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Metabolic diseases have gradually become one of the most significant global

medical burdens. Diseases such as obesity, diabetes, and metabolic syndrome,

along with their complications, are clinically categorized as metabolic diseases.

Long-term oral medication significantly reduces patient compliance and quality of

life. Therefore, alternative therapies that intervene at the cellular level or target the

root causes of metabolic diseases might help change this predicament. Research

has found that extracellular vesicles derived from adipose macrophages can

effectively regulate metabolic diseases by influencing the disease’s development.

This regulation is likely related to the role of these extracellular vesicles as

important mediators in modulating adipose tissue function and insulin sensitivity,

and their involvement in the crosstalk between adipocytes and macrophages. This

review aims to describe the regulation of metabolic diseases mediated by adipose

macrophage-derived extracellular vesicles, with a focus on their involvement in

adipocyte crosstalk, the regulation of metabolism-related autoimmunity, and their

potential as therapeutic agents for metabolic diseases, providing new avenues for

diagnosis and treatment.
KEYWORDS

obesity, metabolic disease, adipose tissue macrophage, extracellular vesicles, nano-
targeted therapy
Introduction

Non-communicable chronic metabolic diseases have increasingly become major global

public health issues, imposing a significant burden on healthcare worldwide (1). Current

understanding suggests that a series of processes affecting metabolic imbalance are metabolic

diseases. These include conditions like hypertension, type 2 diabetes, hyperlipidemia, obesity,

non-alcoholic fatty liver disease, and their related complications (2). These diseases often

coexist and share numerous common risk factors, ultimately leading to irreversible outcomes
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such as disability, death, and an increased risk of cancer (3, 4). Global

metabolic statistics indicate that obesity represents the largest burden

among metabolic diseases, with its prevalence steadily increasing over

the past two decades. The accumulation of fat caused by obesity has

become a significant factor contributing to metabolic disorders and

related diseases (1). In fact, obese individuals are considered to have a

higher risk of death, including mortality associated with obesity-

induced cardiovascular diseases, diabetes, inflammatory conditions,

and their complications (5). In terms of insulin resistance, the

accumulation of pro-inflammatory macrophages in adipose tissue

is a crucial factor leading to obesity-associated insulin resistance (6).

Moreover, the systemic low-grade chronic inflammation seen in

obese individuals is a potential consequence that causes long-term

chronic damage to multiple metabolic organs (7).

With the rising global obesity rates, obesity-induced metabolic

diseases increasingly impact people’s quality of life. Understanding

how fat mediates the development of metabolic diseases has thus

become an interesting area of research. In reality, changes in cell

types within adipose tissue (AT) (such as inflammatory cells and

vascular endothelial cells) and variations in cytokines (like leptin

and miRNA) are closely related to the development of fat-induced

metabolic diseases. Macrophages in AT are likely key players in

promoting adipose inflammation and may also be important

mediators of the crosstalk between AT and metabolic diseases.

Extracellular vesicles (EVs) are considered critical tools in

transmitting cytokines that promote obesity-related metabolic

diseases. For example, recent discoveries suggest that AT

macrophages regulate metabolic and inflammatory interactions

between adipocytes and distal tissues via a novel mechanism

involving the secretion of EVs (8). Therefore, adipocyte-

macrophage extracellular vesicles may have potential functions in

regulating fat and metabolic diseases, presenting a new avenue for

treating obesity-related metabolic diseases.
EVs mediate the occurrence and
development of metabolic diseases

The regulation of systemic metabolic processes results from the

interactions between key metabolic tissues, including AT, the liver,

and skeletal muscle. Metabolic dysfunction includes a variety of

disease risk factors that significantly increase the risk of

cardiovascular diseases such as acute myocardial infarction and

stroke. The comprehensive pathogenesis of metabolic dysfunction

involves multiple cell types, tissues, organs, inflammatory signaling

cascades, and humoral factors. Research indicates that metabolic

dysfunction is related to changes in plasma EV concentrations and

their cargo. EVs produced by cells in metabolic tissues can

potentially carry all biomolecules involved in the mechanisms of

metabolic dysfunction, ultimately promoting the onset of metabolic

diseases. EVs can also act as messengers between donor and

recipient cells, potentially participating in communication

between tissue cells and organs during metabolic diseases. This

suggests a close association between the occurrence and

development of metabolic diseases and changes in EVs. In fact,

several studies have found that EVs have great potential value as
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biomarkers for prognosis and diagnosis in metabolic diseases

(Table 1). Moreover, because EVs can carry mRNA and

microRNA (miRNA) to modify the gene expression of recipient

cells, EVs might offer a means of repairing damaged metabolic

tissue cells at the genetic level, sparking great interest in the role of

EVs in improving metabolic disorders.
EVs regulate glucose metabolism

Globally, nearly 400 million people have type 2 diabetes

(T2DM) (7, 27), T2DM is considered a multifactorial disease,

with its onset related to genetic factors and lifestyle choices, such

as high-fat intake, alcohol consumption, and smoking, which lead

to obesity (28). The prevalence of T2DM rises in tandem with

obesity, with meta-analysis results from the United States and

Europe showing that obese men and women are seven and twelve

times more likely to develop T2DM than their lean counterparts,

respectively. This indicates a strong correlation between obesity and

T2DM (29). However, the molecular mechanisms underlying the

link between obesity and T2DM are not fully understood. Studies

have found that the pathogenesis of T2DM is closely related to

dysfunctions in adipose tissue macrophages (ATMs), particularly

alterations in macrophage metabolism that lead to AT

inflammation and obesity (6). The chronic systemic inflammation

associated with obesity is an important cause of insulin resistance

and the onset of type 2 diabetes mellitus (T2DM) (28). This ongoing

low-grade inflammation is thought to contribute to changes in

insulin-glucose homeostasis related to obesity. An important

observation is that in obese mice and humans, increased levels of

inflammatory cytokines (such as tumor necrosis factor-a and

interleukin-6) in AT have been found to lead to insulin resistance

(30). Many obese individuals are in a pre-diabetic state, eventually

progressing to T2DM characterized by insufficient insulin secretion.

In obesity, AT undergoes significant expansion, accompanied by a

chronic and unresolved inflammatory state (31). Furthermore, a

significant cause of tissue inflammation response induced by obesity

is the accumulation of pro-inflammatory macrophages, particularly

in AT and the liver (8). Numerous studies in humans and rodents

have shown that significant accumulation of pro-inflammatory

macrophages is a major component of the AT inflammation

response induced by obesity (31). These pro-inflammatory

macrophages present in obese adipose tissue are major drivers of

the pathogenesis of tissue inflammation and insulin resistance

induced by obesity (31). It was further found that chronic tissue

inflammation caused by the accumulation of M1 macrophages is a

critical marker of insulin resistance, and the influx of pro-

inflammatory M1 macrophages into AT is an important

contributor to AT and obesity-associated insulin resistance (30).

