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Abstract: Terahertz (THz) spectroscopy, an advanced label-free sensing method, offers significant
potential for biomolecular detection and quantitative analysis in biological samples. Although broad-
band fingerprint enhancement compensates for limitations in detection capability and sensitivity,
the complex optical path design in operation restricts its broader adoption. This paper proposes a
multi-degree-of-freedom stretchable metasurface that supports magnetic dipole resonance to enhance
the broadband THz fingerprint detection of trace analytes. The metasurface substrate and unit cell
structures are constructed using polydimethylsiloxane. By adjusting the sensor’s geometric dimen-
sions or varying the incident angle within a narrow range, the practical optical path is significantly
simplified. Simultaneously, the resonance frequency of the transmission curve is tuned, achieving
high sensitivity for effectively detecting cinnamoylglycine. The results demonstrate that the meta-
surface achieves a high-quality factor of 770.6 and an excellent figure of merit of 777.2, significantly
enhancing the THz sensing capability. Consequently, the detection sensitivity for cinnamoylglycine
can reach 24.6 µg·cm−2. This study offers critical foundations for applying THz technology to
biomedical fields, particularly detecting urinary biomarkers for diseases like gestational diabetes.

Keywords: terahertz; stretchable metasurface; molecular fingerprint sensor; magnetic dipole resonance;
all-dielectric metasurface; cinnamoylglycine

1. Introduction

The detection of cinnamoylglycine, a metabolite of cinnamic acid, holds significant
promise for biomedical applications. Cinnamoylglycine is primarily produced through
the metabolism of dietary cinnamic acid by gut microbiota and excreted in urine [1–3]. It
has been suggested as a potential marker of gut health, reflecting the inhibitory effects of
gut microbiota on pathogens [4]. Moreover, urinary cinnamoylglycine levels have been
closely associated with various metabolic disorders, particularly showing a significant de-
crease in gestational diabetes mellitus (GDM) patients [5–9]. GDM is a common pregnancy
complication characterized by increased maternal insulin resistance. It can lead to severe
complications such as preeclampsia, preterm delivery, and fetal macrosomia [8,9], and
it markedly increases the risk of developing type 2 diabetes later in life [9]. As changes
in urinary cinnamoylglycine concentrations can reflect early signs of metabolic distur-
bances, it has been considered a practicable biomarker for diseases. Nevertheless, current
identification methods, such as liquid chromatography–tandem mass spectrometry, are
highly sensitive but limited in their widespread clinical application due to complex sample
pretreatment processes and high costs [4,10].

To address the limitations of current detection methods, terahertz (THz) spectroscopy
has emerged as a promising analytical tool. Spanning frequencies between 0.1 and
10 THz [11], it is a non-ionizing, non-destructive technique capable of penetrating non-
conductive materials without damaging samples [12]. Due to these unique properties,
THz spectroscopy excels in molecular fingerprinting of chemical and biological sub-
stances [11–15]. Its sensitivity to the absorption features of hydrogen bonds, molecular
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vibrations, and rotational modes in the THz band [16] further expands its potential for
highly selective molecular detection. This capability has wide-ranging applications in
biomedicine, imaging, and food safety [17,18]. Despite its advantages, the sensitivity of
THz spectroscopy in trace analysis remains a significant challenge. The long wavelength of
THz waves (30 µm to 3000 µm), while target analytes are typically far below the micrometer
scale, weakens interactions and limits sensing performance [19]. This limitation hampers
the broader application of THz technology in trace detection [20].

