pandya, 2007).

TUS Decreases the Structure-Function Coupling

Redundancy showed a stronger correlation with SC, whereas synergy with distance, consis-
tently with previous studies (Luppi et al., 2022). Those similarities were disrupted after TUS,
with a global decrease in the correlations, except for the distance and synergy correlation that
increased after SMA-TUS (Figure 5). The findings indicated that there may have been a high-
order network reorganization driven by stimulation. At the level of pairwise correlations, pre-
vious studies have shown changes in the functional connectivity after TUS depending on the
structural coupling of the target (Bestmann et al., 2004; Folloni et al., 2019; Pineda-Pardo et al.,
2019; Verhagen et al., 2019), with an increase in the functional connectivity in the strongly
connected areas, which are usually near the target.

TUS Altered the High-Order Intrinsic Organization

Redundancy presented a modular organization, whereas synergy showed an integrated topol-
ogy (Figure 6), consistent with previous studies (Luppi et al., 2022; Varley et al., 2023). A sem-
inal study described integration and segregation as two underlying processes of brain
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organization that coexist, allowing to perform diverse cognitive tasks (Tononi, Sporns, &
Edelman, 1994). Lower cognitive tasks have been linked with higher functional segregation
in simple motor tasks. However, in working memory, tasks have been reported an increase
of integration (Cohen & D’Esposito, 2016), where the prefrontal cortex had a critical role
(Diamond, 2013; Menon & D’Esposito, 2022). In terms of high-order, lower-level processing,
networks such as the motor area had been liked with a prevalence of redundancy, whereas
the frontal cortex was predominated by synergy (Luppi et al., 2022). Interestingly, our findings
also showed different high-order reorganizations depending on whether the target is the SMA or
the prefrontal cortex, with the TUS altering the modular organization of the redundancy at
SMA-TUS and, in contrast, increasing the intrinsic integration in the synergy at FPC-TUS.

Limitations and Future Work

The current study has some limitations. First, rather than using absolute values, the synergy
minus rank gradient depends on relative values dominated by redundancy and synergy.
Second, we relied on the minimum mutual information (MMI) redundancy function, and there
are other definitions that should be explored (Finn & Lizier, 2018; Ince, 2017). Nevertheless,
our choice of this method is motivated by its simplicity in estimation and previous analysis
pointing out the extent of these quantities. For instance, the loss of consciousness diminishes
a synergy-based measure of integration in the human brain (Luppi et al., 2024). In artificial
neural networks, redundancy has been linked to robustness, while synergy increases as the
neural networks learn several tasks (Proca et al., 2024). The significance of redundant and
synergistic interactions has been observed to support lower and higher level cognitive func-
tions, respectively (Luppi et al., 2022). Notably, these findings have been recently corrobo-
rated using a distinct formalism of redundancy and synergy (Varley et al., 2023). Third, only
three macaques were examined in this study, and larger sample sizes should be used in further
research. Fourth, we analyzed macaque fMRI data under anesthesia. Previous research has
demonstrated that each anesthesia treatment altered functional connectivity differently in
the rat (Paasonen, Stenroos, Salo, Kiviniemi, & Gröhn, 2018), macaque (Giacometti et al.,
2022), and human brain (Peltier et al., 2005). The dynamical functional connectivity has been
investigated in macaques under anesthesia, visiting with higher frequency the functional con-
nectivity patterns highly correlated with SC, as opposed to wakefulness where patterns with
lower structure-functional coupling are the most explored (Barttfeld et al., 2015; Uhrig et al.,
2018). In humans, similar findings have been replicated, showing a higher functional-
structural coupling under anesthesia (Castro et al., 2024; Demertzi et al., 2019), and in
high-order analysis, anesthesia reduces a synergy-based measure of integration (Luppi et al.,
2024). Nevertheless, macaques were anesthetized using inhalational isoflurane gas based on a
widely used protocol that preserves whole-brain functional connectivity (Neubert, Mars,
Sallet, & Rushworth, 2015; Sallet et al., 2013; Vincent et al., 2007). Finally, resting-state fMRI
data for human participants should be evaluated in future studies to move toward employing
neuromodulation for therapeutic purposes.