For example, M1 macrophages and insulin-resident macrophages

in obese mice secrete EVs enriched with miR-212-5p, which can

impair insulin secretion by b cells (32).

AT is considered a major source of circulating EVs miRNA

(33). EVs-mediated cellular communication plays a profound

regulatory role in the metabolic response to obesity (34, 35).

Studies have shown that obese ATMs can decrease peripheral
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insulin sensitivity by releasing EV/microRNA (miRNA) either

locally or into circulation (31). The risk of developing type 2

diabetes is associated with adipocyte hypertrophy (36) and

increased production and release of adipocyte EVs, characterized

by changes in the expression of perilipin A (37, 38). Consistent with

these studies, circulating levels of adipocyte-derived EVs are

increased in obese mice and humans and decrease following

energy restriction or weight loss surgery (23). Interestingly, 55

types of adipocyte-derived EVs miRNAs have been identified that

are differentially expressed between obese and lean individuals,

suggesting that in addition to their higher circulating levels, the

cargo of EVs is also regulated in obese individuals (23).

Furthermore, obesity and insulin resistance are also associated

with the accumulation of macrophages in AT (39). A large body

of literature describes how ATMs play a detrimental role in

regulating systemic metabolism by overproducing inflammatory

cytokines that can block insulin signaling (40).

Obesity is a major risk factor for insulin resistance, which

promotes the development of T2DM. Obesity-associated insulin

resistance is a precursor to type 2 diabetes (27). This may be due to

the close correlation between the number of resident ATMs and the

degree of insulin resistance and metabolic disturbances. For

example, selective depletion of ATMs through genetic or
Frontiers in Endocrinology 03
pharmacological methods can significantly prevent obesity-

associated insulin resistance and metabolic complications in obese

mice (41). Interestingly, EVs released by ATMs are also involved.

Studies have found that administration of miRNA-containing EVs

secreted by ATMs from obese mice to lean mice causes glucose

intolerance and insulin resistance. Conversely, administration of

ATMs EVs obtained from lean mice to obese mice can improve

glucose tolerance and insulin sensitivity. Specifically, the miRNAs

in these EVs can be transferred to insulin target cell types through

paracrine or endocrine regulatory mechanisms, having a strong

impact on cellular insulin action, in vivo insulin sensitivity, and

overall glucose homeostasis (8). For instance, ATM-EVs containing

miRNAs can regulate systemic insulin and glucose tolerance by

directly affecting cellular insulin signaling. Thus, when lean insulin-

sensitive mice are treated with obese ATMs-EVs, they develop

systemic insulin resistance and glucose intolerance. In contrast,

treatment with lean ATMs-EVs in obese insulin-resistant mice can

lead to near-normalization of glucose tolerance and improvement

of systemic insulin sensitivity (8). Similar results have been found in

vitro, where EVs released by healthy 3T3-L1 adipocytes can

enhance the survival and proliferation of INS-1E b-cells and

human islets by stimulating insulin secretion. In contrast, EVs

derived from inflamed adipocytes carrying low levels of miR-296-
TABLE 1 EVs regulate the development of metabolic diseases.

Type of Disease Species EV Source Role Ref.

Diabetic nephropathy Human Urine Involved in diabetic nephropathy (9)

Gestational Diabetes Human Plasma Involved in placental connections to various maternal organs/cells (10)

Type 2 Diabetes Mice Macrophages from
adipose tissue

Involved in the regulation of insulin sensitivity (8)

Type 2 Diabetes Mice Brown adipocytes Involved in glucose metabolism injury (11)

Type 2 Diabetes Human Pancreatic islets Involved in monitoring pancreatic islet function (12)

Type 2 Diabetes Human Skeletal muscle Inhibited progression of insulin resistance (13)

Type 2 Diabetes Mice Visceral adipose tissue Involved in insulin resistance and tissue inflammation (14)

Type 2 Diabetes Rat Cardiac muscle cells Involved in anti-angiogenesis (15)

Hepatocellular carcinoma Human HCV-infected liver Involved in lipid metabolism (16)

Hypothyroidism Human Endothelial cells Involved in thyroid impairment (17)

Nonalcoholic Fatty
Liver Disease

Human Damaged hepatocytes Involved in endothelial angiogenesis (18)

Type 1 Diabetes Human Plasma Involved in type 1 diabetes development (19)

Hepatocellular carcinoma Human Serum Manipulated Hepatocellular Carcinoma stemness and invasiveness (20)

Obesity Mice Adipose Stem Cells Involved in M2 macrophage polarization (21)

Obesity Related Liver Disease Human Adipocytes Involved in TGF-b signaling pathway dysregulation (22)

Post-surgical diabetes mellitus Human Adipocytes from blood Involved in postoperative insulin resistance (23)

Type 2 Diabetes Mice Skeletal muscle Involved in b-cell proliferation during insulin resistance (24)

Fatty Liver Disease Human Liver tissue Involved in hepatocyte death, fibrosis and pathological angiogenesis (25)

Hypertension Rat Serum Involved in induction of hypertensive-type endothelial
cell inflammation

(26)
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3p, miR-298-5p, miR-351-5p, and miR-125a-5p lead to b-cell death
and dysfunction, while EVs rich in miR-155-5p from obese human

AT (including ATMs) result in b-cell death and dysfunction (23).
EVs regulate lipid metabolism

Dysregulation of specific circulating EVs miRNAs involved in

lipid metabolism regulation pathways may exist in patients with

metabolic syndrome or individual metabolic diseases. The

characteristics of EVs released from 3T3-L1 cells during adipocyte

differentiation show stage-specific changes in lipid and protein

content, as well as in the number and size distribution of EVs

during differentiation (42). This suggests that the signaling

functions of pre-adipocytes and mature adipocytes differ in

adipocyte EVs. One signaling function of adipocyte-EVs might be

to communicate with other cells in adipose tissue (including

fibroblasts, pre-adipocytes, endothelial cells, and immune cells) to

coordinate the response of tissue cells to different fuel availabilities,

such as lipid metabolism (43). During obesity, AT dysfunction

results from adipocyte stress, characterized by hypertrophy and

hypoxia. One study found that hypoxia affects the composition of

adipocyte EVs cargo by increasing levels of proteins related to

metabolic processes, particularly enzymes associated with de novo

lipogenesis; these EVs were found to increase lipid accumulation in

recipient adipocytes (44). Similarly, other studies have shown that

microvesicles containing CD73 released by adipocytes in vitro can

stimulate lipid synthesis in recipient small adipocytes (45). The

transfer of adipogenic mechanisms may represent a burden-shifting

of lipid storage from hypertrophic adipocytes to recipient and non-

stressed adipocytes. Although no evidence was found for the

transfer of insulin resistance between muscle cells via EVs, the

myotube phenotype and myoblast proliferation in obese individuals

were affected. This suggests that the adverse consequences of lipid-

rich diets in obese individuals can be transmitted between skeletal

muscle cells via EVs, leading to systemic cellular metabolic

disturbances (46).

