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Abstract: Recent advances in drug discovery have established biosensors as indispensable tools,
particularly valued for their precision, sensitivity, and real-time monitoring capabilities. The review
begins with a brief overview of cancer drug discovery, underscoring the pivotal role of biosensors in
advancing cancer research. Various types of biosensors employed in cancer drug discovery are then
explored, with particular emphasis on fluorescence- and bioluminescence-based technologies such
as FRET, TR-FRET, BRET, NanoBRET, and NanoBiT. These biosensors have enabled breakthrough
discoveries, including the identification of Celastrol as a novel YAP-TEAD inhibitor through NanoBiT-
based screening, and the development of TR-FRET assays that successfully identified Ro-31-8220
as a SMAD4R361H/SMAD3 interaction inducer. The integration of biosensors in high throughput
screening and validation for cancer drug compounds is examined, highlighting successful applica-
tions such as the development of LATS biosensors that revealed VEGFR as an upstream regulator
of the Hippo signaling pathway. Real-time monitoring of cellular responses through biosensors
has yielded invaluable insights into cancer cell signaling pathways, as demonstrated by NanoBRET
assays detecting RAF dimerization and HiBiT systems monitoring protein degradation dynamics.
The review addresses challenges linked to biosensor applications, such as maintaining stability in
complex tumor microenvironments and achieving consistent sensitivity in HTS applications. Emerg-
ing trends are discussed, including integrating artificial intelligence and advanced nanomaterials
for enhanced biosensor performance. In conclusion, this review offers a comprehensive analysis
of fluorescence- and bioluminescence-based biosensor applications in the dynamic cancer drug
discovery field, presenting quantitative evidence of their impact and highlighting their potential to
revolutionize targeted cancer treatments.

Keywords: biosensor; cancer; drug discovery; high-throughput screening; FRET; TR-FRET; BRET;
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1. Introduction
1.1. Brief Overview of Cancer Drug Discovery

The field of cancer drug discovery has undergone transformative advancements in
recent years, driven by technological innovations and a deeper understanding of molecular
cancer biology. This progress spans from improvements in hight throughput screening
(HTS) and small molecule (SM) therapies to new developments in artificial intelligence (AI)
applications and targeted therapies. The integration of SMs into targeted cancer therapies,
phenotypic screenings, and structural biology has significantly expanded the scope and
efficacy of cancer treatments [1–3].

HTS remains a cornerstone of drug discovery, enabling the rapid evaluation of thou-
sands of compounds. Researchers employ various HTS methods, including label-free
assays [e.g., surface plasmon resonance (SPR), Biocore, isothermal titration calorimetry
(ITC)], fluorescence-based assays [e.g., fluorescence polarization (FP), anisotropy, fluores-
cent resonance energy transfer (FRET), time-resolved FRET (TR-FRET), and fluorescence
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lifetime analysis], bioluminescent based assays [e.g., NanoBiT (NanoLuc Binary Technol-
ogy), NanoBRET (NanoLuc BRET), AlphaScreen, and luciferase reporter), binding based
assays [e.g., proteolysis targeting chimera (PROTAC), covalent drug, mass-spec technology,
and DNA encoding library (DEL)], and cell-based assays [4–6]. While traditional HTS
relied on two-dimensional (2D) cultures, which often fell short of mimicking the complex
tumor microenvironment, recent developments incorporate 3D multicellular spheroids
or animal models that offer more physiologically relevant models for studying drug ef-
ficacy and resistance [7]. These improved models significantly enhance the ability to
predict therapeutic outcomes [5,7,8], particularly when targeting cancer cells within their
unique microenvironment.

SMs in targeted cancer therapies represent one of the most significant advancements
in oncology over the past two decades. Due to their small size, these compounds can
penetrate cells and inhibit intracellular signaling pathways, offering advantages over mon-
oclonal antibodies, which typically act on extracellular targets [3,9]. Another advantage of
SMs is that they can be administered orally, unlike other modalities. The Food and Drug
Administration (FDA) has approved more than 43 SM inhibitors for oncology applications,
with many of these drugs exhibiting fewer side effects and higher efficacy compared to tra-
ditional cytotoxic chemotherapies [3,10]. Examples of successful targeted therapies include
selective kinase inhibitors, such as sorafenib and sunitinib, which target multiple kinases
across various cancer types. This class of drugs has evolved to include selective inhibitors
that focus on specific components of cancer signaling pathways for more personalized
treatment strategies based on individual tumor genetics [3,9]. Selective epithelial growth
factor receptor (EGFR) inhibitors like erlotinib and gefitinib have revolutionized the treat-
ment of non-small cell lung cancer (NSCLC), particularly in patients with EGFR mutations.
Similarly, BRAF inhibitors such as vemurafenib have shown efficacy in melanoma patients
with BRAF V600E mutations, further emphasizing the role of genomic markers in guiding
therapy [11].

One of the ongoing challenges in cancer drug discovery is overcoming drug resistance,
which often arises through mechanisms such as secondary mutations in target proteins,
the activation of compensatory pathways, or drug efflux [1–3]. Researchers are addressing
this issue by developing next-generation inhibitors that target resistance mechanisms and
by exploring combination therapies that prevent cancer cells from evading the effects of
single-agent treatments [9]. Additionally, phenotypic screening and pooled Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR) approaches are increasingly
being used to uncover new targets for cancer development. These strategies allow for the
identification of compounds that modulate cancer cell behavior based on observable traits
rather than predefined molecular targets [6,11]. CRISPR-based screens have been critical
in identifying genes that contribute to drug resistance, providing valuable insights into
potential therapeutic targets [6].

AI has also significantly impacted cancer drug discovery, particularly in protein
structure prediction. AI-powered tools, such as AlphaFold2, have dramatically improved
the accuracy of protein structure models, which are crucial for rational drug design. This
advancement has accelerated the discovery of new SM inhibitors by enabling researchers
to target previously “undruggable” proteins with greater precision [2]. AI-driven structural
predictions are helping to identify new binding sites on oncogenic proteins, offering fresh
avenues for therapeutic intervention. Additionally, the drugging of “undruggable” targets,
including key oncogenes like RAS and MYC, has advanced through approaches such as
PROTAC. PROTACs function by tagging disease-causing proteins for degradation rather
than simply inhibiting them, providing a new modality for addressing proteins that were
previously difficult to target with traditional SMs [12].

The integration of molecular screening techniques such as next-generation sequencing
(NGS) and connectivity mapping has further enhanced the drug discovery process. These
techniques allow researchers to match patients with therapies based on their unique molec-
ular profiles, ushering in an era of precision medicine. Specifically, connectivity mapping
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has accelerated the discovery of effective treatments by linking transcriptomic data with ex-
isting drug compounds, leading to novel uses for established drugs [3,6]. The repurposing
of existing drugs for new cancer indications, guided by these tools, has reduced the time
and cost associated with developing new therapies [11].

In conclusion, the field of cancer drug discovery is experiencing rapid advancements
driven by the convergence of HTS, AI-driven insights, and novel SM therapies. These devel-
opments are pushing the boundaries of what is possible, allowing for more targeted, effec-
tive, and personalized cancer treatments. Despite ongoing challenges like drug resistance
and the complexity of cancer biology such as heterogenicity, the collective progress high-
lighted in these studies offers a promising foundation for future breakthroughs in oncology.