Therefore, enhancing its sensitivity, particularly for trace analysis, has become a key
area of research. Several approaches have been proposed to improve detection performance,
including surface plasmon resonance, nanoantenna metamaterials, metal slot arrays, and
electromagnetic subwavelength structures, which strengthen the interaction between THz
waves and analytes [21–35]. Nonetheless, metal-based techniques suffer from significant
energy losses, particularly in detecting low-concentration analytes, limiting improvements
in sensitivity [26]. Consequently, researchers have shifted their focus to all-dielectric meta-
materials, utilizing the Mie resonance to more effectively manipulate interactions between
electromagnetic waves and materials. This approach minimizes energy dissipation and
increases the sensor’s quality factor (Q-factor), thereby significantly enhancing detection
sensitivity [27–29]. Nevertheless, this method still faces challenges in accurately charac-
terizing the broad absorption spectrum of trace analytes. Recently, an approach has been
proposed that employs multiple metasurfaces with unit cell structures of varying sizes or
changes in the incidence angle of electromagnetic waves. This strategy generates a series
of resonance peaks, enhancing broadband interactions between electromagnetic waves
and matter [32–34,36–38]. These interactions ultimately reflect trends in the extinction
coefficient of the analyte. Despite various schemes employed in the metasurfaces, including
the use of varying incident angles and unit cell geometrical dimensions, each method has
its own limitations. The use of different incident angles complicates the design of optical
paths during experiments, whereas incorporating varied unit structures demands highly
precise fabrication techniques.

To further address the limitations of traditional THz spectroscopy while reducing the
requirements for process precision, we propose a multi-degree of freedom. The proposed
design is a periodically symmetric polydimethylsiloxane (PDMS) quadruple structure
that supports magnetic dipole (MD) resonance. This sensor, which is relatively easy
to manufacture and measure [39], consists of a PDMS substrate with clusters of four
periodically arranged PDMS cubes, achieving a high Q-factor of 770.6 and a figure of merit
(FoM) of 777.2. By leveraging its stretchable dielectric structure, the sensor enables dual
modulation through stretching along the x-direction (100% to 130%) or adjusting the THz
wave incidence angle (0◦ to 15◦). These methods simplify the detection setup by overcoming
the optical path complexity associated with traditional angle multiplexing while also
providing efficient and dynamic tuning of the resonance frequency across a wide range.
This capability allows the resonance envelope to overlap with the absorption resonance
of cinnamoylglycine, enabling a detection limit of 24.6 µg·cm−2 for cinnamoylglycine. By
introducing a multi-degree-of-freedom tuning approach, this study offers a convenient and
versatile platform for high-sensitivity detection of trace THz molecular fingerprints while
also providing new strategies for THz sensing.

2. Materials and Methods

The proposed all-dielectric metasurface, illustrated in Figure 1a, consists of cube clus-
ters made from PDMS, arranged periodically in a square lattice on a PDMS substrate. In the
THz regime, PDMS exhibits a relative permittivity of 2.35 and a loss tangent of 0.04 [40]. It
also maintains excellent stability under normal conditions, with both thermal and mechani-
cal aging having minimal effects within 10,000 h of use [41,42]. The geometrical parameters
of the metasurface, depicted in Figure 1b, include lattice constants Px = Py = 410 µm, sub-
strate thickness t = 300 µm, cube side length w = 150 µm, height h = 170 µm, and inter-cube
spacing L = 30 µm. The y-polarized THz wave is incident vertically along the z-direction.
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By tuning the incident angle of the light source or applying strain to the substrate, the
resonance frequency in the transmission spectrum can be shifted. As a result, an envelope
curve is formed that covers the absorption band of the analyte. To apply strain to the
substrate and achieve the frequency shift, a support structure consisting of four holders is
positioned at the bottom layer of the tetrameric configuration, as shown in Figure 1c. In the
experiment, the device is characterized using a photoconductive antenna-based THz-TDS
system, with the setup shown in Figure 1d. The incident angle is varied by rotating the
sample, while strain is applied by adjusting the holder positions to stretch the substrate.
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Figure 1. (a) Structural view of an all-dielectric metasurface, showing the periodic arrangement
of pure PDMS cubic clusters. (b) Unit cell of the periodic structure. (c) Schematic of the structure
of the holder with the y-axis fixed and moving along the x-axis. (d) THz-TDS system based on a
photoconductive antenna.