White adipose tissue (WAT) dysfunction is considered a major

driver of obesity-related metabolic diseases (47). Changes in the

contents of extracellular vesicles released by WAT can indicate the

onset of metabolic diseases. By analyzing the RNA and protein

content of WAT-derived EVs, the expression of adipocyte-specific

and adipocyte-dominant proteins, such as fatty acid-binding

protein 4 (FABP4) and adiponectin, can be found (42, 48, 49).

The expression of some adipocyte markers, such as adiponectin

associated with microvesicles, constantly changes during

adipogenesis and differentiation (42), which is likely related to

intercellular signaling communication involving EVs. For

instance, removing EVs containing CD73 from adipocyte culture

media can eliminate the pro-lipogenic effects of adipogenic stimuli

(50). These EVs contain, in a dose-dependent manner, transcripts

and miRNA involved in the up-regulation of adipogenesis (e.g.,

diacylglycerol acyltransferase-2) and lipid droplet assembly (e.g.,

caveolin-1 and perilipin-A) (50). Interestingly, when applied to

cultured adipocytes, the effects on small adipocytes are greater than

those on large adipocytes (50). This might result from the regulation
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of the nutritional and lipid-filled status of adipocytes being

transmitted to their neighboring cells via EVs.

Compared to lean mice, the number of lipid-filled EVs secreted

by adipocytes in obese mice more than doubled, which could be

another mechanism of obesity-associated adipose inflammation.

These lipid-filled EVs represent a novel pathway for adipocyte lipid

release and are not dependent on typical lipolysis. However, little is

known about how different types of bioactive lipids selectively

enrich in adipocyte EVs and exert their local and/or distal effects

on immune and metabolic regulation (41). Recently, a novel

mechanism pathway involving extracellular vesicles secreted by

ATMs has been found to regulate metabolic and inflammatory

interactions between adipocytes, macrophages, and distal tissues.

Notably, during obesity, ATMs undergoes significant changes in

number, location, and inflammatory state (43). When incubated

with EVs from human adipocyte lines and AT explants, monocytes

differentiate into ATMs-like macrophages, and the conditioned

media from these macrophages can inhibit adipocyte insulin

signaling in vitro experiments (51). Regarding lipid metabolism,

adipocyte-secreted EVs loaded with lipids can express lipid droplet-

associated proteins such as perilipin1, phospholipids, neutral lipids,

and free cholesterol; these lipids are taken up by ATMs and can

induce bone marrow-derived precursor cells to differentiate into

ATMs (30). Pro-inflammatory pathways in ATMs may impair

glucose tolerance in obese patients, but ATMs may also serve as a

reservoir for excess lipids that adipocytes cannot store. For example,

the inability of obese individuals to appropriately expand their AT

reservoir may lead to ectopic lipid deposition in the liver and

skeletal muscle, which could be one of the causes of insulin

resistance (52).
EVs improve metabolic
disease complications

With the rapid development of society and economy, due to

overnutrition and lack of exercise, obesity has become a serious

public health issue. Obesity is associated with various chronic

diseases and significantly affects patients’ life expectancy (53).

Cardiac remodeling and dysfunction caused by obesity without

coronary heart disease and hypertension complications are referred

to as obesity-related cardiomyopathy and are considered to lead to

sudden cardiac death (54, 55). Studies have found that ATMs-EVs

in obese individuals may be involved in the occurrence of

complications following metabolic disorders. For example, ATMs-

EVs can induce abnormal left ventricular systolic function in obese

mice. It has been found that miR-140-5p is abundant in ATMs-EVs

of obese individuals, which can promote ferroptosis in

cardiomyocytes. Specifically, it induces ferroptosis by targeting

SLC7A11 to inhibit GSH synthesis. Reducing the expression of

miR-140-5p in ATMs-EVs can alleviate obesity and prevent

ferroptosis and heart damage by mitigating GSH inhibition (56).

Notably, peripheral ATMs-EVs can trigger microglia autophagy by

inhibiting the PI3K/AKT/mTOR signaling pathway, promote anti-

inflammatory microglial polarization, and stimulate anti-

inflammatory properties, showing great potential for post-injury
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repair in metabolic diseases (57). However, due to insufficient

targeting capability, the clinical application of unmodified

peripheral ATMs-EVs is limited (58).

The occurrence of complications in metabolic diseases is a

major reason for the strict control of metabolic disease

progression. Obesity is often associated with low-grade

inflammation, which determines the appearance of complications

such as atherosclerosis and insulin resistance. ATMs from healthy

lean donors have been found to improve glucose tolerance and

insulin sensitivity and regulate related metabolic complications. In

T2DM patients, M1 macrophages predominate, leading to excessive

and prolonged inflammation at wound sites (59). This is due to the

accumulation of M1 macrophages creating a harmful

microenvironment, continuously promoting proteolysis and

cellular damage (60). Therefore, regulating macrophage

polarization will help in the healing of diabetic wounds. There are

differences in miRNA expression in AT between obese and lean

donors, and the levels of different miRNAs correlate with BMI to

varying degrees (61, 62). EVs isolated from relatively lean donor AT

drive macrophage polarization towards the M2 phenotype,

resulting in relatively reduced inflammation (21). Macrophages

are the most important immunomodulatory cells involved in the

four phases of wound healing (hemostasis, inflammation,

proliferation/repair, and remodeling) (60). Diabetic wounds

continuously exhibit dysfunctional and M1 (pro-inflammatory)

macrophage polarization, whereas normal wounds show a

transition to M2 (pro-healing) macrophages (63). For instance,

ATMs-EVs isolated from AT-conditioned media not only lead to

the accumulation of miR-222-3p in macrophages but also induce

the conversion of M1 macrophages to M2 macrophages by

activating transcriptional programs with M2 phenotypic

characteristics, thereby improving wound healing. In vivo

experiments also show similar results, where ATMs isolated from

lean mice can also secrete miRNA-containing EVs. When given to

diabetes-prone mice, they regulate macrophage polarization and

promote rapid healing of diabetic wounds. This suggests that

changes in ATMs-EVs expression can lead to macrophage

repolarization of diabetic wounds, providing new targets for

promoting the healing of chronic diabetic foot (63). Additionally,

during the proliferation phase, macrophage phenotype conversion

inhibits inflammation while promoting angiogenesis (64), and

ATMs-EVs can also promote the healing of diabetic wounds by

accelerating angiogenesis and epithelialization processes. However,

the mere quantity of angiogenesis is not sufficient to counteract the

defects caused by macrophage polarization. Therefore, this may not

be the primary factor in diabetic wound formation (65).
ATM-EVs mediate adipose-
macrophage crosstalk

