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Abstract: Background/Objectives: AML is an aggressive malignant disease characterized by aberrant
proliferation and accumulation of immature blast cells in the patient’s bone marrow. Chemotherapeu-
tic treatment can effectively induce remission and re-establish functional hematopoiesis. However,
many patients experience chemoresistance-associated relapse and disease progression with a poor
prognosis. The identification of molecular determinants of chemoresistance that could serve as
potential targets for the therapeutic restoration of chemosensitivity has proven to be challenging.
Methods: To address this, we have analyzed longitudinal changes in the expression of microRNAs
during disease progression in a small set of four AML patients, combined with gene ontology (GO)
pathway analysis and evaluation of gene expression data in patient databases. Results: MicroRNA
profiling of bone marrow samples at diagnosis and after relapse revealed significant differential
expression of a large number of microRNAs between the two time points. Subsequent GO pathway
analysis identified 11 signal transduction pathways likely to be affected by the differential miRNA sig-
natures. Exemplary validation of the FoxO signaling pathway by gene expression analysis confirmed
significant upregulation of FOXO1 and the target genes GADD45 and SOD2. Conclusions: Here,
we show how a microRNA-based pathway prediction strategy can be used to identify differentially
regulated signaling pathways that represent potential targets for therapeutic intervention.

Keywords: microRNAs; chemoresistance; acute myeloid leukemia

1. Introduction

AML is an aggressive hematopoietic neoplasia characterized by aberrant proliferation
and accumulation of immature blast cells in the bone marrow. While the development of
novel therapeutic approaches in recent years has improved remission rates, relapse remains
a major problem, affecting around half of all patients who achieve remission [1]. It is largely
because of this chemoresistance-associated relapse that the 5-year overall survival rate of
AML patients is still below 30%. It is, therefore, of the utmost importance to characterize the
mechanisms by which AML cells acquire resistance to therapy and to identify druggable
targets through which relapse can be either avoided or reverted. One obvious approach to
this problem is to search for genes that are expressed differentially between the chemosen-
sitive and chemoresistant stages in a horizontal analysis of successive samples taken from
the same patient. However, while mRNA-NGS analyses offer a comprehensive profile of
mRNA levels, they take no account of post-transcriptional regulation, which makes a major
contribution to determining the level of individual gene products and the biology of both
normal and neoplastic hematopoiesis [2]. Since proteomics presents a number of challenges
in terms of both accurate quantitation and required sample size, an alternative approach is
to focus on post-transcriptional regulation by profiling microRNAs.
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MicroRNAs are small, highly conserved, noncoding transcripts of an average of
22 nucleotides in length that regulate gene expression on a post-transcriptional level. They
bind specifically to complementary sequences in the 3′ untranslated region (UTR) of their
target mRNAs and reduce their translation [3]. By regulating transcription factor levels
and modulating feedback or feed-forward loops, microRNAs can have decisive effects
on a cell’s entire transcriptional profile [4]. Accordingly, the influences of microRNAs
on cellular processes should not be understood as single microRNA-target relations but
rather as large regulatory networks controlled by a variety of microRNAs, depending on
subcellular location and abundance. MicroRNAs influence physiological hematopoiesis
and differentiation processes by a variety of mechanisms [5,6] and can also play a key
role in hematopoietic malignancies, where they can serve either as proto-oncogenes or as
tumor suppressors depending on the cellular context [7–11]. Indeed, the expression levels
of several microRNAs have been found to correlate with the prognosis of AML patients,
identifying them as potential biomarkers for acute myeloid leukemia [12–14].