Conclusion

To the best of our knowledge, this is the first high-order analysis after TUS. Our results indicate
that the redundant and synergistic interactions are altered after TUS with consistencies across
macaques, and the patterns of changes depend on the target. Although using high-order inter-
actions needs further research in TUS, they have been explored in many applications and
might also be a relevant methodology in TUS experiments as a complementary approach to
Pearson correlation.
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MATERIALS AND METHODS

Ultrasound Stimulation

The ultrasound transducer device was a 64-mm diameter, H115-MR (Sonic Concepts, Bothell,
WA, USA), with 51.74-mm focal depth, used with a coupling cone sealed with a latex
membrane (Durex) and filled with degassed water. The protocol was controlled with a digital
function generator (Handyscope HS5, TiePie engineering, Sneek, The Netherlands) setting to
250 kHz with 30-ms bursts of ultrasound generated every 100 ms. A 75-W amplifier
(75A250A, Amplifier Research, Souderton) was used to deliver the power to the transducer. A
TiePie probe (Handyscope HS5, TiePie engineering, Sneek, The Netherlands), connected to an
oscilloscope, was used to monitor the voltage. The recorded peak-to-peak voltage remained
constant throughout the stimulation. Per session, the voltages ranged from 130–142 V, analogous
to 1.17–1.35 MPa, as measured in water with an in-house heterodyne interferometer (Constans,
Deffieux, Pouget, Tanter, & Aubry, 2017). For the SMA target, the maximum peak pressure
(P max) and I spatial-peak pulse-average intensity (Isspa) at the acoustic focus point estimations
were 0.88 MPa and 24.1 W/cm2 (I spta: 7.2 W/cm2). For the FPC target, the parameters were
31.7 W/cm2 (I spta: 9.5 W/cm2) (Verhagen et al., 2019). The stimulation lasted for 40 s. The
two target locations were close to the midline, stimulating both hemispheres simultaneously with
a single train. The stimulation was guided using a frameless stereotaxic neuronavigation system
(Rogue Research, Montreal), registering a T1-weighted MRI to each macaque’s head. The (X, Y, Z )
Montreal Neurological Institute coordinates were (0.1, 2, 19) at the SMA and (−0.7, 24, 11) at the
FPC. The positions of the transducer and the animal head were tracked continuously using
infrared reflectors. The transducer was placed on previously shaved skin using conductive
gel (Signagel Electrode, Parker Laboratories, Inc.) to ensure ultrasonic coupling between the
transducer and the scalp. There were at least 10 days in between two TUS sessions. In the con-
trol condition (non-TUS), all procedures, including anesthesia, prescan preparation, fMRI scan
acquisition, and timing, with the exception of the actual TUS, matched with the TUS sessions.

Macaque Data Acquisition

The procedures were conducted under licenses from the United Kingdom Home Office
following the Animals (Scientific Procedures) Act 1986. They all followed the European Union
guidelines (EU Directive 2010/63/EU).

We used the offline TUS fMRI dataset of macaques from the repository (https://git.fmrib.ox
.ac.uk/lverhagen/offlinetus). The data consists of three MRI sessions per control (non-TUS),
SMA-TUS, and FPC-TUS, and macaque (N = 3). Each macaque was anesthetized using inha-
lational isoflurane gas (Neubert et al., 2015; Sallet et al., 2013; Vincent et al., 2007). Moreover,
the macaques received injections of ketamine (10 mg/kg, intramuscularly), xylazine (0.125–
0.25 mg/kg, intramuscularly), midazolam (0.1 mg/kg, intramuscularly), atropine (0.05 mg/kg,
intramuscularlyly), meloxicam (0.2 mg/kg, intravenously), and ranitidine (0.05 mg/kg, intrave-
nously). Following the stimulation, the animals were placed in a sphinx position in a 3 T MRI
scanner (four-channel phased-array coil, Dr. H. Kolster, Windmiller Kolster Scientific, Fresno,
USA). To avoid ketamine’s clinical peak, scanning started about 2 hours after anesthesia.
Intermittent positive pressure ventilation was kept up to ensure a steady respiration rate.
VitalMonitor software (Vetronic Services Ltd.) was used to record and monitor the values of
respiration rate, inspired and expired CO2, and isoflurane concentration. Additionally, the core
temperature and SpO2 were monitored constantly.

The fMRI data were acquired for three runs of 26 min each approximately using the scan
parameters: 36 axial slices; in-plane resolution = 2 × 2 mm, slice thickness = 2 mm, without
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slice gap, TR = 2,000 ms, TE = 19 ms, and 800 volumes per run. AT1-weighted structural MRI
was scanned per macaque. Image acquisition was performed following a T1-weighted
magnetization-prepared rapid-acquisition gradient echo sequence with voxel resolution =
0.5 × 0.5 × 0.5 mm.