Macrophages are inherently highly plastic, exhibiting different

phenotypes in response to environmental changes, ranging from

classically activated pro-inflammatory M1 to selectively activated

anti-inflammatory M2 (66). Obesity leads to changes in the

internal environment, which is one of the factors causing
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macrophage phenotype changes. Obesity induces significant

phenotypic changes in ATMs, shifting from anti-inflammatory M2

to pro-inflammatory M1, which produces pro-inflammatory

cytokines, exacerbating the occurrence and progression of

metabolic diseases (66). In terms of obesity, there are reports of

differences in miRNAs contained in EVs released fromAT in control,

leptin-deficient obese, and high-fat-fed obese mice (67). These

exosomes secreted into the medium seem to have local and

systemic effects and are absorbed by ATMs, enhancing their

activation in AT. Due to this activation, more macrophages can be

recruited to the AT and feedback the inflammatory response. Various

vesicles released by adipocytes are likely key mediators, whose vesicle

components mediate the polarization and immune regulatory

response of resident ATMs in a paracrine manner (41). For

example, EVs released from human adipocyte cultures can induce

monocyte differentiation into ATMs-like macrophages in vitro, and

adiponectin-positive EVs from human AT are more effective in

promoting monocyte differentiation into ATMs than adiponectin-

negative ones. This is because adiponectin-positive EVs are more

capable of inducing monocyte differentiation in vitro and exhibit

characteristics of ATMs (51). Additionally, EVs derived from

adipocytes isolated from high-fat diet (HFD)-fed mice can drive

the polarization of macrophages towards a pro-inflammatory M1

phenotype in bone marrow-derived macrophages (BMDM) in vitro

through miR-155, thereby inhibiting the suppressor of cytokine

signaling 1 (SOCS1), which in turn leads to inhibition of signal

transducer and activator of transcription 6 (STAT6) (68). Moreover,

adipocytes also mediate the growth of adjacent adipocytes through

EVs, with adipocytes delivering EVs proteins to nearby preadipocytes

and adipocytes in a paracrine and autocrine manner to regulate

adipogenesis. Adipose-derived stem cells (ADSC) impart paracrine

effects mediated by EVs on adipocytes and ATMs, respectively

regulating adipocyte reprogramming and macrophage polarization.

Indeed, the content of EVs may serve as a mediator of paracrine

crosstalk between adipocytes and macrophages in AT. Studies have

found that adipocytes release lipid-filled EVs, and these lipid-rich

EVs play a significant role in transporting lipids from adipocytes to

macrophages (34). Moreover, these lipid-filled EVs are sufficient to

induce bone marrow-derived monocytes to differentiate into ATMs-

like macrophages in vitro (34).

In fact, macrophages also potentially influence the structure of

AT through EVs, leading to the occurrence of metabolic diseases.

Macrophages can be abundantly stored in AT and interfere with

adjacent adipocytes through EVs. Macrophage-derived EVs can

effectively internalize into adipocytes, which may be a primary

factor in the chronic inflammatory structure of AT (41). In in vitro

experiments, EVs secretion can be detected in the medium of

human THP-1-derived macrophages, and when applied to

adipocyte culture dishes, internalization of EVs into adipocytes

can be clearly observed through fluorescence labeling (69, 70).

Similarly, a large number of EVs have also been isolated from the

AT of obese mice and have been shown to be gradually absorbed by

adipocytes (8). This is further evidenced by detecting EVs

membrane markers, including TSG101, syntenin 1, CD63, and

CD9. Interestingly, when THP-1 monocyte-derived macrophages

are polarized into M1 or M2 phenotypes by LPS plus IFN-g or IL-4,
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respectively, EVs derived from M1 macrophages impair insulin

signaling in human adipocytes, while EVs derived from M2

macrophages enhance insulin signaling and glucose uptake in

adipocytes (69). Consistent with in vitro study results, treatment

with ATMs-derived EVs from lean mice can improve diet-induced

glucose intolerance and insulin resistance in obese mice, whereas

EVs isolated from ATMs of obese mice can promote glucose

intolerance and insulin resistance in obese mice (8). However,

EVs secreted by native macrophages do not affect the

differentiation process of adipocyte precursor cells into

adipocytes, fat storage, or insulin-mediated glucose uptake in

adipocytes. This may be due to macrophage phenotype changes

in the obese state. Indeed, changes in adipocyte gene expression

induced by macrophage EVs depend on their origin (LPS-activated

or non-activated macrophages), where lean AT is dominated by M2

macrophages, which maintain tissue homeostasis by phagocytizing

dead adipocytes, secreting anti-inflammatory cytokines, and other

angiogenesis, adipogenesis, and adaptive thermoregulation factors

(71). In contrast, obese AT is dominated by M1 macrophages,

causing metabolic disorders in body tissues. In summary, these

studies collectively support the critical role of ATMs-derived EVs in

regulating adjacent adipocytes under physiological and pathological

conditions (41).

However, the exact process by which cells communicate

through these vesicles has not been characterized, and the

exosomal crosstalk pathway between macrophages and adipocytes

remains unknown (70). While changes in adipocyte gene expression

have been observed, it will also be necessary to identify specific

molecules (i.e., mRNA and proteins) present in macrophage-

derived EVs that affect adipocyte gene expression and

physiological characteristics. Of course, if similar results are

obtained in human AT, other macrophages, and adipocyte

primary cell models, it would also be an interesting finding (70).
ATM-EVs mediate crosstalk in adipose
and metabolic diseases

Metabolic dysfunction is associated with AT inflammation and

macrophage infiltration, ultimately leading to systemic metabolic

dysregulation. New evidence suggests that obesity is accompanied

by macrophage infiltration in AT, leading to low-grade chronic

inflammation and a state of metabolic dysregulation. Recently, it

has been proposed that adipocyte-derived EVs are involved in

adipocyte/macrophage crosstalk and act as significant mediators

in regulating the polarization of ATMs in obesity through

adipocytes (72). It has been observed through protein

fluorescence tracing that the intake of melatonin increases the

content of a-ketoglutarate (aKG) in adipocyte-derived EVs,

which is subsequently transported to macrophages, promoting the

activation of M2 macrophages (73). In obesity, the phenotype of AT

macrophages shifts from an M2 polarized state to an M1 state,

leading to chronic inflammation and ultimately causing metabolic

disorders. It has been found that ATMs undergo significant changes

in number, location, and inflammatory status during obesity (43).