The relevance of microRNAs to the specific case of chemoresistance in AML has
also been the subject of numerous studies [15–18]. Importantly, as the complementarity
of microRNAs to the target mRNA is limited to a few nucleotides, one microRNA can
regulate a large number of targets, while a single mRNA can be regulated by multiple
different microRNAs. Furthermore, many microRNAs have been shown to be transcribed
in clusters. These characteristics suggest that microRNAs act to orchestrate networks of
post-transcriptional regulation. A comparison of microRNA expression profiles between
disease states should, therefore, have the potential to highlight coordinated changes in the
pathways involved. Indeed, the ways in which microRNA networks influence pathway
activity have been a focus of attention over the last decade [19–22]. Studies of this kind have
been facilitated enormously by the rapidly increasing power of computational methods
and the accumulation of relevant data in inaccessible databases. The application of modern
bioinformatics strategies facilitates the analysis of complex signaling networks and helps
reveal how microRNAs mediate crosstalk between signaling pathways. The use of these
analytic tools for microRNA-pathway affiliations promises to make microRNA profiles
powerful prognostic indicators in the therapy of AML and to aid in the development of
new personalized treatment approaches.

Here, we apply microRNA profiling and subsequent pathway analysis to samples from
a small set of four selected AML patients who were affected by relapse and chemoresistance.
The longitudinal analysis of microRNA signatures in different disease stages combined with
analysis of microRNA pathway associations predicted a number of pathways to undergo
significant changes during relapse and the acquisition of chemoresistance.

2. Materials and Methods
2.1. Patients

Samples taken after informed consent from 4 AML patients at diagnosis and relapse
were obtained from the University of Leipzig Medical Centre and analyzed in a longitudinal
evaluation. Patients included in the analysis did not show primary induction failure but
relapsed within a comparatively short time period after remission. None had undergone
allogeneic stem cell transplantation between the two sample collection time points. All
relevant clinical parameters of the patients are summarized in Table 1.

Table 1. Patient characteristics.

Patient
Nr. Sex Age at

Diagnosis Karyotype Cytogenetic
Risk

Days Until
Relapse Mutation Profile

1 w 59 46 XX favorable 208

NPM1mut Typ A, CEBPAwt,
FLT3-ITD low ratio, FLT3 TKDwt,

IDH1 R132C, IDH2wt,
DNMT3A R882wt
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Table 1. Cont.

Patient
Nr. Sex Age at

Diagnosis Karyotype Cytogenetic
Risk

Days Until
Relapse Mutation Profile

2 w 57 46 XX favorable 266
biall CEBPAmut, NPM1wt,

FLT3-ITD low ratio, FLT3-TKD,
IDH1 and 2 wt

3 m 38
46, XY,

del(9)(q21q32)[2]&46,
XY [29]

favorable 113 biall CEBPAmut, NPM1wt,
FLT3-ITD wt, FLT3-TKD wt

4 w 35 46, XX intermediate 175
CEBPAwt, NPM1wt, FLT3-ITD wt,

FLT3-TKD wt, IDH1 and 2 wt,
DNMT3A wt

2.2. MicroRNA Expression Profiling

For microRNA profiling, RNA was extracted from bone marrow patient samples using
the NucleoSpin miRNA extraction kit (Macherey-Nagel, Düren, Germany) according to the
manufacturer’s instructions. To enable statistical evaluation of microRNA expression, RNA
extracted from each patient sample was subdivided into 2 aliquots that were subjected
separately to NGS, generating 2 technical replicates per sample. For quality monitoring, the
integrity of the isolated RNA was confirmed using a fragment analyzer before progressing
NGS. RNA integrity control and sequencing were performed by the sequencing core facility
of the IZKF Leipzig (Faculty of Medicine, University Leipzig). In total, 10–50 ng of total
RNA (RQN 7–10) was used in the small RNA protocol with the NEXTflex Small RNA-
seq Kit v3 (Bioo Scientific, Austin, TX, USA). A pool of 12 libraries was used for cluster
generation at a concentration of 10 nM using an Illumina cBot (Illumina, San Diego, CA,
USA). Sequencing of 50 bp was performed with an Illumina HiScan-SQ sequencer using
version 3 chemistry and flowcell according to the manufacturer’s instructions.