1.2. Significance of Biosensors in Cancer Research

Biosensors have revolutionized cancer research by offering high sensitivity, specificity,
and real-time monitoring capabilities for protein levels and structure and protein–protein
interactions (PPIs), significantly advancing the fields of diagnostics, therapeutic monitoring,
and drug discovery [13–15]. These technologies have provided invaluable tools for early
cancer detection, particularly in cases where traditional diagnostic methods fall short
due to complexity, invasiveness, or cost [16–19]. One of the biosensors’ most significant
contributions to cancer research lies in early-stage diagnosis, particularly through the
detection of circulating tumor biomarkers. Researchers can detect biomarkers such as
circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and various proteins with
high precision. For example, studies have demonstrated that label-free electrochemical
biosensors effectively detect these biomarkers in body fluids like blood, offering non-
invasive methods for early cancer detection [16,18]. These approaches eliminate the need
for complex sample preparation and labeling, making them more accessible and rapid
for clinical applications. For example, these biosensors enable breast cancer diagnosis by
identifying key biomarkers such as HER2, CA15-3, and circulating microRNAs (miRNAs,
e.g., miR-21 and miR-155) [16,17].

Moreover, biosensors have transformed the landscape of drug discovery and thera-
peutic monitoring in cancer research [20,21]. High-throughput biosensor assays, including
split-luciferase complementation assays (SLCA), play crucial roles in screening potential
drug candidates by measuring PPIs and receptor activity in cancer cells. These biosensors
enable researchers to identify compounds that modulate oncogenic signaling pathways,
such as the Hippo or Wnt pathways, which are central to cancer cell proliferation and
survival [22–25]. The use of these advanced sensor technologies helps accelerate the iden-
tification and optimization of SM inhibitors, significantly shortening the drug discovery
process. In addition, biosensors are being used for their role in personalized cancer therapy.
With their ability to measure real-time responses to drugs, biosensors allow for precise mon-
itoring of therapeutic efficacy, enabling adjustments in treatment regimens based on how a
patient’s cancer cells respond. This approach is especially promising in targeted therapies,
where biosensors can help identify resistance mechanisms, such as mutations in ctDNA or
protein alterations, allowing clinicians to tailor treatments to individual patients [17,18].

In summary, biosensors have become integral to the advancement of cancer research,
particularly in the realms of early detection and personalized medicine. By providing
highly sensitive, non-invasive, and real-time diagnostic tools, biosensors enhance our
ability to detect cancer earlier, monitor disease progression more accurately, and optimize
therapeutic interventions. As biosensor technology continues to evolve, it promises to
further revolutionize the way cancer is diagnosed, treated, and monitored, ultimately
improving patient outcomes across various cancer types.

2. Types of Fluorescence- and Bioluminescence-Based Biosensors
2.1. Fluorescence Biosensors

Fluorescence biosensors operate through the excitation of fluorescent molecules (fluo-
rophores) by an external light source, followed by light emission at a different wavelength.
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These biosensors effectively detect biomolecular interactions, conformational changes, and
enzyme activities.

Förster resonance energy transfer (FRET) is a distance-dependent energy transfer
process between two light-sensitive molecules, typically called the “donor” and “acceptor”.
When the donor fluorophore is excited by an external light source, it can transfer its energy
non-radiatively to an acceptor fluorophore if they are within 1–10 nanometers of each
other. The efficiency of FRET is highly sensitive to the distance between the donor and
acceptor fluorophores, making it an excellent method for detecting molecular interactions
and conformational changes in real time. In a typical fluorescence biosensor system, the
donor (e.g., cyan fluorescent protein (CFP)) emits light only when it is in close proximity to
the acceptor [e.g., yellow fluorescent protein (YFP)], which then re-emits light at a different
wavelength. This setup enables the detection of dynamic processes, such as protein–protein
interactions, protein-small molecule interactions, or changes in protein conformation within
live cells (Figure 1). Intramolecular FRET and intermolecular FRET biosensors (Figure 1)
are particularly valuable for studying dynamic changes within individual proteins and
interactions between proteins. The energy transfer efficiency between the donor and
acceptor depends on their proximity, typically within 1–10 nanometers.
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Figure 1. Schematic representation of intramolecular and intermolecular FRET biosensors.
(A) Intramolecular FRET. A single protein with CFP and YFP attached at two ends undergoes confor-
mational changes, bringing CFP and YFP into proximity. Energy transfer occurs when CFP is excited,
leading to emission from YFP. (B) Intermolecular FRET. Two interacting proteins, A and B, are tagged
with CFP and YFP, respectively. When the proteins interact closely, FRET occurs as energy from the
donor (CFP) is transferred to the acceptor (YFP), resulting in fluorescence from YFP. These FRET
configurations allow the monitoring of protein interactions and conformational changes in live cells.

Time-Resolved FRET (TR-FRET) represents an advanced application of FRET tech-
nology [26,27]. It is different from FRET in three aspects: (1) Fluorophores: FRET uses
traditional fluorophores, while TR-FRET uses lanthanide-based fluorophores, such as ter-
bium or europium as the donor fluorophore, which has a long light emission lifetime
at approximately 615 nm wavelength after excitation at 320–340 nm (Figure 2); (2) Mea-
surement techniques: FRET measures emission instantly, while TR-FRET uses a time
delay (typically 50–100 microseconds) in detection, which significantly reduces short-lived
autofluorescence noise (Figure 2) and improves the signal-to-noise ratio; (3) Sensitivity:
TR-FRET generally offers a high-sensitivity, making TR-FRET ideal for HTS applications in
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drug discovery where sensitivity is critical. In TR-FRET biosensors, when the donor and
acceptor are brought into proximity through molecular interactions (either intramolecularly
in a protein or intermolecularly between two proteins), energy is transferred to the acceptor,
causing it to emit at a characteristic wavelength (665 nm; Figure 2).
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Figure 2. Schematic presentation of TR-FRET biosensors. The target protein is bound by
two antibodies: Eu-Ab1, labeled with a europium (Eu) donor fluorophore, and D2-Ab2, labeled
with the D2 acceptor fluorophore. Upon excitation at 320–340 nm, the Eu donor emits at 615 nm.
When the antibodies are in close proximity due to binding the same protein or two interacting
proteins, FRET occurs from the Eu donor to the acceptor, resulting in a TR-FRET emission at 665 nm.

Both FRET and TR-FRET fluorescent biosensors are used extensively to monitor intra-
cellular events, such as calcium signaling, kinase activity, and protein folding, providing
valuable insights into cellular processes at a molecular level [27–29]. Fluorescence biosen-
sors also offer high temporal resolution, making them suitable for applications where
precise real-time tracking of fast cellular events is required. For example, green fluores-
cent protein (GFP) and its variants have been engineered into biosensors to visualize the
localization and activity of proteins within living cells. The real-time imaging capabilities
of fluorescence biosensors have been instrumental in studying cancer cell behavior, drug
responses, and the dynamics of various oncogenic signaling pathways [30]. Fluorescence
biosensors are widely used in HTS to identify potential drug candidates by detecting
changes in fluorescent signals corresponding to the binding or inhibition of target proteins.
This is particularly important in cancer drug discovery, where rapid screening of large
chemical libraries is essential for identifying new therapeutic molecules.