When incubated with EVs from human adipocyte lines and
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adipocyte EVs, monocytes differentiate into ATMs-like

macrophages, and conditioned media from these macrophages

inhibit insulin signaling in adipocytes in vitro (51). Consistently,

EVs fromM1-like pro-inflammatory macrophages have been found

to reduce insulin signaling in human adipocytes, potentially

mediated by nuclear factor kappa B (NF-kB) activation, while

M2-like derived EVs have the opposite effect (69).

Under physiological conditions, the body maintains metabolic

homeostasis partly through communication between metabolic

organs. Typically, this crosstalk is mediated by hormones or

metabolites, but recently this has extended to EVs. Under

physiological and pathological conditions, EVs participate in

inter-organ communication by encapsulating a variety of

biologically active substances. The processes of biogenesis,

secretion, and specific cargo sorting of EVs are strongly

influenced by dynamic physiological and pathological conditions.

For example, a cell’s glucose metabolism status highly influences

EVs secretion by mediating the sorting of cargo proteins into

vesicles (74). Certain endocrine and metabolic factors, such as

hydrocortisone, insulin, and cholesterol, can also affect the

secretion or cargo composition of EVs. Hydrocortisone, as a

corticosteroid, can enhance the secretion capacity of EVs while

altering the RNA profile of pituitary cell-derived EVs (75). Insulin

resistance can stimulate EV release and alter the levels of insulin

signaling proteins in EVs (76). Cholesterol homeostasis plays a

critical role in the uptake of extracellular vesicles, and lowering

cholesterol levels in myeloid cells can inhibit receptor myeloid cell

uptake of prostate cancer-derived EVs (77). Indeed, dysregulation

in the number and composition of EVs is prevalent in various

metabolic diseases (78). For example, significant changes occur in

the number, location, and inflammatory status of ATMs during

obesity. When incubated with EVs from human adipocyte lines and

AT-derived EVs, monocytes will differentiate into ATMs-like

macrophages, and conditioned media from these macrophages

can significantly inhibit insulin signaling in adipocytes in vitro

(51), further demonstrating that this is due to EVs released fromM1

macrophages (69). Interestingly, EVs-like carriers from M1

macrophages impair insulin signaling in human adipocytes, while

EVs-like carriers from M2 macrophages have the opposite effect

(69). Similarly, EVs obtained from ATMs of lean mice, when given

to obese mice, can improve glucose tolerance and insulin sensitivity,

while injections of exosomes isolated from ATMs of obese mice

induce glucose intolerance and insulin resistance in lean mice (8).

Although the specific molecular mechanisms driving these changes

remain unclear, they also indicate that the components contained in

EVs released by specific cells change under metabolic disorder

conditions, further causing metabolic dysregulation. In summary,

ATMs-EVs can mediate crosstalk between key metabolic tissues

and adipocytes and participate in the body’s metabolic regulation

under physiological and pathological conditions.

Interestingly, EVs seem to have a regulatory effect on the

crosstalk between adipocytes and ATMs and insulin resistance

(79). Research has found that ATMs-EVs miR-29a can participate

in obesity-induced insulin resistance by targeting PPAR-d (80).

miR-29a belongs to the miR-29 family, which is widely present in

EVs. miR-29 family proteins delivered by EVs can affect insulin
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resistance in obesity and diabetic patients by mediating glucose and

lipid metabolism in adipocytes, myocytes, and hepatocytes (81).

Interestingly, the level of miR-29a in urinary EVs is independently

associated with obesity, insulin resistance, lipids, and liver enzymes,

making it a potential biomarker for T2DM (80, 82). While EVs

secreted by adipocytes have profound effects on ATMs polarization

and function, ATMs themselves also produce EVs to regulate the

metabolism and insulin action of local adipocytes and distant

metabolic organs (55). Adipocyte-derived EVs increase due to

obesity and indirectly assist ATMs in lipid uptake (83). In

humans and mice, AT-derived EVs are a major source of

circulating miRNA, and the miRNA content of adipocyte EVs in

obese individuals differs significantly from that of lean individuals

(23). Furthermore, changes in EVs miRNA are closely related to the

reduction of insulin resistance after weight loss surgery. EVs

miRNAs are key participants in mediating adipocyte-macrophage

crosstalk within AT under physiological and pathophysiological

conditions (84). In summary, ATMs-EVs play a crucial role in

coordinating communication between adipocytes and other types of

cells within AT, as well as between AT and other key metabolic

organs (such as the liver and skeletal muscle) (85) Figure 1.

ATM-EVs mediate crosstalk between adipose tissue,

macrophages, and metabolic diseases. In the context of obesity, M0

macrophages in adipose tissue undergo a transformation into M2

macrophages upon stimulation by EVs released from adipocytes. The

M2 macrophages then regulate various pathways, such as promoting

immune responses, transferring immune factors, altering the

function of metabolic organs, and inducing immune cell

aggregat ion, thereby creat ing a disrupted metabol ic

microenvironment that further promotes the continuous generation
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of M1 macrophages. In normal or lean conditions, M0 macrophages

in adipose tissue are stimulated by EVs released from adipocytes to

differentiate into M1 macrophages. These M1 macrophages, in turn,

regulate processes such as promoting the breakdown of dead

adipocytes, reducing inflammation, improving insulin sensitivity in

metabolic organs, enhancing wound healing, and shortening the

duration of inflammatory states. These processes help maintain the

communication and stability of metabolic organs, sustaining a

normal metabolic microenvironment while further promoting the

generation of M2 macrophages.
Possibility of ATMs-EVs modulating
immunotherapy for
metabolic diseases

The pathogenesis of metabolic diseases may be related to the

activation or suppression of immune cells, which is based on altered

communication between different organs. For example, the

communication between the liver, pancreas, AT, and immune

system may be associated with the convergence of immune cells

or the potential transmission of information to activate immune

cells within the tissue. In fact, changes in the metabolic

microenvironment are significantly associated with the activation

of immune cells. In the metabolic microenvironment experienced

by immune cells within tumor tissues, nutrients can alter metabolic

programming and form an anti-tumor immune response (86). The

activity of immune cells is also affected by the availability of

nutrients; under starvation conditions induced by infection,

ketone bodies can directly affect the survival of CD4+ T cells and
FIGURE 1

ATM-EVs mediate crosstalk between adipose, macrophages and metabolic diseases.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1510712
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1510712
regulate their production of IFNg (87). Conversely, immune cell

dysfunction can be observed in states of nutrient excess, such as

hyperglycemia and hyperlipidemia (88). These phenomena can be

significantly manifested in the re-regulation of glucose under

conditions of marked inflammation, such as sepsis and critical

illness. Interestingly, the responsiveness of immune cells to changes

in the nutrient state of the metabolic microenvironment is

particularly evident in lipid-associated macrophages. This may

help explain the development of various chronic diseases, such as

heart-related metabolic diseases, caused by metabolic disorders. The

specific intercellular communication between tissue-resident

immune cells and metabolic cells has also been confirmed in

fasting and refeeding experiments in vivo (89). In this context,

there is a high level of interaction between the immune system and

the metabolic microenvironment. As the vanguard of the immune

environment, macrophages naturally become key participants in

the development and progression of metabolic diseases, such as

T2DM (90).