Finally, a T1-weighted structural MRI scan was acquired using a T1-weighted
magnetization-prepared rapid-acquisition gradient echo sequence (voxel resolution: 0.5 ×
0.5 × 0.5 mm), a black bone (voxel resolution: 0.5 × 0.5 × 0.5 mm), and a diffusion-weighted
imaging (DWI) (voxel resolution: 1 × 1 × 1 mm) scans, per macaque.

fMRI Preprocessing

The fMRI preprocessing was performed following previous pipelines using AFNI (Cox, 1996;
Cox & Hyde, 1997): First, the T1 structural image was realigned to match the resting state.
Next, the skull of the T1 image was removed. The cerebrospinal fluid (CSF) and gray and white
matter were segmented and realigned to the template space. Next, a slice-time correction,
despike, and motion correction were applied to the fMRI data; each volume was aligned with
the mean volume; and a motion correction was applied. Then, the preprocessed fMRI data
were spatially normalized to the NMT v2.0 brain template, and the CHARM (Jung et al.,
2021; Reveley et al., 2017) and SARM (Hartig et al., 2021) atlases (level 3) were applied. Next,
we detrended the fMRI using motion as a nuisance variable. Therefore, the original time series
were grouped into 140 brain regions, and finally, a band-pass filter between 0.0025 and
0.05 Hz was applied (Barttfeld et al., 2015).

Diffusion Preprocessing

The diffusion data were preprocessed using MRtrix. The pipeline consisted of denoising,
Gibbs-ringing artifact removal, Eddy current, and bias field correction. Next, probabilistic trac-
tography was performed using multishell, multitissue constrained spherical deconvolution
(CSD). First, 10 million streamlines were generated with the gray matter-white matter interface
optimization. Then, we applied a spherical-deconvolution-informed filtering of tractograms
and reduced the number of streamlines to 1 million. Next, the connectome was computed
on the CHARM (Jung et al., 2021; Reveley et al., 2017) and SARM (Hartig et al., 2021) atlases
(level 3), resulting in a 140 × 140 SC matrix, per macaque, by counting the number of white
matter streamlines connecting all module pairs.

Synergy Minus Redundancy Rank Gradient

Partial Information Decomposition (PID). Given three random variables, two source variables Xi

and Xj, and a target Y, the PID (Williams & Beer, 2010) is given by:

Red Xi ;Xj ;Y
� �þ Syn Xi ;Xj ;Y

� �þUnique Xi ;Y
� �þUnique Xj ;Y

� �
;

in which Red(Xi, Xj; Y ) is the information provided by Xi and Xj about Y (redundancy), Syn(Xi,
Xj; Y ) is the information provided by Xi and Xj together about Y (synergy), Unique(Xi; Y ) is the
information that is provided only by Xi about Y, and Unique(Xj; Y ) is the information that is
provided only by Xj about Y. The PID could be represented by a forward decomposition into
the nodes: A ¼ 12f g; 1f g; 2f g; 1f g 2f gf g, being the nodes the synergistic, unique in source 1,
unique in source 2, and redundant information, respectively.

We followed the MMI PID decomposition on Gaussian systems, where redundancy is com-
puted as the minimum information between each source and the target, and synergy refers to

Network Neuroscience 1044

Transcranial ultrasound stimulation effect in the high-order networks



the additional information provided by the weaker source when the stronger source is known
(Barrett, 2015).

ΦID. Consider the stochastic process of two random variables Xt ¼ Xi
t ;X

j
t

n o
and denote the

two variables in a current state t, by Xi
t and Xj

t , and the same two variables in a past state t − τ,

by Xi
t−τ and Xj

t−τ. The ΦID is the forward and backward decomposition of I Xi
t−τ ;X

i
t−τ ;X

i
t ;X

i
t

� �
,

called the time-delay mutual information, in redundant, synergistic, and unique information
(Mediano et al., 2021). Therefore, the ΦID could be represented with the forward and back-
ward interactions of the product AxA. It results in 16 atoms (synergy to synergy, redundancy to
redundancy, unique in source 1 to unique in source 2 (and backward), and redundancy to
synergy, to name a few)). In this article, we are focused on two atoms: persistent redundancy
(redundancy that continues being redundancy) and persistent synergy (synergy that continues
being synergy).