Bioluminescence Resonance Energy Transfer (BRET) and its enhanced version,
NanoBRET, are powerful techniques used to study molecular interactions in live cells.
BRET is a luciferase-based biosensing technique that eliminates the need for external ex-
citation, which helps to reduce background noise. In BRET, a luciferase enzyme [often
Renilla luciferase (RLuc)] serves as the energy donor, and a fluorescent acceptor, such as
YFP, receives the energy. Upon oxidation of a substrate (e.g., coelenterazine), the luciferase
enzyme emits light at a specific wavelength (typically around 480 nm). If the acceptor
fluorophore is close enough (approximately 1–10 nm), it absorbs this emitted energy and re-
emits it at a longer wavelength (e.g., 530 nm; Figure 3). NanoBRET is an enhanced version
of BRET. It improves classical BRET by using NanoLuc luciferase, a smaller and more stable
luciferase, which provides higher intensity luminescent intensity. NanoLuc emits light with
a peak around 460 nm, which is ideal for efficient energy transfer to fluorescent acceptors
with peak emissions in the 500–600 nm range, thus providing better spectral resolution and
reducing interference from background signals. These advancements reduce background
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interference and enhance sensitivity, making NanoBRET ideal for HTS in drug discovery.
BRET/NanoBRET is widely used to detect PPIs and to screen for small-molecule inhibitors,
as it preserves the physiological relevance of cellular environments [31–34].
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Figure 3. Schematic representation of the BRET and NanoBRET biosensor. (A) The energy donor
such as a luciferase enzyme (RLuc or NanoLuc) is fused to one protein of interest (Protein A), while a
fluorescent acceptor is attached to the interacting partner (Protein B). When Protein A and B interact
within a close distance (~5–10 nm), upon substrate (e.g., coelenteramide) oxidation, the luciferase
enzyme (donor) releases energy in the form of photons, with specific emission wavelengths (e.g.,
~480 nm for RLuc). The acceptor fluorophore absorbs the donor emission and re-emits it at a higher
wavelength (e.g., ~530 nm for YFP), producing a measurable light signal (B) when protein–protein
interactions bring the donor and acceptor close together.

2.2. Bioluminescence Biosensors

Besides fluorescence-based biosensors, the bioluminescent biosensor is another type
of biosensor commonly used in cancer drug discovery. Unlike fluorescence-based systems,
bioluminescence does not require external light excitation, resulting in reduced background
noise and enhanced sensitivity. Bioluminescence biosensors rely on light emission from
biochemical reactions. The most common system uses luciferase enzymes, which catalyze
substrate (e.g., luciferin) oxidation, producing photons as a byproduct. The two most
widely used bioluminescence biosensor systems utilize firefly luciferase and NanoLuc
luciferase. A SLCA system involves splitting the firefly luciferase into two non-functional
segments: N-terminal (NLuc) and C-terminal (CLuc) luciferase (Figure 4A). These segments
reconstitute into active firefly luciferase only when two proteins (Protein A and Protein B)
of interest interact (Figure 4B,C). Researchers employ firefly biosensors to study signaling
transduction and tumor growth in xenograft mouse models [13].
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Figure 4. Schematic representation of bioluminescent biosensors using firefly SLCA monitoring
PPIs. (A) Representation of the SLCA components in luciferase structure. (B) Split luciferase assays
in monitoring PPIs. In this biosensor system, the firefly luciferase enzyme is split into two non-
functional fragments: the N-terminal domain (Nluc, amino acids 1–416) and the C-terminal domain
(Cluc, amino acids 394–550). These fragments are fused to two proteins of interest, Protein A and
Protein B. When Protein A and Protein B interact, the two luciferase fragments are brought into close
proximity, allowing them to reconstitute the functional enzyme. (C) Luciferase assays. In the presence
of the substrate D-luciferin and cofactors such as Mg2+, the restored luciferase catalyzes the oxidation
of D-luciferin to oxyluciferin, producing light. This luminescence signal indicates the interaction
between the two proteins and can be quantified to measure the strength and dynamics of the PPIs.

NanoLuc is a small bright luciferase enzyme that generates a robust light signal that
is over 100 time stronger than firefly luciferases [35–37], making it ideal for detecting
molecular interactions and cellular events in real time. Recently, a NanoBiT, a SLCA system
using NanoLuc, was invented. In NanoBiT, NanoLuc is split into two non-functional halves,
a large BiT fragment (LgBiT, 18 kDa) and a small BiT fragment (SmBiT, 1.3 kDa; 11 amino
acids). These fragments are each fused to proteins of interest (e.g., Protein A and Protein
B). When the target proteins interact, the LgBiT and SmBiT fragments come together to
reconstitute a functional luciferase enzyme, which emits light upon the addition of the
substrate (e.g., furimazine) (Figure 5). This luminescent signal is directly proportional to
the interaction between the target proteins, allowing researchers to quantify real-time PPIs
in living cells with high sensitivity [23,26].

Due to their high sensitivity and low background interference, bioluminescent biosen-
sors are especially useful in in vitro applications. For instance, they can be used to track
tumor growth, metastasis, or therapeutic responses in animal models by tagging cancer
cells or specific proteins with bioluminescent markers [13–15,30,38–40]. The ability to
monitor biological processes non-invasively over time makes bioluminescence biosensors a
powerful tool in cancer research and drug discovery.
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2.3. Software Tools and Data Analysis for Biosensors

Many software tools are generally used for data analysis for biosensors in HTS drug
discovery. FRET/TR-FRET data analysis typically employs ratiometric calculations to
determine energy transfer efficiency [41]. Software packages such as ImageJ 1.54 with the
FRET Calculator plugin enable automatic analysis of FRET images, providing tools for
background subtraction, photobleaching correction, and calculation of FRET efficiency [42].
Commercial platforms like LanthaScreen™ (Thermo Fisher, Burlington, ON, Canada) offer
integrated solutions for TR-FRET data analysis, incorporating algorithms for time-resolved
detection and signal normalization [43]. These tools typically calculate the ratio of acceptor
to donor emission (e.g., 665 nm/615 nm for TR-FRET), applying corrections for signal
overlap and background fluorescence.

For BRET, NanoBRET, and NanoBiT analyses, software platforms like GraphPad
Prism 9 provide specialized tools for calculating BRET ratios and analyzing dose–response
relationships [31]. These tools incorporate algorithms for (1) background subtraction and
signal normalization; (2) the calculation of BRET ratios (acceptor emission/donor emission);
(3) statistical analysis of signal significance; and (4) curve fitting for binding and kinetic
studies. Promega’s Neo Instrument Software specifically designed for NanoBRET/NanoBiT
assays offers automated data processing workflows, including data acquisition and control,
kinetic analysis, quantitative analysis, data normalization and visualization, automation,
and integrations with HTS.

HTS data analysis requires specialized software or platforms to handle large
datasets [44,45]. Platforms such as Genedata Screener provides automated quality control,
dose–response analysis, and hit identification [46]. Dotmatics Studies offer a data manage-
ment platform that allows HTS data analysis along with assay data processing, visualization,
and statistical analysis (https://www.dotmatics.com/). It can handle large datasets and
integrates with other informatics systems, making it suitable for drug discovery workflows.
The KNIME Analytics Platform enables custom workflow creation for automated data
processing and analysis (https://www.knime.com/knime-analytics-platform) (accessed
on 23 November 2024). These platforms incorporate algorithms for (1) Z-factor calculation
for assay quality assessment; (2) hit identification and ranking; (3) dose–response curve
fitting; and (4) false positive/negative filtering.