AT is a unique tissue that has a powerful impact on immune cell

function. The field of AT immunobiology reveals how AT shapes

immune cell function under conditions of metabolic stress, such as

obesity. Evidence suggests that many metabolic and tissue-specific

complications of obesity are associated with the activation of

inflammatory cells and the loss of tissue homeostasis. Research

focusing on intracellular metabolic pathways has found that AT

can control the activation of immune cells and regulate their function,

ultimately affecting the growth of host cells (91). Due to the

contribution of AT macrophages in lean and obese states, they

have been extensively studied. Macrophages are the most abundant

immune cell population in obese AT, accounting for 40-60% of AT

immune cells in obese mouse models (6). In obesity, the pro-

inflammatory activity of ATMs can stimulate adipocytes to secrete

pro-inflammatory mediators, such as TNF-a and IL-6, which in turn

activate and recruit other immune cells (92). As the predominant

immune cell in AT in terms of function and quantity, ATMs can

regulate obesity-induced insulin resistance by altering the secretion of

inflammatory and anti-inflammatory factors (55). The number of

ATMs in obese mice and humans is significantly increased and

positively correlated with obesity (6). Specifically, in obese mice, the

number of activated M1 ATMs (typical inflammatory macrophages)

increases, leading to an increased M1/M2 macrophage ratio (80).

Furthermore, the accumulation of immune cells, including

macrophages, produces a chronic inflammatory state associated

with insulin resistance. AT macrophages have characteristics

related to AT metabolic function, which differ from the typical

characteristics of macrophages in other tissues. Studies have shown

that various epigenetic changes caused by a hyperglycemic

environment led to elevated inflammatory cytokine expression,

promoting M1 macrophage polarization. The accumulation of M1

macrophages leads to chronic inflammation of AT and ultimately

causes insulin resistance (93). Interestingly, some data suggest that

ATMs have beneficial effects, such as increasing fat storage, regulating

angiogenesis, remodeling the extracellular matrix, and clearing dead

cells in AT to maintain AT homeostasis. Therefore, macrophages

may have various or even opposite effects on adipocytes depending

on the physiological conditions, which likely depends on the body’s
Frontiers in Endocrinology 08
metabolic state (52). For example, adipocyte-secreted microRNA-34a

(miR-34a) can act as a key mediator through its paracrine effect on

ATMs. Adipose-selective or adipocyte-specific resistance to obesity-

induced glucose intolerance, insulin resistance, and systemic

inflammation transmits the signal of nutrient excess to ATMs,

thereby exacerbating systemic inflammation and metabolic

dysregulation caused by obesity (84). In addition, AT hypoxia is a

tissue-specific phenomenon that occurs during the rapid expansion

of AT in obese individuals. ATMs isolated from obese AT exhibit a

sustained elevated hypoxic state, implying that the pathophysiological

role of ATMs is regulated by certain inflammation-related

transcription factors induced by a combination of hypoxia and

metabolic stress (94, 95). Most studies on AT HIF have focused on

HIF-1a (96, 97). For example, macrophage HIF-2a can attenuate

pro-inflammatory properties by inducing ARG1, thereby preventing

pro-inflammatory responses and insulin resistance in adipocytes. In

this regard, maintaining appropriate activity of HIF-2a is crucial for

preventing AT dysfunction in obesity, suggesting that enhancing

HIF-2a activity in ATMs may be an attractive approach for treating

metabolic disorders caused by obesity (98). Persistent and unresolved

inflammation and hypoxia in AT are major causes of obesity-related

metabolic complications. However, the molecular link between lipid-

overloaded adipocytes and inflammatory immune cells in obese AT

remains elusive.

Interestingly, studies on AT-released EVs in obese individuals

may explain this molecular link between the two cell types. For

example, macrophage EVs in AT can induce the convergence of

surrounding immune cells to AT, leading to the occurrence of

metabolic complications. Studies have found that ATMs-EVs play

an important role in immune surveillance, signal mediation, and

promoting disease progression in the pathogenesis and pathology of

inflammation and related diseases. ATMs-EVs can influence the

chemotactic properties of peripheral immune cells by affecting the

release of pro-inflammatory enzymes and cytokines, indicating that

ATMs-EVs have pro-inflammatory or anti-inflammatory

properties (58). ATMs-EVs produced in the AT of lean mice can

directly reduce systemic immune responses in vivo, thereby

promoting insulin signaling. When administered to obese mice,

they can significantly improve insulin sensitivity and glucose

tolerance (99, 100). Conversely, in type 2 diabetes, ATMs-EVs

can mediate immune cell activation and insulin resistance (101),

possibly due to the effects of EVs derived from inflammatory M1

macrophages on adipocyte differentiation and insulin signaling

through NF-kB activation, while EVs derived from M2

macrophages enhance glucose uptake in adipocytes (69). In fact,

once released into the extracellular space, ATMs-EVs regulate the

metabolism of nearby and distant cells through body fluid

circulation (92), although the specific process remains unclear.

Additionally, it would be interesting to study whether the

dysregulated EV miRNAs in macrophage EVs change after

dietary or exercise interventions and understand the effects of

ATMs-EVs on the systemic inflammatory response to further

regulate the metabolic microenvironment (92). Although

extensive studies have been conducted on the effects of

macrophage EVs on the systemic immune response in the

development of metabolic diseases and the impact of metabolic
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stress on the production of EVs by macrophages, the role of ATMs-

EVs in metabolic pathology and whether they can prevent or even

intervene in the occurrence or progression of metabolic diseases by

acquiring EVs released by different types of macrophages to

influence their immune responses, and constructing specifically

needed ATMs-EVs to treat complications caused by metabolic

diseases, still require sufficient research to be confirmed.
Exploration of the clinical use of
ATMs-EVs

Today, approximately 500 million people worldwide are

affected by metabolic disorders and their complications. The

World Health Organization (WHO) estimates that this number

will increase to around 700 million by 2045 due to unhealthy

lifestyles (92). Currently, significant efforts are being made to

prevent and treat metabolic complications, and new discoveries in

the field of EVs have encouraged researchers to consider these

naturally constructed nanovesicles for clinical applications. Due to

their potential to manipulate drug delivery, specific targeting, and

homing properties, EVs are considered “professional transporters

and messengers” at the systemic level in the body (102–104).