To evaluate the performance of the proposed sensor, the optical properties of the
metasurface were simulated using the 3D finite-difference time-domain method. In this
simulation, a single unit cell was analyzed, with both the incident angle and the degree of
stretching varied independently. Periodic boundary conditions were imposed along the x-
and y-axes, while a perfectly matched layer boundary condition was employed along the
z-axis. The stretching factor S, defined as the ratio of the stretched dimension to the original
dimension, quantifies the degree of deformation. The top and bottom layers were cured
under different conditions, resulting in a significant contrast in their elastic moduli [43]. This
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disparity in mechanical properties leads to distinct performance characteristics between the
two layers, particularly under mechanical strain. During stretching along the x-direction,
deformation is primarily confined to the substrate, with minimal effect on the top layer,
which can be neglected. This ensures the preservation of structural integrity and stable
performance under mechanical strain. As the stretching factor S increased, the unit cell
dimension Px and the inter-cube spacing L varied proportionally along the x-axis, while
parameters along the y-axis remained largely unaffected, and the dimensions of the upper
cube clusters were kept fixed.

3. Results and Discussion

To gain deeper insights into the physical properties, the THz response and transmission
behavior of the metasurface were systematically analyzed under varying deformation levels.
The physical mechanism behind the sharp resonance drop, which can be explained by the
Fano resonance principle [44], is illustrated in Figure 2. Under perpendicular incidence of
the THz wave, a pronounced resonance occurred at 0.516 THz when S = 100%, as depicted
in Figure 2a. As stretching factor S increased to 107%, the resonance frequency shifted
towards lower values due to the increased periodicity, eventually reaching 0.487 THz. At
this point, the resonance frequency of the y-polarized wave matched the absorption peak
of cinnamoylglycine while exhibiting a Q-factor of 770.6, defined as Q = f0/∆f, where f0 is
0.487 THz and ∆f is 0.632 GHz. The electric and magnetic field distributions in the x–y plane
are illustrated in Figure 2b. This resonance phenomenon originates from the excitation
of the MD mode, manifesting as a collective response of four longitudinal MDs [45]. The
electric field is primarily concentrated in the central region of the clusters, indicating the
excitation of MD resonance in this region, which enhances the interaction between the
incident THz wave and the analyte. Similarly, the magnetic field distribution reveals the
presence of MD resonance. By leveraging these distinct field distributions, the sensor can
more effectively detect the analyte, leading to enhanced sensitivity and specificity in the
detection process.
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Figure 2. (a) Metasurface transmission spectra at stretch factor S = 100% and S = 107%. (b) Electric
and magnetic field distributions measured at the surface of the PDMS substrate at stretch factor
S = 100%.

To achieve higher quality factors for the metasurface peaks and ensure better adapta-
tion to biosensing applications, this study optimized several geometrical parameters of the
unit cell, including the lattice constants (Px, Py), substrate thickness (t), cube side length (w),
cube height (h), and inter-cube spacing (L). These parameters were varied in steps of 10 µm,
and the impact on the transmission peaks is shown in Figure 3. The simulation results show
that variations in the lattice constants (Px, Py) primarily drive the resonance frequency shift,
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whereas changes in the cube dimensions (t, w) induce comparatively smaller shifts. In
contrast, the spacing (L) and height (h) exert minimal influence on the frequency shift but
have a pronounced effect on the resonance sharpness and quality factor. After considering
experimental constraints and the required performance for biosensing, the final optimized
values were selected as Px = Py = 410 µm, t = 300 µm, w = 150 µm, h = 170 µm, and
L = 30 µm. This optimization ensures that the metasurface achieves a balance between
sensitivity, resolution, and structural stability, thereby maintaining optimal performance in
biosensing applications, as required for practical deployment.
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Figure 3. (a) Effect of varying periodicity in the x-direction Px on the transmission curve. (b) Effect of
varying periodicity in the y-direction Py on the transmission curve. (c) Impact of varying cube size w
on the transmission curve. (d) Influence of varying substrate thickness t on the transmission curve.
(e) Effect of varying inter-cube cluster distance L on the transmission curve. (f) Effect of varying cube
cluster height h on the transmission curve.