Significantly, while there are many reviews on biosensors [14,16–18,27,47–50] and can-
cer drug discovery [7,51–56], there is no comprehensive review on the use of fluorescence-
and bioluminescence-based biosensors for cancer drug discovery, target validation, and
signal transduction studies. In this review, we will discuss these aspects in greater detail.

3. Application of Fluorescence- and Bioluminescence-Based Biosensors in Drug
Discovery Through HTS

While fluorescence- and bioluminescence-based biosensors have their respective ad-
vantages and limitations (Table 1), they are the most commonly used biosensors for HTS in
drug discovery.

https://www.dotmatics.com/
https://www.knime.com/knime-analytics-platform
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Table 1. Comparison of different types of biosensors.

Biosensors Advantages Limitations

FRET/TR-FRET

• High spatial resolution (<10 nm)
• Real-time measurements in living cells
• Multiple fluorophore pairs available
• Well-suited for high-throughput screening

• Potential photobleaching and autofluorescence
• Requires careful controls for spectral overlap
• Expression level dependence
• Limited tissue penetration

BRET/NanoBRET

• No external excitation needed, reducing
background

• Enhanced sensitivity with NanoLuc
• Better tissue penetration for in vivo imaging
• Good signal-to-noise ratio

• Requires substrate addition
• Limited multiplexing options
• Size of luciferase tag may affect protein

function

NanoBiT

• Small tag size (11 amino acid SmBiT)
• Extremely bright signal
• Good for protein stability/levels studies
• Works well in cell-free systems

• Irreversible complementation
• Requires close proximity
• Limited to binary interactions

3.1. HTS Using Fluorescence-Based Biosensors

Fluorescence-based biosensors have become integral to HTS in drug discovery, par-
ticularly in cancer research. Techniques such as FRET, TR-FRET, BRET, and NanoBRET
provide exceptional sensitivity for monitoring PPIs, kinase activities, and other cellular
processes critical for cancer progression. These methods accelerate the identification of
small-molecule inhibitors targeting key signaling pathways. Below, we examine various
fluorescence-based biosensors and their applications in HTS (Table 2), drawing insights
from recent studies.

3.1.1. FRET Biosensors

FRET-based assays serve as powerful tools in HTS, providing real-time insights into
molecular interactions and protein dynamics within live cells. By utilizing non-radiative
energy transfer between two fluorophores, these assays detect subtle changes in molecular
proximity (Figure 1), making them valuable across therapeutic areas, including cancer,
neurodegenerative diseases, and inflammation.

Several studies demonstrate the versatility of FRET biosensors in drug screening
(Table 2). He et al. (2019) employed FRET-based biosensors to measure ERK and AKT
kinase activities in triple-negative breast cancer (TNBC) cells, revealing differential ki-
nase dependencies and helping identify inhibitors to overcome resistance [57]. Similarly,
Senarisoy et al. (2020) used FRET technology to study interactions between hNTH1 and
YB1, crucial drivers of cancer progression, identifying molecules that sensitize tumors
to chemotherapy [58]. Recent advancements have further enhanced FRET’s utility. Liu
et al. (2021) integrated FRET with next-generation sequencing (NGS) to detect subtle
kinase activities, such as ZAP70, in immune cells, improving biosensor sensitivity for
HTS [59]. Hao et al. (2022) developed a peroxiredoxin-based FRET sensor for screening
cancer therapeutics targeting H2O2-mediated pathways [60].

3.1.2. TR-FRET Biosensors

Based on FRET assays, an advanced version called TR-FRET has been developed.
TR-FRET assays build on conventional FRET by reducing background noise through time-
gated measurements, improving signal stability and sensitivity (Figure 2). This method
has proven effective in HTS across a range of biological applications (Table 2). Zhang et al.
(2020) employed TR-FRET to discover inhibitors targeting the CBP bromodomain, disrupt-
ing oncogenic transcriptional activity and inhibiting MYC expression [61]. Loss of tumor
suppressor genes by mutations is a hallmark of cancers [62]. Loss of function by mutations
in SMAD4 contributes to the development of various types of cancers [63]. However,
directly targeting mutant SMAD4 for cancer therapy remains challenging due to the lack of
system screening for drugs reactivating mutant SMAD4 function. To address this challenge,
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Tang et al. developed a TR-FRET biosensor that captures the dynamic differential interac-
tion between the SMAD4 and SMAD4R361H mutant with its functional binding partner
SMAD3 [64]. Through HTS using this biosensor, they identified Ro-31-8220, a bisindolyl-
maleimide derivative, as a SMAD4R361H/SMAD3 interaction inducer. This compound
reactivates dormant SMAD4R361H-mediated transcriptional activity and restores TGF-β-
induced tumor suppression in SMAD4 mutant cancer cells [64]. Furthermore, TR-FRET has
also been widely used to monitor PPIs. For example, Xiong et al. (2018) used TR-FRET to
develop an ultra HTS (uHTS) platform for screening disruptors of NSD3-MYC interactions,
identifying inhibitors that could block NSD2-MYC-induced oncogenic activation [65]. In
addition, Yang et al. and Ouyang et al. developed a cell lysate-based TR-FRET assay to
monitor MKK2-MYC and SMAD4-SMAD2 PPI, respectively, and identified a quinoline
derivative SGI-1027 and gambogic/gambogenic acid as potent inhibitors for MKK2-MYC
and SMAD4-SMD3 PPIs [28,29]. Moreover, Du et al. (2024) adapted TR-FRET for screening
immune-related targets by designing a biosensor monitoring the SYK-FCER1G interaction.
Their miniaturized 1536-well uHTS assay identified hematoxylin as a disruptor of this
pathway, highlighting its potential for treating immune-related cancers [66].

TR-FRET applications extend to other signaling pathways. Singh et al. developed
a TR-FRET demethylation screen assay for HTS and identified geldanamycin and its
analog 17-DMAG as histone lysine demethylase (KDM) inhibitors, which inhibit tumor
growth in alveolar rhabdomyosarcoma [67]. Lo et al. (2018) developed a TNFR TR-FRET
biosensor and identified zafirlukast and triclabendazole as inhibitors of TNFR1-induced
IκBα degradation and NF-κB activation [32]. After HTS in living cells, Larson et al. (2023)
employed the method to identify modulators of the KRAS A146T mutant, a challenging
target in oncology. They developed a novel high throughput TR-FRET assay leveraging the
reduced nucleotide affinity of KRAS A146T. This assay detects small molecules that either
allosterically modulate GDP affinity or directly compete with bound nucleotides. Through
HTS of a diversity library containing over 83,000 compounds and subsequent validation,
they identified UNC10104889 as a novel compound that inhibits KRAS GTPase activity,
offering new therapeutic opportunities for colorectal and pancreatic cancers [68].

Table 2. Applications of fluorescence- and bioluminescence-based biosensors for HTS in cancer drug
discovery.

Biosensor
Type Target/Pathway Key Findings Reference

FRET

ERK and AKT kinases
- Identified several kinase inhibitors

differentially inhibit ERK and AKT He et al. (2019) [57]

hNTH1-YB1 PPI

- Identified SMs disrupting
hNTH1-YB1 PPI

- Identified 2 SMs sensitizing breast
cancer cells to chemotherapeutic
reagent cisplatin

Senarisoy et al. (2020) [58]

ZAP70
- Established FRET-Seq method
- Identified Sunitinib as repurposed

drug
Liu et al. (2021) [59]

H2O2-mediated pathways

- Established genetically encoded
FRET probe for peroxiredoxin-2
(Prx2) oxidation

- Identified an antifungal drug SMER3
as an oxidant-inducing drug

Hao et al. (2022) [60]
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Table 2. Cont.