Because exosomes protect their cargo from degradation by

circulating enzymes, all these characteristics provide potential for

disease diagnosis and evaluation of the efficacy of specific drugs. In

fact, EVs are considered very attractive nanocarriers or biomarkers

for liquid biopsy due to the protection of their molecular cargo by a

lipid bilayer membrane (105). This makes EVs particularly suitable

as a source of liquid biopsy for various diseases, including post-

obesity metabolic disorders and inflammatory responses (106, 107).

As the global obesity epidemic becomes a major driving force

behind the increasing prevalence of T2DM, obtaining a method

to enhance insulin sensitivity would have significant clinical

application value. Studies have found that treatment with obese

ATMs-EVs leads to reduced insulin secretion and enhanced b-cell
proliferation both in vivo and in vitro (31). It was observed that

insulin signaling in cells improved significantly after in vitro or in

vivo experiments using M2-like macrophage EVs highly enriched in

miR-690. New evidence suggests that insulin-sensitive lean mice

secrete EVs containing miRNA from ATMs, which can be

transported to insulin target cells to promote insulin sensitivity

(108). Conversely, M2-EVs treatment enhances insulin sensitivity

both in vivo and in vitro, while inhibiting M2-EVs miRNA can

prevent these effects (108). Interestingly, the secretion levels of

ATMs-EVs have distinctly different impacts on various diseases,

reflecting the influence of different cell types and environments on

the control of EVs secretion. In fact, ATMs-EVs play key roles in

treating diseases such as cancer, atherosclerosis, diabetes, heart

disease, and inflammation (109–113). It has been reported that all

types of M2-EVs can alleviate the severity of inflammatory bowel

disease, with M2b-EVs (M2b macrophage-derived EVs) having the

best effect. Additionally, ATMs-EVs can be used as tools for drug

delivery, or as vectors for gene or protein delivery (114) Figure 2. In

terms of metabolic diseases, it has been found that M1-EVs help

reduce inflammation in AT and insulin resistance of cells. For
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example, miR-27-3p in M1-EVs can regulate inflammation and

insulin resistance mediated by mitochondrial autophagy defects

through the miR-27-3p-Miro1 axis and has been confirmed to have

beneficial effects in preventing the development of type 2 diabetes.

This could provide new therapeutic targets for T2DM (115).

Moreover, by purposefully engineering ATMs-EVs, they could

become ideal functional carriers for delivering genetic material

and drugs to specific disease sites for targeted treatment. For

example, the engineered ATM2-EVs@PMN, through the

combined effect of M2-EVs and PMN-generated photothermal

effects, can inhibit inflammation and drive angiogenesis to

promote diabetic wound healing, which could be a promising

cell-free approach to treating metabolic diseases (58).

In terms of systemic metabolism, intercellular communication

is crucial for coordinating the activities of important organs such as

the brain, pancreas, liver, muscle, and AT. It is generally believed

that non-synaptic intercellular communication occurs either locally

through paracrine signaling or over longer distances through

endocrine signaling (body fluids), both involving the secretion of

signaling molecules such as growth factors, cytokines, and

hormones. However, intercellular communication via the

secretion of EVs has recently been considered an important

driver of intercellular/inter-organ signal transduction, as EVs

allow vesicles carrying specific molecular information to target

and deliver it to specific cells anywhere in the body in a timely

manner. This helps change the traditional view of intercellular

communication and represents an alternative and universal mode

of intercellular communication based on molecular cargo (i.e.,

proteins, lipids, nucleic acids, and membrane receptors) (92). This

type of intercellular communication induces a wide range of

stimulating or inhibitory functional outcomes, including cell

proliferation, apoptosis, cytokine production, immune regulation,

and metastasis (116). Therefore, they add an alternative mode of

paracrine and endocrine communication beyond the traditional

strategies of cell-to-cell direct contact and soluble receptor-targeting

hormones and cytokines. The selective delivery of signaling

molecules by EVs may be one of the reasons for the complexity

of diseases. In obese rodents and humans, the protein (including

adipokines) and RNA content of ATMs-EVs show qualitative

differences (117). A study of the ATMs-EVs miRNA profile in

219 patients observed different ATMs-EVs miRNA profiles in

metabolic syndrome, T2DM, hypercholesterolemia, and

hypertension (118). These ATMs-EVs can interact with recipient

cells, delivering their cargo into the cytoplasm of recipient cells and

regulating their phenotype. ATMs-EVs can deliver not only

functional proteins and translatable miRNA (119, 120) but also

their miRNA cargo can silence target genes in recipient cells (121).

Thus, we can achieve cell-level therapy by delivering the desired

cargo to target cells through ATMs-EVs internalization or by

targeting the action of ATMs-EVs surface molecules on target

cells (122). Due to the lack of sufficient immunogenicity, EVs can

be engineered for the clinical treatment of metabolic diseases (123).

EVs are highly complex vesicles whose bilayer structure and cargo

transfer capabilities allow them to serve as natural carriers for

therapeutic drugs and prevent their degradation in the body.

Currently, EVs loading technology can be divided into
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endogenous loading (genetic modification of parent cells) and

exogenous loading (drug loading of EVs) (58), of course, this is

not related to the specificity of ATMs-EVs. Therefore, to better

utilize the special effects of ATMs-EVs (originating from obese or

healthy individuals) and avoid biohazards and reduced metabolic

regulation caused by human intervention, directly using ATMs-EVs

from original tissue sources may have greater clinical value.