Deeper insights into its properties were obtained by investigating the THz response
under different degrees of stretching. The geometric deformation of the THz metasurface
unit cell during the stretching process is schematically illustrated in Figure 4a. By stretching
the unit cell along the x-axis, the structure undergoes controllable deformation while
maintaining its dimensions in the other directions. As the stretching factor S increases
from 100% to 130%, the distance from the center of the cube to the center of the structural
unit expands from 90 µm to 117 µm. Meanwhile, the corresponding unit cell length
Px increases from 410 µm to 533 µm. This structural deformation caused by stretching
modulates the incident THz wave, leading to distinct transmission behaviors that vary
with the stretching factor S. As illustrated in Figure 4b, the transmittance is plotted as a
function of the metasurface stretching factor S, indicating multiple narrow transmission
bands. The frequency of the transmission peaks decreases linearly and monotonically as
the stretching factor increases from 100% to 130%. To more clearly illustrate the influence
of stretching modulation, the transmission spectra curves under different stretching factors
are presented in Figure 4c. It can be observed that the incident THz wave is modulated
to form a series of sharp resonances in the transmission spectra. The resonance frequency
tuning range induced by stretching covers 0.516 THz to 0.411 THz, which aligns with the
absorption frequency of the target analyte, cinnamoylglycine. Establishing this frequency
matching is crucial for enhancing the selectivity of the sensing detection, as it ensures that
the metasurface device can capture the fingerprint absorption of the analyte. It is worth
noting that while the resonance peak position shifts, the peak intensity remains essentially
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unchanged. This stability and consistency of the spectral response are essential for ensuring
the repeatability and reliability of the sensor.
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Figure 4. (a) Schematic diagram of the metasurface structure with the attached analyte as the
stretching factor S varying from 100% to 130%. (b) Two-dimensional contour plot of the transmittance
as a function of the stretching factor and frequency. (c) Normalized transmission spectra without
analyte (stretching factor ranging from 100% to 130%).

To comprehensively evaluate the performance of the designed flexible THz sensor, a
thin film of cinnamoylglycine was applied to the device surface. The complex refractive
index of cinnamoylglycine is shown in Figure 5a, with the data extracted using the Fresnel
formula [46]. It can be observed that the extinction coefficient k reaches a maximum
at 0.487 THz, marking the fingerprint absorption peak of cinnamoylglycine molecules.
The real part, n, indicates the refractive index, while the imaginary part, k, represents
the extinction coefficient. The transmission spectrum curves measured under different
stretching factors after coating a 0.6 µm thick layer of cinnamoylglycine are presented in
Figure 5b. As the stretching factor gradually increases, the transmission peak position
undergoes a noticeable redshift, while the peak amplitude also exhibits an upward trend
from 43.45% to 60.48%, eventually reaching 71.45%. It is particularly noteworthy that
when the stretching factor is 107%, the resonance peak reaches its maximum at 0.487 THz.
This corresponds to the maximum in the extinction coefficient curve of cinnamoylglycine.
To gain a deeper understanding of the sensing enhancement mechanism, the near-field
distribution characteristics of the device were further analyzed under different stretching
states at 0.487 THz. The electric field distribution maps of the metasurface structure,
as the stretching factor varies from 103% to 111%, exhibit clear changes, as shown in
Figure 5c. It can be observed that at a stretching factor of 107%, the electric field intensity
on the device surface is maximally enhanced. At this point, the strong electric field signals
induced between adjacent cube clusters create a unique pattern of localized electric field
enhancement, boosting the interaction strength between molecules and THz waves. In
contrast, under other stretching states, the localized electric field enhancement effect is
significantly weakened. The resonance frequencies at these stretching factors are far from
the peak frequency of the extinction coefficient, which accounts for this weakening. Such an
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electric field distribution can enhance the wave–matter interactions around the resonance
frequency, thereby boosting the sensing capability of the metasurface.
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specific stretching factors S, corresponding to the transmission spectra shown in (b), respectively.