Biosensor
Type Target/Pathway Key Findings Reference

TR-FRET

CBP bromodomain
- Discovered inhibitors targeting CBP

bromodomain
- Inhibited MYC expression

Zhang et al. (2020) [61]

SMAD4R361H-SMAD3

- Identified Ro-31-8220 as interaction
inducer

- Restored TGF-β-SMAD-induced
tumor suppression

Tang et al.
(2021) [64]

NSD3-MYC PPI - Identified TF-3 as an inhibitor of
NSD3-MYC PPI

Xiong et al.
(2018) [65]

MKK3-MYC PPI
- Identified a quinoline derivative

SGI-1027 as a potent inhibitor of
MKK3-MYC PPI

Yang et al.
(2021) [29]

SMAD4-SMAD3 PPI
- Identified gambogic acid and

gambogenic acid as compounds
disrupting SMAD4-SMAD3 PPI

Ouyang et al. (2024) [28]

SYK-FCER1G - Identified hematoxylin as an inhibitor
of SYK-FCER1G PPI

Du et al. (2024) [66]

KDM - Identified geldanamycin and its
analog 17-DMAG as KDM inhibitors.

Singh et al. (2020) [67]

KRAS GTPase - Identified UNC10104889 as an
inhibitor of KRAS A146T

Larson et al. (2023) [68]

BRET/
NanoBRET

RAS-RAF PPI

- Identified several compounds
including Ophiobolin and
NSC145366 as inhibitors of RAS-RAF
signaling

Durrant et al. (2021) [33]

PTK7-β-catinin
- Identified several compounds (01065,

03653, and 20279) as inhibitors
PTK7-β-catinin in colon cancer

Ganier et al. (2022) [69]

NanoBiT

RAF

- Establish a biosensor detecting RAF
dimerization

- Identified several RAF inhibitors (e.g.,
TAK532) promoting RAF
dimerization

Miyamoto et al. (2019) [70]

PP1 and PP2A
holoenzymes

- Identify SM 18R1K7 that inhibit PP1
by disrupting PP1-MYPT1 PPI

Claes and Bollen (2023) [71]

YAP/TAZ-TEAD
- Identified Celastrol SM disrupting

YAP/TAZ-TEAD PPI and inhibiting
cancer cell proliferation

Nouri et al. (2019) [24]

RAS-effector PPI - Establish HTS for examing PPI of
RAS and its effectors (e.g., PI3K)

Cooley et al. (2020) [72]

HiBiT

PD-L1

- Identified SMs regulating PD-L1
stability

- Advanced immunotherapy using
new SMs

Uchida et al. (2021) [73]

YAP/TAZ
- Identifed many novel SMs (e.g.,

Avanafi, β-catenin, Fluvastatin)
causing YAP/TAZ degradation

Wu et al. (2023) [40]
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While TR-FRET is a powerful tool, challenges persist in assay design, including
donor–acceptor pair optimization and fluorophore stability. However, innovations such as
machine learning for data analysis continue to improve assay reliability and scalability, as
reported by Shimizu et al. (2021) [74].

3.1.3. BRET and NanoBRET Biosensors

Besides FRET/TR-FRET-based biosensors, BRET and its advanced version NanoBRET
(Figure 3) have become pivotal in HTS (Table 2), offering unparalleled sensitivity for study-
ing PPIs in live cells [31]. NanoBRET has proven particularly valuable in monitoring the
RAS-RAF interaction, which is critical in cancer progression, identifying both inhibitors
and pathway-specific modulators [33]. Researchers have successfully applied this technol-
ogy to HTS for drugs targeting the PTK7-β-catenin interaction, a key driver in colorectal
cancer [69].

3.2. HTS Using Bioluminescent NanoBiT Biosensors

Besides fluorescence-based biosensors, bioluminescence-based biosensors are widely
used for HTS (Table 2). The most sensitive bioluminescent biosensor used for HTS is
NanoBiT. NanoBiT has emerged as a cutting-edge bioluminescent tool for drug discovery,
specifically designed for monitoring protein levels and PPIs in cells (Figure 5; Table 2). The
small size of its fragments and the high sensitivity of the NanoLuc system make NanoBiT
particularly suitable for dynamic real-time applications across diverse drug discovery
platforms (Table 1). Importantly, NanoBiT retains high specificity and sensitivity even in
the presence of widely used kinase inhibitors. This resilience proves critical for screening
chemical libraries, where assay interference from certain compounds might lead to false-
positive or false-negative results [75].

Researchers have successfully employed NanoBiT biosensors for screening drugs
disrupting PPIs (Table 2) [76]. For example, Miyamoto et al. (2019) developed NanoBiT-
based biosensors to detect RAF dimerization, a process contributing to resistance in RAF
kinase-targeted cancer therapies [70]. Their study demonstrated that split luciferase com-
plementation assays can be used for the HTS of drug candidates, identifying inhibitors
that specifically modulate RAF dimerization. Similarly, Claes and Bollen (2023) showed
NanoBiT’s utility in screening SMs that modulate phosphatase subunit interactions [71].
Their SLCA provided a robust platform for the HTS of compounds that interfere with PP1
phosphatase holoenzyme formation, which has therapeutic implications for diseases such
as cancer and neurodegenerative disorders. Recent studies suggest that YAP-TEAD PPI
is critical for tumorigenesis [77]. Therefore, targeting YAP-TEAD PPI is a very promising
therapeutic strategy for cancer. However, no drug targeting YAP-TEAD has been approved
by the FDA. To screen for new SMs disrupting YAP-TEAD PPI, we recently developed an
ultra-bright NanoLuc biosensor to quantify YAP/TAZ-TEAD PPIs both in living cells and
in vitro using biosensor fusion proteins purified from bacteria [24]. Through in vitro HTS
using this biosensor protein purified from bacteria, we identified and validated Celastrol
as a novel inhibitor of the YAP/TAZ-TEAD interaction. Further studies demonstrated that
Celastrol can inhibit cancer cell proliferation, transformation, and migration by disrupting
the YAP/TAZ-TEAD interaction [24]. Using a similar cell-free approach, Cooley et al.
(2020) developed a NanoBiT biosensor to detect weak protein interactions between RAS
and its effectors [72]. This method enabled the screening of poorly soluble protein domains,
demonstrating NanoBiT’s flexibility in challenging drug discovery applications. Such
versatility has made NanoBiT a valuable asset for identifying inhibitors that target PPIs
relevant to cancer and other diseases.

Targeted protein degradation (TPD) is a promising therapeutic strategy that involves
the selective destruction of disease-related proteins [78,79]. NanoBiT technology has
been adapted to a HiBiT system for use in TPD studies, providing a sensitive and high-
throughput platform for monitoring protein levels in real time. In this HiBiT system,
the 11-amino acid SmBiT sequence is modified to HiBiT with the same size but has a
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much higher affinity compared to LgBiT, another component of the NanoBiT system
(Figure 5). When HiBiT is fused to a protein of interest and expressed in cells, it can
spontaneously associate with the LgBiT fragment, forming a functional luciferase enzyme.
This reconstituted enzyme emits light in the presence of a substrate, allowing for the
quantification of HiBiT-tagged protein levels. Moreover, Lankford et al. (2024) developed a
protocol for HiBiT tagging endogenous proteins using CRISPR-Cas9, which enhances the
ability to study endogenous proteins in real time, which is essential for understanding the
effects of drug candidates on physiologically relevant protein targets [80].