However, for practical application, determining the optimal

injection dose, timing, route, and rate of ATMs-EVs is important

for enhancing clinical efficacy and reducing side effects.
Discussion and prospects

Before ATMs-EV-mediated cell communication can be used for

therapeutic purposes, more research is needed. Little is known about

the recruitment and packaging of exosome cargo and the processes

involved in targeting exosomes to specific target cells. Questions

remain about whether EVs cargo loading and targeting addresses

vary with different metabolic states, how these processes are

regulated, and the characteristics of ATMs-EVs induced between

different metabolic cell types and metabolic organs (79). The

differences in protein and RNA content within ATMs-EVs increase

the possibility that they may act in a nonlinear fashion at multiple

stages of a single signaling pathway in metabolic processes or operate

on multiple pathways. For instance, they can also indirectly act by

stimulating metabolic cells to release signaling peptides or receptor

ligands, or by mediating the intracellular transfer of lipid-insoluble

signaling molecules (124, 125). These choices largely depend on the

material composition of individual exosomes and are related to

insulin resistance and impaired insulin signaling (91). Moreover,
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there are many differentially expressed macrophage-derived

exosomal miRNAs between lean and obese states, with relatively

highly expressed miRNAs thought to have biological effects. These

studies not only emphasize the importance of macrophages as a

source of adipose exosomes but also indicate that ATMs can produce

EVs containing different types of cargo depending on their

phenotype. Since various macrophage populations coexist within

AT (36), characterizing the types of ATMs-EVs produced by these

different populations in health and metabolic disease is crucial to

understanding the specific roles of inflammatory cells (126).

Although a series of mammalian cells have been used to study

ATMs-EVs subpopulations, there is a lack of systematic deep

characterization of all EVs populations within single-cell types

from multiple sources (i.e., resident macrophages from different

organs or tissues). Identifying differences between the same ATMs-

EVs in different metabolic microenvironments may help better

distinguish pathological EVs signals of metabolic disease

phenotypes in peripheral blood. Currently, research on metabolic

ATMs-EVs primarily focuses on EVs miRNA or EVs proteomics,

with limited efforts directed towards exploring the synergistic or

coordinated disease characteristics within the EVs RNA-proteome

combination. This combined approach could support the possibility

that ATMs-EVs are produced under specific disease conditions and

promote the progression of metabolic diseases through direct cellular

targeting (126). Furthermore, multiple miRNAs within ATMs-EVs

might act in a coordinated manner to induce insulin resistance and

insulin-sensitive phenotypes. It might be crucial to demonstrate the

full spectrum of metabolic effects induced by ATMs-EVs miRNAs.

Regarding systemic metabolic regulation, it is important to determine

whether macrophages in the liver, AT, and skeletal muscle express the

same miRNAs within EVs, and whether ATMs-EVs and their
FIGURE 2

Potential clinical applications of ATM-EVs.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1510712
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1510712
associated miRNAs specifically circulate to the liver and skeletal

muscle to alter tissue-specific or systemic metabolic responses.

Further clarification of the process by which macrophage

recruitment is regulated and the phenotypic changes of ATMs

could potentially decipher the methods for using ATMs-EVs to

treat obesity and suppress chronic metabolic diseases caused by

inflammation in systemic AT (127). Under conditions of metabolic

disorders, immune cells that play a key role in nutritional regulation

appear to be activated in all tissues, leading to sustained damage to

the homeostatic functions of the cardiovascular system, brain,

pancreas, liver, and AT. ATMs-EVs, as one of the key mediators,

might contribute to the damage to systemic metabolic cells due to the

collective effect of all ATMs-EVs. Identifying the predominant type of

ATMs-EVs and their cargo in different metabolic diseases could

facilitate early intervention in the onset of chronic metabolic diseases.

In fact, further research is needed on the functional changes in

M1 and M2 polarization within obese AT and their respective EVs.

Given that the recruitment and polarization of ATMs is a complex

process regulated by various metabolic and immune factors, it

remains to be determined how multiple regulatory factors

communicate and coordinate to control the number and

characteristics of ATMs during the development of obesity (84).

ATMs-EVs play a role in controlling inflammatory responses in

various metabolic diseases, including hypertension and diabetes.

However, the specific targets and roles of ATMs-EVs in regulating

disease-related inflammation are largely unknown. Although a

significant number of miRNAs associated with the pathogenesis of

T2DM have been identified in exosomes derived from AT

macrophages, their pathogenic roles remain unclear. Specifically,

further studies are needed to investigate the role of M1-EVs in

human islets and assess whether targeting miRNAs or inhibiting

M1-EVs could mitigate b-cell damage in rodent models and patients

with type 2 diabetes (128). However, due to the low number of ATMs

in lean and healthy mice, it is challenging to harvest enough

macrophages from lean AT for more in-depth mechanistic studies.

Before the clinical application of ATMs-EVs, some fundamental

issues still need to be addressed, such as how EVs target specific cells

in vivo, whether there are specific markers to identify different

organs, whether the same EVs cargo exerts similar functions in

different target organs, and the safety, dosage, and bioavailability of

EVs for treating metabolic diseases in vivo. Clarifying these issues

and further modifying or interfering with the communication of

these EVs cargos may provide potential therapeutic strategies for

treating metabolic diseases.
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62. Arner P, Kulyté A. MicroRNA regulatory networks in human adipose tissue and
obesity. Nat Rev Endocrinol. (2015) 11:276–88. doi: 10.1038/nrendo.2015.25

63. Xia W, Liu Y, Jiang X, Li M, Zheng S, Zhang Z, et al. Lean adipose
tissue macrophage derived exosome confers immunoregulation to improve wound
healing in diabetes. J Nanobiotechnology. (2023) 21:128. doi: 10.1186/s12951-023-
01869-4

64. Chazaud B. Inflammation and skeletal muscle regeneration: leave it to the
macrophages! Trends Immunol. (2020) 41:481–92. doi: 10.1016/j.it.2020.04.006

65. Li M, Wang T, Tian H, Wei G, Zhao L, Shi Y. Macrophage-derived exosomes
accelerate wound healing through their anti-inflammation effects in a diabetic rat
model. Artif Cells Nanomed Biotechnol. (2019) 47:3793–803. doi: 10.1080/
21691401.2019.1669617

66. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in
adipose tissue macrophage polarization. J Clin Invest. (2007) 117:175–84. doi: 10.1172/
JCI29881

67. Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura K, et al.
Adipocyte-derived microvesicles contain RNA that is transported into macrophages
and might be secreted into blood circulation. Biochem Biophys Res Commun. (2010)
398:723–9. doi: 10.1016/j.bbrc.2010.07.008

68. Zhang Y, Mei H, Chang X, Chen F, Zhu Y, Han X. Adipocyte-derived
microvesicles from obese mice induce M1 macrophage phenotype through secreted
miR-155. J Mol Cell Biol. (2016) 8:505–17. doi: 10.1093/jmcb/mjw040

69. Zhang Y, Shi L, Mei H, Zhang J, Zhu Y, Han X, et al. Inflamed macrophage
microvesicles induce insulin resistance in human adipocytes. Nutr Metab (Lond).
(2015) 12:21. doi: 10.1186/s12986-015-0016-3
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