As demonstrated in Figure 6, the THz metasurface sensor clearly distinguishes cin-
namoylglycine from other substances through a geometric parameter multiplexing strategy,
leveraging the distinctive absorption characteristics of different materials in the THz range.
A series of normalized transmission spectrum curves, obtained through continuous stretch-
ing modulation, is shown in Figure 6a. Specifically, the stretching factor was gradually
increased in 1% increments, with transmission changes recorded within the stretching
range of 100% to 130%. By tracking the transmission peak positions, a distinct envelope
curve, indicated by the red dashed line, was observed. Notably, the envelope curve reaches
its maximum near 0.487 THz. It closely aligns with the cinnamoylglycine extinction coeffi-
cient curve in Figure 5a, indicating that the PDMS-based metasurface fingerprint sensor
can accurately identify cinnamoylglycine. Simultaneously, to quantitatively evaluate the
sensor capability for the absorption characteristics of trace analytes, the influence of analyte
film thickness on the device transmission characteristics was investigated. As shown in
Figure 6b, as the thickness of the cinnamoylglycine thin film gradually increases from
0.2 µm to 1 µm, the transmission peak amplitude of the device at 0.487 THz monotoni-
cally rises from 41.06% to 77.86%. The detection limit, determined by σ = ρ × h with an
analyte volume density of ρ = 1.23 g/cm3 and a minimum layer thickness h = 0.2 µm,
is 24.6 µg/cm2. For comparison, the transmission envelope curve without the analyte
coating is also presented, maintaining an amplitude close to zero throughout. This result
fully demonstrates that the designed sensor exhibits a clear response to changes in analyte
thickness, paving the way for quantitative analysis. To comprehensively evaluate the
sensor performance, FoM was introduced as a key performance indicator. It is defined as
FoM = S/FWHM = S × Q/f0 [47]. Therefore, a sensor with an FoM of 777.2 was obtained,
demonstrating superior performance. This value indicates that the device achieves excel-
lent levels in multiple performance indicators such as sensitivity, selectivity, and Q-factor,
making it a high-performance THz sensor with broad application prospects.
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ranging from 100% to 130%, the S values increasing by 1% between each curve. The corresponding
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of analytes.

Further discussion was made regarding the influence of incident angle variations on
the detection performance of the flexible THz sensor, with a focus on the modulation effect
of incident angle α on the metasurface, which varied from 0◦ to 15◦. The structural parame-
ters of the tetramer metasurface were kept unchanged, and the corresponding transmission
spectra were characterized at a stretching factor S = 100%, as shown in Figure 7a. The
transmission spectrum curves obtained within the incident angle range of 0◦ to 15◦ are
presented in Figure 7b. The results indicate that each incident angle corresponds to a unique
narrow-band transmission peak. As the incident angle increases, the center frequency ex-
hibits a significant monotonic decreasing trend. Meanwhile, the device maintains a constant
minimum transmission value and spectral line width in the absence of the analyte. This ob-
served frequency shift can be attributed to the disruption of structural symmetry conditions
caused by changes in the incident angle. As the perturbation increases, the frequency shift
broadens [48]. Additionally, modifying the parameters of the four cubes can lead to shifts in
the MD resonance frequency [49]. When these different effects combine, they contribute to
the formation of clusters in the transmission spectrum, covering a wide range of frequencies
that include the absorption frequencies of the analyte. This combination of results allows
for targeted identification of the samples. To intuitively evaluate the detection performance,
a 0.6 µm thick cinnamoylglycine thin film was deposited on the metasurface, and the results
are shown in Figure 7c. Due to the influence of the optical loss of cinnamoylglycine, the
transmission envelope curve reaches a maximum value at 0.487 THz, with a corresponding
transmission as high as 62.8%. This peak value precisely corresponds to the characteristic
absorption frequency of cinnamoylglycine molecules. This phenomenon further validates
the application potential of the developed flexible THz metasurface in molecular fingerprint
sensing. Notably, unlike other THz sensing schemes that often require complex modulation
over a large angular range [34,35,50], the metasurface proposed only requires only a limited
scan within 0◦ to 15◦. This design approach significantly simplifies the optical path design
process during measurement and improves detection efficiency, offering a more intuitive
and convenient solution for practical applications.