The HiBiT system is particularly useful for HTS for SMs causing protein degradation
in living cells due to its high sensitivity and simplicity [81]. For example, Uchida et al.
(2021) used HiBiT-tagged PD-L1 proteins to screen chemical libraries for compounds
that modulate PD-L1 expression [73]. This approach identified several compounds that
upregulate or downregulate PD-L1, a key immune checkpoint molecule. Modulating PD-L1
expression is central to the development of immune checkpoint inhibitors, a class of drugs
that has revolutionized cancer immunotherapy. In addition, we recently utilized HiBiT
biosensors to monitor the stability of YAP/TAZ proteins in breast cancer cells [40]. Our
HTS identified many novel SMs causing the degradation of oncogenic YAP/TAZ proteins,
providing a valuable tool for developing YAP/TAZ-targeted TPD anti-cancer therapeutics.
Moreover, Lin et al. (2024) introduced lysine-deficient HiBiT and NanoLuc variants to
eliminate potential degradation artifacts caused by traditional tagging systems [82]. Their
study highlighted that these variants maintain the sensitivity and specificity of the original
NanoBiT system, making it an ideal tool for studying the effects of protein degraders
like PROTACs.

4. Application of Biosensors in Drug Validation

Biosensors have revolutionized drug discovery by enabling real-time sensitive monitor-
ing of biological processes, providing critical insights into the efficacy, target engagement,
and mechanism of action of drug candidates. In drug validation, various biosensors—
including FRET, NanoBRET, and NanoBiT—play pivotal roles in assessing SM drugs,
including PROTACs. This section discusses the roles of these biosensors in drug validation.

4.1. FRET and TR-FRET Biosensors

FRET biosensors are widely used to investigate PPIs and protein conformational dy-
namics upon ligand binding. These assays prove crucial in validating drug efficacy by
tracking how SMs modulate these interactions. For example, Sahin et al. (2021) applied
FRET biosensors to validate novel inhibitors disrupting anti-apoptotic BCL-2 complexes
targeting the apoptotic pathway in cancer [83]. Similarly, Borysko et al. (2018) utilized
FRET to visualize the drug-induced dissociation of BRD4 from its interaction partners,
contributing to the identification of novel BRD4 inhibitors [84]. FRET biosensors demon-
strate particular effectiveness in live-cell assays, facilitating the study of drug effects in
physiological conditions. Farmer et al. (2022) used FRET-based peptide biosensors to
monitor G protein-coupled receptors (GPCR) activation and quantify the influence of in-
tracellular allosteric modulators, expanding FRET applications in GPCR-targeting drug
validation [85].

TR-FRET builds on FRET principles by using time-resolved detection to minimize
background fluorescence (Figure 2). This enhanced sensitivity makes TR-FRET particularly
valuable in studying binding affinities and protein conformational changes in drug valida-
tion. Lin et al. (2021) developed a TR-FRET assay to quantify ternary complex formation
between BRD4, PROTAC molecules, and CRBN ligase, providing insights into the PROTAC
mechanism of action [86]. In addition, Ali Abed et al. (2023) applied TR-FRET assays to
evaluate novel inhibitors disrupting the Keap1-Nrf2 interaction, a key target for oxidative
stress modulation [87]. Moreover, Payne et al. (2023) further demonstrated the versatility of
TR-FRET by using it to quantify endogenous BRD4 protein levels in cancer cells, enabling
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rapid validation of small-molecule BRD4 degraders [88]. TR-FRET’s adaptability makes it
a valuable tool for validating a wide range of therapeutic candidates beyond PROTACs.

4.2. BRET and NanoBRET Biosensors

BRET and NanoBRET biosensors provide a non-invasive highly sensitive platform
for studying molecular interactions in living cells (Figure 3). These techniques leverage
energy transfer from luciferase to a fluorophore, offering real-time quantitative insights
into drug–target engagement. NanoBRET, with its improved luminescence and reduced
background noise, has become particularly valuable in drug validation.

4.2.1. Ligand–Receptor Binding Inhibitor Validation

NanoBRET assays have been widely applied to study ligand–receptor interactions.
Kozielewicz et al. (2022) used NanoBRET to evaluate the binding affinities of SMs targeting
the SMO receptor in Hedgehog signaling, providing critical insights into competition with
known agonists [89]. Similarly, Lay et al. (2022) developed a NanoBRET assay to study
the intracellular binding kinetics of BET inhibitors, helping optimize drug efficacy by
measuring dissociation rates [90].

4.2.2. Kinase Inhibitor Validation

NanoBRET has increasingly proven valuable for studying kinase inhibitors. The
polo-like kinases (PLKs) are serine/threonine (Ser/Thr) protein kinases that play key roles
in the cell cycle and mitosis and are often dysregulated in cancer [91]. Although many
PLK inhibitors have been developed [91], there is no system to accurately evaluate the
cellular potency of these inhibitors. Yang et al. (2023) developed cell-permeable NanoBRET
probes to monitor PLK1 engagement [92]. They have shown that live cell NanoBRET target
engagement assays can be used to measure PLK1 inhibitor binding kinetics, providing
critical insights into kinase inhibitor cellular potency in real time and useful information on
improved validation of PLK1-targeting therapeutics. Moreover, Kong et al. (2024) used the
NanoBRET biosensor to validate inhibitors targeting MERTK and AXL kinases, which are
essential in overcoming chemoresistance in lung cancer cells [93].

4.2.3. PROTAC and Molecular Glue Validation

NanoBRET has become instrumental in PROTAC validation, offering valuable in-
sights into their intracellular target engagement, bioavailability, and mechanisms of action.
By measuring real-time interactions between PROTACs, target proteins, and E3 ligases,
NanoBRET enables quantitative analysis of these interactions in living cells. This approach
provides detailed data on ternary complex formation, intracellular accumulation, and target
degradation, which is essential for optimizing PROTAC design. One of the primary appli-
cations of NanoBRET in PROTAC validation involves assessing target engagement within
live cells. The technology enables measurement of the binding affinity between PROTACs
and their targets by monitoring the energy transfer between NanoLuc-tagged proteins
and fluorescent tracers. For instance, Vasta et al. (2021) presented a high-throughput
NanoBRET-based assay to evaluate the intracellular permeability and target engagement
of PROTACs targeting CRBN and VHL E3 ligases [94]. This approach helps prioritize
PROTAC candidates based on their relative intracellular availability and engagement with
E3 ligases, making NanoBRET a critical tool for drug discovery.