2.3. Bioinformatics

Mapping was performed using hisat2 version 2.2.1, mapping read lengths from 15 to 27,
with the --passthrough and --wrapper basic-0 options applied against a hg38 assembly with
masked tRNAs and microRNAs, where microRNAs and tRNAs were added individually
as artificial chromosomes. MicroRNAs were counted using featureCounts version 2.0.0
with the -M option, counting only mature microRNAs using a custom-made gene transfer
format (gtf) file containing the location of the mature microRNAs on the respective artificial
chromosomes. The single patient data were analyzed using DESeq2. MicroRNAs with an
adjusted p-value below 0.05 and an absolute log2 fold change greater than 1 were analyzed
further. Non-weak targets of these microRNAs from miRTarBase 8.0, as downloaded in July
2021, were filtered for genes that were targeted both by down- and upregulated microRNAs.
The resulting genes were analyzed using string.db [23] for KEGG (Kyoto Encyclopedia of
Genes and Genomes) and GO (Gene ontology) term enrichment. The significance level for
FDR was defined below 0.05. The workflow for sampling, bioinformatics, and validation is
depicted in Figure 1.

2.4. Reverse Transcription and qRT-PCR

From each RNA sample, 1000 ng were diluted in 11.5 µL RNAse-free water and reverse
transcribed into cDNA by means of RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher SCIENTIFIC, Waltham, MA, USA), according to the manufacturer’s instructions,
using random hexamer primers. Reverse transcription was performed at 42 ◦C for 60 min,
followed by a termination step at 70 ◦C for 5 min. cDNA was frozen at −20 ◦C or directly
used for quantification of selected transcripts by means of QuantiTect SYBR Green PCR
Kit (Qiagen, Venlo, The Netherlands). U6 snRNA, a key component of the spliceosome,
was used as a “housekeeping gene” for all SYBR Green-based RT-qPCR analyses. Relative
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expression levels and log2 fold changes in target genes in 2 samples were calculated
according to the delta-delta-CT method.
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Figure 1. Sampling and workflow for bioinformatic NGS data evaluation and pathway analysis.
Paired samples from individual patients taken at diagnosis and after relapse were compared regarding
their microRNA expression profiles, which then served as a basis for predicting affected pathways.

2.5. Statistical Analyses

Statistical significance between expression levels measured in samples taken at di-
agnosis and after relapse was determined by Student’s t-test, where data were normally
distributed. p-values < 0.05 and <0.01 were considered significant and highly significant,
respectively. For TCGA database analysis, patients were subdivided by risk groups, or p53
mutation status and mRNA expression data were tested for normalcy and equal variance
using Shapiro–Wilk and Levene tests. Finally, significant differences within the groups
were analyzed using the Kruskal–Wallis and Dunn test. For overall survival plots, patients
were subdivided into high and low expression by their median. Kaplan–Meier plots and
statistics were generated using the survminer package in R studio software [24].

3. Results
3.1. Relapse and Treatment Failure Are Associated with Fundamental Changes in the microRNA
Signature of AML Patients

For each patient, individual microRNA expression profiles were determined based on
the bioinformatic evaluation of read counts in the two technical replicates for each sample.
MicroRNA profiling indicated significant differential expression of varying numbers of
microRNAs prior to versus post-relapse in each of the four patients (Figure 2).
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Figure 2. Relapse is associated with significant changes in individual microRNA signatures. Mi-
croRNA expression profiles generated by next generation sequencing for microRNAs of individual
AML Patients at diagnosis and relapse. Only significantly differential expressed microRNAs are
shown. Data from 2 technical replicates for each patient are presented as expression levels relative
to the mean of all four levels measured for each microRNA. Red represents increased and blue
decreased expression.