To compare the performance of the proposed metasurface with previous designs, key
parameters are summarized in Table 1. The proposed structure combines angular and
geometric multiplexing approaches, which helps to reduce or even avoid the complexity of
optical path setup in practical applications. This multi-degree-of-freedom design not only
simplifies the optical system but also enhances the flexibility of the device, making it more
adaptable to varying experimental conditions.
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Table 1. Comparison of multiplexing modes and ranges of existing metasurfaces and the proposed
structure.

Ref. Structure Working Band Q FoM Multiplexing Mode Range of
Multiplexing (∆)

[37] Pair cuboids THz 140 11.1 Incident angle 0◦~40◦, 0◦~30◦

[38] Pair pillars Mid-infrared 110 - Incident angle 1◦~70◦

[50] Triangular tetramers THz 231 609 Incident angle 13◦~62◦

[51] Nanodisks array Mid-infrared >160 >33 Fermi effect 0.30 eV~0.72 eV

This work Stretchable PDMS
metasurface THz 770.6 777.2 Incident angle and geometry 100%~130%,

0◦~15◦

To compare the performance of the proposed metasurface with previous designs,
key parameters are summarized in Table 1. As shown in Table 1, the proposed structure
outperforms previous designs in terms of both Q-factor and FoM, demonstrating significant
improvements in performance. The proposed structure combines angular and geometric
multiplexing approaches, which helps to reduce or even avoid the complexity of optical
path setup in practical applications. This multi-degree-of-freedom design not only sim-
plifies the optical system but also enhances the flexibility of the device, making it more
adaptable to varying experimental conditions. Furthermore, the multiplexing range in our
work is narrower than those in previous studies, allowing for high detection sensitivity
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while simultaneously reducing the practical detection time. In the angular multiplexing
scheme, each spectrum takes 2–3 min, with the total time under 45 min. The stretching
multiplexing scheme, despite the larger range, is faster and requires fewer adjustments,
resulting in comparable or shorter total measurement time. This compact scanning range
ensures efficient data collection without compromising the resolution and quality of the
terahertz spectra.

4. Conclusions

In conclusion, this study presents a multi-degree-of-freedom THz sensor for the trace
detection of cinnamoylglycine, a potential urinary biomarker for GDM, based on an all-
dielectric metasurface. The proposed sensor, with a fully PDMS structure of periodic
cube clusters on a substrate, achieves a high Q-factor of 770.6 and an FoM of 777.2. By
utilizing the properties of PDMS, the sensor combines stretchable dielectric structures
and angle scanning, enabling stretch modulation and limited angular multiplexing. This
design allows tuning spectral transmission peaks and recovering broadband fingerprint
signals from trace analytes. As a result, it achieves high-sensitivity detection, especially
for ultrathin trace analytes in various physical states or forms. These methods greatly
reduce the complexity of optical path design during the detection process, simplifying
practical operations while ensuring sensitivity compared to traditional methods. Given
the health risks associated with GDM, the proposed flexible THz metasurface sensor offers
a rapid, convenient, and accurate alternative to current diagnostic methods. To further
advance its practical utility, future work will focus on optimizing the structural design to
improve adaptability, enhancing sensitivity to a wider range of molecular analytes, and
addressing scalability for broader practical applications. Furthermore, the multi-degree-
of-freedom modulation strategy enhances the versatility of THz sensors, broadening their
biomedical applications and laying a foundation for future research in THz spectroscopy
and diagnostics.
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