Synergy minus redundancy rank gradient. We performed a dynamical extension to the synergy
minus redundancy rank gradient (Luppi et al., 2022). First, we computed the redundancy and
synergy matrices measured with ΦID over each sliding window. The ΦID was computed over

all the pairwise BOLD signal combinations Xi
t ;X

j
t

n o
, i and j being two different brain regions,

with (i, j ) 2 {1, …, 140}, with the time series truncated to each sliding window. Next, each
redundancy and synergy matrix belonging to the same window was averaged across rows sep-
arately, obtaining two strength vectors (each 1 × 140) and ranking their participation based on
their strength. The rank gradient consists of the synergy minus redundancy rank, obtaining one
vector (1 × 140) per window. In particular, each run lasted around 26 min, with 800 volumes
or time points. We defined 500-time points per window with 99% overlap, resulting in 60
windows. As every session (TUS or non-TUS) and each macaque included three runs, we
concatenated the synergy minus redundancy rank gradient of all the 3 × 60 = 180 windows,
resulting in a matrix (140 × 180) per macaque and experiment. We compared the three
macaque sessions concatenated (dim 140 × 540 each gradient rank matrix) for global analysis
at non-TUS versus each TUS experiment. In contrast, for the case of individual comparisons,
we used only the gradient rank of each macaque control versus the TUS experiment (dim
140 × 180 each).

Similarity

This analysis followed previous findings, reporting the different structural support for the high-
order quantities, where redundancy was correlated with the SC and synergy with the distance
(Luppi et al., 2022). Because the SC is a sparse matrix, the structure-function correlations were
computed over the connected nodes. Therefore, the redundancy and synergy matrices were
thresholded over the nonzero weight of the SC. Then, Spearman’s rank correlation coefficient
was assessed between the upper triangular part of the thresholded SC and the upper triangular
part of the redundancy (or synergy) matrix. In contrast, no thresholds were applied when com-
paring the distance and high-order correlations. We computed Spearman’s rank correlation
coefficient between the upper triangular parts of the ED matrix and redundancy (or synergy).

Network Analysis

We performed the graph analysis for weighted networks using the Brain Connectivity Toolbox
(BCT) implementations (Rubinov & Sporns, 2010) over the redundancy and synergy matrices
that, by definition, have nonnegative values. We used the BCT’s Python function bct.efficiency_
wei to calculate the global efficiency. The input’s function is W, representing the redundancy
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or synergy matrices. Then, the weights are inverted using an auxiliary connection-length
matrix L, Li j = 1/Wij. Finally, the global efficiency is computed over the matrix L. We
used the Python function bct.community_louvain to compute segregation. The modularity
detection algorithm includes one free parameter, gamma, which controls the resolution of
the clusters. Larger clusters are detected when gamma is between 0 and 1, while values greater
than 1 result in smaller clusters. The default parameter used in this manuscript was gamma = 1.

Segregation. To quantify segregation, we used modularity, which enables the subdivision of
the network into nonoverlapping modules densely interconnected within each cluster and
weakly connected between modules. The modularity (Q) was estimated using Newman’s
spectral community detection algorithm (Newman, 2006; Reichardt & Bornholdt, 2006).
Mathematically, for a weighted graph, it is defined as:

Q ¼ 1
2m

X
i;j2N

aij −
kikj
2m

� �
δ mi ;mj
� �

;

where ki is the degree of the node i, mi is the community of the node i, m is the sum of all of the
edges in the graph, and δ is the Kronecker delta function (δ(x, y) = 1 if x = y, 0 otherwise).

Integration. To characterize the integration, we quantified the global efficiency, which is the
inverse of the average shortest path length connecting two regions (Latora & Marchiori, 2001),
meaning that, for disconnected nodes, their efficiency is zero. The global efficiency (E ) is
defined as:

E ¼ 1
n

X
i2N

Ei ¼ 1
n

X
i2N

X
j2N;j≠i

d−1
ij

n − 1
;

with Ei as the efficiency of node i and dij as the shortest path connecting the node i with the
node j.

Statistical Analyses

This study compared the control (non-TUS) with each TUS experiment (FPC-TUS or SMA-
TUS). First, we performed a global analysis between the control and each TUS experiment,
grouping the three macaques together and then at the individual level. The nonparametric
statistical Wilcoxon rank-sum test assessed the group and individual differences. We used
Bonferroni correction and considered only the differences with an effect size bigger than
0.8. Finally, for the macaque-level analysis, besides Bonferroni and effect size correction,
we constrain the areas showing differences to the regions belonging to the group mask of
differences.

Code Availability

The data analysis was performed in MATLAB version 2022b. The MATLAB code to quantify
synergy and redundancy from ΦID of time series with the Gaussian MMI solver is available at
https://doi.org/10.1038/s41593-022-01070-0 (Luppi et al., 2022). The MATLAB code to assess
the network analysis is freely available at http://www.brain-connectivity-toolbox.net/ (Rubinov
& Sporns, 2010). We downloaded the 3D macaque brain template from the Scalable Brain
Atlas web page (https://scalablebrainatlas.incf.org/; Bakker, Tiesinga, & Kötter, 2015; Markov
et al., 2014).
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