As expected, the composition and number of differentially expressed microRNAs
differed widely between the four cases assessed here. Indeed, given a sufficiently large
cohort of matched samples, a personalized approach to individual microRNA profiling for
single patients is likely to reveal complex associations between microRNA expression and
a range of variable clinical patient characteristics. More relevant for our small cohort was
the observation that a subset of microRNAs was consistently differentially expressed in
multiple patients, suggestive of commonalities in up- or downregulation in relapse. This
was the case for the microRNAs miR-223-3p, miR-92a-3p, miR-143-3p, miR-146a-5p, and
miR155-5p.
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To extend the individual patient analysis, statistical analysis was performed using
data from all four patients to determine significantly differentially expressed microRNAs
in relapse compared to diagnosis. Figure 3 shows a heat map that includes all microRNAs
undergoing significant changes in expression level in the overall analysis. The large
number of microRNAs undergoing significant shifts in expression confirms that relapse
and treatment failure are indeed associated with fundamental changes in the microRNA
signature of AML patients.
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Figure 3. MicroRNA profiling reveals expression changes in a large variety of microRNAs in patients
after AML relapse. Overall analysis of significantly differential expressed microRNAs in AML
patients at diagnosis and relapse. Data summarize four patients representing biological replicates
while each colored box marks the relative expression of the indicated miRNA in comparison to the
corresponding control. Red represents increased and blue decreased expression.
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3.2. MicroRNA Profiling Indicates FoxO-Signaling to Be Associated with Relapse
and Chemoresistance

Coordinated changes in the level of multiple microRNAs that target the same pathway
imply changes in that pathway to be potentially associated with chemoresistance. To
determine if the observed changes in microRNA expression levels correlate to specific
pathway regulations, GO term analyses were carried out based on microRNA target
associations. This examination predicted 82 KEGG pathways to be affected significantly
by changes in microRNA expression. Most of the pathways so identified are classified in
the KEGG area of “human diseases” (Figure 4). An overview of all predicted pathways is
provided in Supplementary Table S1.
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Figure 4. Pathway analysis predicts FoxO signaling to be affected by differential microRNA expres-
sion in chemoresistant AML. MicroRNA profiling based gene ontology pathway analysis in total
predicted 83 KEGG signaling pathways to undergo significant activity alterations between the time
of diagnosis and that of relapse. Within the KEGG category of “signal transduction”, 11 pathways
were indicated.

The identification of pathways with altered activity in relapse can serve to identify
potential molecular targets for new therapy approaches to chemoresistant AML. As the
large number of over 80 pathways was too comprehensive for detailed evaluation, further
analysis was focused on the KEGG class “signal transduction”, as these tend to be the most
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amenable targets for activity modulation by chemical compounds. Within this category,
11 pathways were predicted to be impacted by microRNAs differentially expressed between
diagnosis and relapse. Figure 4 shows these ranked by FDR. Strikingly, the TGF-β pathway
that we have previously identified and validated by applying a similar approach to a cell
line model of drug resistance was also indicated to be associated with drug resistance and
relapse in the microRNA analysis of primary AML [25]. This suggests that at least some
key associations between microRNA signature and chemoresistance apply similarly to both
cell line models and to primary patient AML cells.

The signaling cascade predicted to have the lowest FDR was the Hippo signaling
pathway. This evolutionarily conserved pathway regulates tissue growth and organ size
in a wide range of species, including humans. Hippo signaling has been implicated in
many types of human cancer [26–30], including leukemia [31–33], although the relevance to
chemoresistance remains unclear. Furthermore, its role in solid tumors has been more evident.

The mTOR (mammalian Target of rapamycin) pathway, with the second lowest FDR,
is a central regulator of survival, proliferation, and immune cell differentiation. MTOR
signaling plays an important role in apoptosis, autophagy, and tumor metabolism and,
as such, is highly interconnected to other pathways identified here, such as PI3K-Akt,
MAPK, or AMPK signaling [34]. As changes in PI3K-Akt-mTor signaling are already
known to be associated with AML and have recently been linked to chemoresistance,
inhibition of PI3K-Akt-mTOR is already considered to be a potential therapeutic strategy
in AML [35–38].

The FoxO signaling pathway, which was identified here with a predicted FDR very
similar to that of mTOR, has also been associated with chemoresistance in a variety of tumor
entities. However, the role of FoxO in AML relapse and chemosensitivity has not been
elucidated in great detail. As FoxO-signaling was also indicated by microRNA profiling to
play a role in chemosensitivity in a cell culture model for chemoresistance it was chosen
here for further experimental evaluation. This pathway regulates the activity of growth
factor and stress-dependent FoxO transcription factors involved in the clearance of reactive
oxygen species, DNA damage repair, and cell cycle control. The transcription factors FoxO1
and FoxO3, in particular, have been linked to the emergence and progression of a variety of
cancer entities and suggested as therapeutic targets [39,40].