Beyond target engagement, NanoBRET plays a significant role in understanding the
ubiquitination process, a key step in PROTAC-induced protein degradation. Bai et al. (2022)
demonstrated how NanoBRET assays can model and predict target protein ubiquitina-
tion efficiency [95]. These insights prove crucial for evaluating whether ternary complex
formation leads to productive ubiquitination and subsequent proteasomal degradation.
The ability of NanoBRET to measure such interactions in a live-cell context provides a
comprehensive view of how PROTACs induce degradation, aiding in the optimization of
their design.
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NanoBRET also facilitates the exploration of new E3 ligase ligands in PROTAC de-
sign. Pei et al. (2023) used NanoBRET to confirm that a Piperlongumine-based PROTAC
recruits KEAP1 as its E3 ligase to degrade CDK9 [96]. This approach expands the toolkit for
PROTAC design by identifying novel E3 ligases for targeted degradation, thus broadening
applications across different cellular contexts and protein targets. Furthermore, NanoBRET
helps assess the bioavailability and intracellular accumulation of PROTACs, which are
critical parameters influencing drug efficacy. Yu et al. (2023) developed a NanoBRET-based
platform to measure the intracellular accumulation of PROTACs, providing a quantita-
tive method to evaluate their cellular permeability [97]. This information is essential for
improving the pharmacokinetics of PROTACs and ensuring that they reach sufficient
intracellular concentrations to induce target degradation effectively. Zerfas et al. (2023)
further advanced the application of NanoBRET in drug validation by developing a CRBN-
specific NanoBRET assay [98]. This assay measures the occupancy of the CRBN binding
site, allowing researchers to study the relationship between CRBN engagement and target
degradation. Such data are vital for optimizing PROTACs that rely on CRBN-mediated
degradation pathways, providing a detailed understanding of the interaction dynamics
that drive their efficacy.

4.2.4. Covalent Inhibitor Validation

Covalent inhibitors, designed to form irreversible bonds with target proteins, benefit
from NanoBRET’s ability to monitor real-time interactions and verify the specificity of
drug binding. In their 2022 study, Borsari et al. used NanoBRET to confirm covalent
binding of phosphoinositide 3-kinase α (PI3Kα) inhibitors to a distal cysteine residue,
demonstrating how this method enables precise assessment of target engagement and off-
target interactions in live cells [99]. By combining NanoBRET with X-ray crystallography
and mass spectrometry, the authors validated the covalent interaction of acrylamide-based
inhibitors with PI3Kα, providing a comprehensive view of drug action. In addition, Weeks
et al. (2022) also demonstrated the utility of NanoBRET biosensors in live-cell validation
of Ras covalent inhibitors. Their study leveraged a Ras activity biosensor to track the
inhibition kinetics of KRasG12C inhibitors in living cells [100]. This approach enabled
real-time observation of Ras activity modulation, thus facilitating the validation of covalent
inhibitors and their dynamic effects within a cellular environment. Together, these studies
underscore the effectiveness of using NanoBRET in validating covalent drug mechanisms
and refining therapeutic strategies.

4.2.5. Validation of Candidate Inhibitors from DEL Screening

DEL screening represents a high-throughput technology for identifying SMs that bind
to target proteins or other biological macromolecules. The method creates large libraries
of SMs, each attached to a unique DNA barcode identifier. This DNA tag encodes the
identity of the SM and allows for the rapid screening of millions to billions of compounds
in a single experiment [101]. NanoBRET biosensors are increasingly used to validate
SMs identified from DEL screening. Teske et al. (2023) developed cell-permeable BRET
probes from DEL hits targeting aurora kinase A, allowing real-time assessment of target
engagement [34]. In addition, Madasu et al. (2024) extended this approach to EPH receptor
kinase inhibitors, using NanoBRET to evaluate cellular selectivity and potency, guiding
further optimization [102]. These studies suggest that NanoBRET can be used for the
validation of hits from DEL screening.

4.3. NanoBiT Biosensors

NanoBiT biosensors have become an essential tool in drug validation, particularly for
monitoring real-time PPI in cellular processes. For instance, Hinz et al. (2021) developed
a NanoBiT assay to monitor the interaction between human Geranylgeranyltransferase
Type I (GGTase I) and its substrate Rap1B, providing real-time insights into interaction
dynamics [103]. This sensitive platform is instrumental for screening and the validation of
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GGTase I inhibitors, potential therapeutic agents in cancer treatment. NanoBiT effectively
captures subtle changes in protein interactions caused by drug candidates, facilitating the
assessment of drug efficacy in modulating these interactions. Similarly, Reyes-Alcaraz
et al. (2022) designed a NanoBiT-based assay to quantify membrane protein internalization
and recycling, a process critical to both physiological and pathological mechanisms. This
assay is particularly valuable for validating drug candidates targeting membrane proteins,
especially in the context of drug–receptor interactions [21].

Moreover, NanoBiT has been applied in diverse areas such as receptor oligomerization,
as demonstrated by Morató et al. (2023), where it was used to study the heterodimerization
of S1R with the binding immunoglobulin protein (BiP) [104]. This application highlights
NanoBiT’s utility in validating compounds that affect PPIs, proving its relevance in drug
discovery for cancer and neurodegenerative diseases. The versatility of NanoBiT extends to
the therapeutic drug monitoring (TDM) of monoclonal antibodies, as shown by Campbell
et al. (2023) [105], enabling real-time monitoring of drug levels to improve treatment
outcomes. Additionally, Claes and Bollen (2023) employed NanoBiT for the validation
of phosphatase subunit modulators [71], while Rohrer et al. (2023) utilized NanoBiT to
investigate RAF kinase dimerization, further showcasing its value in drug validation for
key signaling pathways like RAF/MEK/ERK [106].

Lastly, we developed a NanoBiT biosensor for GSDMD, a critical effector in pyroptosis
linked to cancer and inflammation-related diseases [107]. This biosensor allowed for the
quantification of GSDMD’s intramolecular interaction and levels both in vitro and in vivo,
exemplifying NanoBiT’s potential in cancer research and therapeutic validation.

5. Biosensors in Studying Cancer Cell Signaling Pathways

Advances in biosensor technologies significantly enhanced our understanding of
cancer cell signaling pathways by enabling the study of PPIs, ligand binding, enzyme
activities, protein levels, and conformational changes. These biosensors provide insights
both in vitro and in real time within living cells or in vivo cancer xenograft mouse models.
This section discusses various biosensor technologies, such as NanoBRET, NanoBiT, and
FRET, and their applications in uncovering key aspects of cancer signaling pathways.

5.1. FRET-Based Biosensors

FRET-based biosensors provide valuable insights into kinase activities and protein
interactions within specific cellular compartments. These biosensors leverage energy
transfer between fluorophores to track molecular interactions with high temporal resolution.
Hsu et al. (2014) applied a split-luciferase complementation assay to identify multiple
kinases involved in the assembly of ion channel complexes [108]. Ouyang et al. (2024) [28]
further demonstrated FRET biosensors’ capabilities by developing a tool to monitor C-
terminal Src kinase (CSK) activity in live cells, tracking the kinase’s activity within distinct
membrane regions. This approach highlights how FRET biosensors can provide insights
into the spatial dynamics of signaling molecules.

5.2. NanoBRET Biosensors

NanoBRET has emerged as a powerful tool for studying ligand binding and protein
interactions with high spatiotemporal resolution. This technology enables researchers to
monitor drug–target engagement both in live cells and in vitro. Alcobia et al. (2018) used
NanoBRET to visualize ligand binding to β2-adrenoceptors in real time, demonstrating
the method’s effectiveness in providing dynamic insights into receptor–ligand interac-
tions [109]. Stoddart et al. (2015) further improved ligand binding assays using NanoBRET
to monitor GPCR activity in real time, surpassing traditional radioligand binding tech-
niques in sensitivity [110]. Additionally, NanoBRET has provided insights into neo-protein
interactions in cancers, revealing vulnerabilities associated with oncogenic mutations, such
as BRAF V600E [111].
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Dosquet et al. (2021) showcased the NanoBRET’s versatility by developing biosensors
to monitor receptor tyrosine kinase (RTK) activity, focusing on EGFR and AXL [112].
Building on this, Boon et al. (2023) developed REGA-SIGN, a suite of NanoBRET-based
biosensors capable of tracking G protein activation across multiple G protein families,
illustrating the broad applicability of NanoBRET in signaling pathway studies [113].