Evaluation of the data from primary AML can predict the involvement of differentially
regulated pathways but does not directly predict whether pathway activity increases or
decreases in chemoresistance. In an attempt to provide an indication of the direction of
change, all predicted FoxO pathway targets of the differentially expressed microRNAs were
analyzed. As shown in Supplementary Table S2, only one of the differentially expressed
microRNAs (miR-223-3p) is predicted to target a FoxO mRNA (FoxO1) directly. This was
upregulated in relapse, which would be consistent with the down-regulation of FoxO1.
However, since this concerns only a single predicted interaction, it is not a robust indication.
All other microRNAs that were up or downregulated in relapse and impact the FoxO
pathway are predicted to target mRNAs coding for signaling proteins that can modulate
the activity of FoxOs, such as PTEN, Nemo-like kinase (NLK), or MAP kinases. As these
signaling proteins can act either positively or negatively on FoxO signaling, the list of
targets alone does not indicate the overall direction of the regulation.

3.3. Gene Expression Analysis Reveals Significant Shifts in FoxO Signaling Activity in Patients
with Relapsing AML

The validation of changes in FoxO pathway activity is made challenging firstly by the
limited availability of suitable patient material for reliable protein analysis and secondly
by the fact that microRNAs can affect protein translation levels without changing the
level of the corresponding target mRNA with which they interact, obviating validation of
predicted miRNA targets by RT-PCR. For these reasons, changes in FoxO pathway activity
were studied by assessing the expression levels of the genes that it ultimately affects. As
central regulators of the cellular oxidative stress response, FoxO proteins directly control
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the transcription of genes involved in the clearance of reactive oxygen species, including
superoxide dismutase (MNSOD) and catalase. The DNA repair gene GADD45A is also
directly induced by FoxO members and was also chosen for targeted analysis, as were
the FOXO1 and FOXO3 genes themselves. Assessment of gene expression at the mRNA
level revealed significant upregulation of FOXO1, GADD45A, and MNSOD in the relapse
samples compared to the diagnosis time point (Figure 5A). The most significant difference
could be observed for MNSOD, which was robustly upregulated in all four patient sam-
ples. To assess whether the observation that FoxO signaling is significantly upregulated
in patients facing relapse and chemoresistance is applicable to a larger cohort of patients,
we used the AML patient dataset of the cancer genome atlas (TCGA) for gene expression
analysis. Although the wide coverage of the TCGA provides comprehensive gene expres-
sion and clinical patient data, the database does not allow longitudinal comparisons of
individual patients over different disease stages. We, therefore, looked for associations
between FoxO target gene expression and both cytogenetic risk group and overall survival,
in which chemoresistance and relapse play a major role. This revealed a significantly
lower expression of the FoxO target genes Calatase and MNSOD in AML patients with a
favorable prognosis (Figure 5B), while high expression of MNSOD was associated with a
worse overall survival (Figure 5C). The same trend could be observed for Catalase but did
not reach significance.
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Figure 5. FoxO signaling is upregulated in relapsed AML and is associated with mutations in the
tumor suppressor p53 gene; (A) expression of FoxO signaling pathway genes in relapsed AML
patients (bars represent log2 fold change normalized to values at diagnosis). The horizontal lines
show the medians, box limits indicate the 25th and 75th percentiles as determined by R software,
and whiskers extend to minimum and maximum values. (B) Expression of FoxO signaling target
genes Catalase and MNSOD in different cytogenetic risk groups, according to the MRC (the British
Medical Research Council). Center lines show the medians, box limits indicate the 25th and 75th
percentiles as determined by R software, whiskers extend to the 5th and 95th percentiles, and outliers
are represented by dots. (C) Overall survival of AML patients (TCGA Research Network), according
to the median divided by MNSOD and Catalase expression. p-values were calculated using the
Log-rank test (R software). (D) Gene expression of FoxO transcription factors and target genes in
AML patients with and without P53 mutations. Statistical significance is indicated as * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001.