5.3. Firefly Luciferase Biosensor and NanoBiT Biosensors

Firefly luciferase biosensors and NanoBiT biosensors are widely employed to study
protein interactions and pathway regulation due to their ability to monitor real-time in-
teractions with high sensitivity. LATS kinase is a tumor suppressor and core component
of the Hippo pathway that plays critical roles in various cellular functions such as cell
cycle regulation and apoptosis [38,114,115]. However, the upstream signaling pathway
regulating LATS function is largely unknown and there is no system to monitor LATS
kinase activity in living cells in real time. To address these issues, we recently developed a
bioluminescence-based biosensor using firefly split luciferase assays to monitor the activity
of LATS kinase, a core component of the Hippo signaling pathway. This LATS biosen-
sor (LATS-BS) enabled non-invasive real-time measurement of LATS activity in vitro and
in vivo with high sensitivity and quantification capabilities [116]. Using the LATS-BS and a
library of kinase inhibitors, we conducted a screen to identify kinases modulating LATS
activity. This screen revealed VEGFR as an upstream regulator of the Hippo signaling
pathway. We found that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which
subsequently inhibits LATS and activates the Hippo effectors YAP (Yes-associated pro-
tein) and TAZ (transcriptional coactivator with PDZ-binding motif). Further experiments
showed that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and
tumor vasculogenic mimicry. The inhibition of YAP/TAZ reduced VEGF-stimulated angio-
genesis in multiple in vitro and in vivo models [38]. We have also developed more sensitive
NanoBiT biosensors for monitoring LATS activity [116]. Gain-of-functional and loss-of-
functional screenings using this LATS biosensor identified many receptor tyrosine kinases
(e.g., ALK, FGFR, AXL, MERTK, and RET) as novel regulators of the Hippo signaling path-
way in tumorigenesis, metastasis, and immune evasion [116,117]. By using this biosensor
for a gain-of-functional screening, we have also identified several tyrosine phosphatases
including PTPN12 as a novel regulator of LATS kinase and the Hippo pathway [118]. Our
studies strongly suggest that biosensors can be a very powerful tool to monitor the activity
of a kinase for screening new therapeutic targets for cancer. Similarly, Poti et al. (2023)
further expanded NanoBiT applications with PhALC (Phosphorylation-Assisted Luciferase
Complementation) [119], enabling real-time monitoring of kinase activity and PPIs. In
addition, Kupcho et al. (2019) developed a real-time bioluminescent annexin V assay using
NanoBiT to detect apoptosis [120], while Inoue et al. (2019) applied this technology to
comprehensively profile GPCR-G protein coupling selectivity [121]. Moreover, Zeghal et al.
(2023) and Pipchuk et al. (2024) demonstrated the utility of NanoBiT biosensors in studying
GPCR signaling and Merlin tumor suppressor protein conformation, respectively [22,122].

6. Challenges and Future Perspectives

The application of biosensors in drug discovery, particularly in cancer research,
presents several significant challenges. Despite their precision and ability to monitor
real-time molecular interactions, the integration of biosensors into HTS for drug com-
pounds faces technical and operational hurdles. A primary challenge lies in designing
biosensors that accurately mimic the physiological conditions of cancer cells. This includes
ensuring biosensors can function effectively in complex environments, such as 3D tumor
models, where traditional 2D cultures fail to replicate the intricate interactions of the tu-
mor microenvironment. The scalability of biosensors for HTS presents another significant
challenge. The sensitivity of biosensors often requires sophisticated instrumentation and
precise calibration, limiting their accessibility for large-scale drug screening. Additionally,
biosensors sometimes exhibit limited stability over long periods, complicating their use in
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extended screening processes. Achieving high specificity while avoiding cross-reactivity
between biomolecules remains challenging, as unintended interactions can lead to false
positives, reducing result reliability. Moreover, validating hits from HTS using biosensors
can also be challenging, requiring multiple approaches to exclude off-target hits obtained
due to quenching of bioluminescent or fluorescent signals.

Looking ahead, the future of biosensors in drug discovery appears promising. Ad-
vances in nanomaterials, such as carbon nanotubes and quantum dots, offer the potential to
enhance biosensor sensitivity and specificity. These materials can improve signal transduc-
tion and lower detection limits, making biosensors more efficient for early disease detection
and personalized medicine. Additionally, integrating AI with biosensor technologies could
help analyze large datasets generated by HTS, facilitating the identification of novel drug
candidates and optimizing biosensor design.

7. Conclusions

Biosensors such as FRET, TR-FRET, NanoBRET, and NanoBiT have significantly ad-
vanced our understanding of cancer cell signaling pathways. These technologies enable
real-time, sensitive, and specific detection of protein levels, PPI, ligand binding, and enzyme
activities in live cells. By uncovering novel regulatory mechanisms, identifying new drug
targets, and providing valuable tools for drug discovery and validation, biosensors play an
essential role in modern cancer research and drug discovery. As these technologies continue
to evolve, they promise to yield deeper insights into the complex signaling networks that
underlie cancer biology, facilitating the development of innovative therapeutic strategies.
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Abbreviations

2D Two-dimensional
AI Artificial intelligence
BiP Binding immunoglobulin protein
BRET Bioluminescence resonance energy transfer
CFP Cyan fluorescent protein
CLuc C-terminal luciferase
CRISPR Clustered regularly interspaced short palindromic repeats
CSK C-terminal Src kinase
CTC Circulating tumor cells
ctDNA Circulating tumor DNA
DEL DNA encoded library
EGFR Epithelial growth factor receptor
Eu Europium
FDA Federal drug administration
FP Fluorescence polarization
FRET Fluorescent resonance energy transfer
GFP Green fluorescent protein
GGTase I Geranylgeranyltransferase Type I
GPCR G protein-coupled receptors
HTS High throughput screening
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ITC Isothermal titration calorimetry
KDM Histone lysine demethylase
LAST-BS LATS biosensor
LgBiT Large BiT
NanoBiT NanoLuc binary technology
NanoBRET NanoLuc BRET
NGS Next generation sequencing
NLuc N-terminal luciferase
NSCLC None-small cell lung cancer
PhALC Phosphorylation-assisted luciferase complementation
PI3K α Phosphoinositide 3-kinase α

PLK Polo-like kinases
PPI Protein–protein interaction
PROTAC Proteolysis targeting chimera
Prx2 Peroxiredoxin-2
RLuc Renilla luciferase
Ser Serine
SLCA Split-luciferase complementation assays
SM Small molecule
SmBiT Small BiT
SPR Surface plasmon resonance
TAZ Transcriptional coactivator with PDZ-binding motif
Thr Threonine
TNBC Triple negative breast cancer
TPD Targeted protein degradation
TR-FRET Time-lapse FRET
uHTS Ultra HTS
YAP Yes-associated protein
YFP Yellow fluorescent protein
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