Finally, we looked for a relationship between FoxO target gene expression and mu-
tations in the tumor suppressor gene P53 since these define a subset of AMLs with a
particularly poor prognosis and high rates of chemoresistance and relapse. Interestingly,
we found significantly higher expression levels of FOXO1, FOXO3, and FoxO target genes
MNSOD and GADD45A in P53 mutated patients (Figure 5D). Taken together, this database
analysis supports the wider clinical relevance of our experimental findings by indicating
a high activity of FoxO transcription factors in patients at high risk for chemoresistance
and relapse.

4. Discussion

The development of chemoresistance and associated relapse significantly reduces the
therapeutic options for AML patients. Accordingly, the restoration or prolongation of
chemosensitivity has the potential to improve survival and quality of life and to provide a
bridge to stem cell transplantation in eligible patients. Here, we report the use of microRNA
expression profiling to identify pathways mis-regulated in chemoresistance. This could be a
first step to finding potential targets for new strategies to avoid or reverse chemoresistance.

The profiling of microRNAs investigates gene regulation at the post-transcriptional
level, which is now known to make a decisive contribution to differential gene expres-
sion [41–43]. In this sense, microRNA profiling can be considered to be a complementary
alternative to transcriptomics. A feature of the microRNA approach is the focus on a
relatively small, interactive network composed exclusively of regulators with predictable
targets. Each regulator may target multiple targets, and each target may be affected by
multiple regulators. It should, therefore, be feasible to sample cell phenotype via a relatively
small number of variables.
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Using this approach, fundamental changes in microRNA signatures could clearly
be observed in the bone marrow of four individual patients between pretreatment and
relapse stages. The sample size was limited by the rarity of longitudinal sample sets
from relevant disease stages of the same patient since many patients who are suitable
for ARA-C-based chemotherapy proceed to hematopoietic stem cell transplantation after
reaching remission. Despite this limitation, an overarching analysis revealed consistent
patterns of differential expression for single microRNAs. Analysis of the predicted targets
of differentially expressed microRNAs implied the involvement of specific processes and
pathways in chemoresistance, including the TGF-β pathway that we have recently found
to be implicated in chemoresistance in a cell line model [25]. Among a number of other
pathways implicated in this way, we chose the FoxO pathway for further investigation
since it acts as a hub that integrates multiple inputs to control processes such as apoptosis,
DNA repair, and cell cycle that are likely to be of high relevance to chemoresistance. Indeed,
the toxicity of many prominent chemotherapeutic drugs has previously been shown to be
FoxO-mediated [44–47].

Although microRNAs typically decrease the expression of their targets, it is not
possible to predict the balance of expression in a complex pathway in which both positive
and negative regulators may be affected. However, our analysis of both FoxOs and their
target genes at the mRNA level suggests strongly that FoxO pathway activity is lowest in
AML patients with favorable risk, higher in higher risk patients, and increases following
relapse, suggesting that chemoresistance is accompanied by an increase in FoxO signaling.
Whether or not FoxO contributes in a decisive way to the emergence of chemoresistance or
is induced as a consequence remains unclear and will require more detailed investigation.
Specifically, the consistently high expression of FoxO pathway genes in P53mut AML may
be a result rather than a cause of the more aggressive disease. However, given the role of
FoxO in DNA damage repair, the induction of apoptosis, and block in cell cycle progression,
it seems likely that increased activity may be induced in cells stressed by survival and
proliferation under chemotherapy. In this case, selective reduction in FoxO signaling in
these cells may have the potential to reinstate at least a degree of chemosensitivity.

In summary, the longitudinal analysis of microRNA signatures in different disease
stages combined with analysis of microRNA-pathway associations predicted a number of
pathways to undergo significant changes during relapse and the acquisition of chemore-
sistance. Changes in the expression of pathway components at the mRNA level were
validated by targeted molecular analysis and also by a broad analysis of gene expression
data available in the Cancer Genome Atlas database. While it remains unclear whether
the observed changes contribute causally to chemoresistance or occur as a downstream
consequence of progression, the approach described here successfully identifies pathway
changes associated with changing disease states.
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