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Abstract: Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder charac-
terized by limited interests, difficulties in social interactions, repetitive behaviors, and impairments
in social communication. ASD tends to run in families, and twin studies suggest a strong genetic
basis for the disorder. However, the definition of a genetic profile that indicates a risk for ASD
remains unclear. Methods: This analysis includes an investigation (Autism Dataset 4 from the NIMH
repository, n = 2890) and a replication (Autism Dataset 3 from the NIMH repository, n = 1233) of trio
samples with GWAS data. In Phase 1, a molecular pathway analysis is conducted on the investigation
sample to test for the enrichment of specific Gene Ontology (GO) terms associated with autism. In
Phase 2, the identified pathways are tested for enrichment in the replication sample. Permutation
tests are performed to reduce the risk of false-positive findings. Quality assessment is conducted
using QQ-plots and λ values, with Plink and R utilized for the Transmission Disequilibrium Test
(TDT) and permutation tests. Results: The GO term GO:0007417 was found to be enriched in both
the investigation and replication samples. SNPs associated with this pathway were observed at a
frequency higher than expected in the replication sample. Conclusions: The GO term GO:0007417
(development of the nervous system) was associated with autism in both trio samples. Variations in
the genes TMPRSS4, TRPC4, and PCDH9 were consistently linked to autism across the two indepen-
dent samples, highlighting the role of calcium signaling and cell adhesion molecules in the risk of
autism-related disorders. The pathways and variations associated with autism are described in detail,
which can contribute to the engineering of new pharmacological treatments for ASD.

Keywords: autism; gene; molecular pathway analysis; SNP

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that manifests
early in life. It is characterized by limited interests, difficulties in social interactions,
repetitive behaviors, and impairments in social communication. Additionally, individuals
with ASD often experience motor and intellectual deficits, as well as mood and sleep
disorders, along with sensory and gastrointestinal abnormalities [1]. ASD affects up to 1%
of the general population [2] and has a genetic component, with an estimated concordance
rate of 60–70% in identical twins and 5–30% in siblings [3,4].

In May 2014, the sixty-seventh World Health Assembly adopted a resolution entitled
comprehensive and coordinated efforts for the management of autism spectrum disorders,
which was supported by more than 60 countries. ASD is associated with approximately
3.6 million USD in lifetime social costs [5].

A recent review on the molecular aspects of ASD can be found in [6].
The GWAS Atlas (https://atlas.ctglab.nl/) accessed 15 July 2024 reports on two large

GWAS focused on autism [7,8]. In the first study [7], including 7387 cases and 8567 controls,
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only one SNP reached GWAS significance, rs7026354, a G/A variation with no previous
recorded clinical significance and which is not associated with a specific gene. In the
second study, which included 18,381 cases and 27,969 controls, three SNPs reached GWAS
significance: rs10099100, rs71190156, and rs910805 [8]. Rs10099100 G > C SNP is located in
chr 8, and it is not reported to have clinical significance, rs71190156 is a MACROD2, intron
variant, and rs910805 is located on chr 20. None of them have known clinical significance.

Environmental factors that may increase the risk of ASD are estimated to account
for 50% of the risk and can lead to epigenetic modifications of key genes [9]. Epigenetic
modifications are not only involved in the biological processes associated with the gene–
environment interactions but also play a crucial role in orchestrating the various protein
and genetic events that drive neurodevelopment [10]. Consistently, ASD is thought to be a
neurodevelopmental disorder. A number of genetic variations have been inconsistently
associated with an increased risk of ASD [9], and GWAS investigations have not consistently
identified the single critical variations associated with this disorder [11]. This contrasts with
evidence indicating that the heritability of ASD due to common variants is estimated to be
as high as 80%, as recently reviewed in [12]. Limited power of the analysis, small sample
sizes, and a critical phenotype definition may be limitations of the studies conducted so
far [11]. Moreover, de novo mutations may explain a part of the missing heritability, as it
was consistently shown that they may play a role in ASD [13–16]. Nevertheless, the impact
of de novo mutations is less significant than that of inherited variants. It is estimated that
49% of the genetic architecture of ASD is associated with common inherited variants, while
de novo mutations account for 3%, and rare inherited variants also account for 3% [17]. De
novo mutations can lead to syndromes that resemble ASD, differing primarily in certain
epidemiological details, such as a higher incidence of dysmorphic features and a similar
prevalence between males and females. Examples of such genetic conditions include Fragile
X syndrome, Tuberous Sclerosis Complex, Dup15q syndrome, deletions in the 16p11.2
region, Rett syndrome, and neurofibromatosis. These conditions are estimated to account
for up to 5% of ASD cases observed in clinical practice [18]. There is currently no conclusive
evidence for a limited number of critical common variations that confer risk for most cases of
ASD. However, it is estimated that an additive effect of single variations, each having a small
impact on the phenotype, may explain 60% of the genetic liability in multiplex families and
40% in simplex families [19]. An updated list of the genetic variations and genes associated
with ASD can be downloaded at https://gene.sfari.org/autdb/GS_Home.do (accessed
15 July 2024). The number of genes and variations associated with ASD is extensive,
and the replication rate for individual genes or mutations does not support conclusive
conclusions about the neuropathology of the disorder. A potential solution to this sparse
genetic evidence is the “many genes, common pathways” hypothesis, which posits that
the effects of different genes may converge on common pathways and that impaired
function in these pathways results in the core symptoms of ASD. Analyzing molecular
pathways can enhance our understanding of complex genetic diseases by identifying
gene sets that exhibit an enriched profile of association with the phenotype in question.
This approach aligns with the polygenic nature of complex disorders and considers the
cumulative small effects of individual genetic variations on complex phenotypes, as seen
in [20,21]. Previous investigations into genetic networks which disruption could lead
to ASD have identified several molecular pathways that may be involved, including
protein synthesis and metabolism, the modulation of transcription processes, chromatin
remodeling, calcium signaling, and the oxytocin pathway [10,22]. Nevertheless, those
findings are generated by systematic reviews, and to the best of our knowledge, a molecular
pathway analysis on GWAS data derived from ASD trios has yet to be conducted. It must
be noted that the following investigation is conducted on the information derived from
the distribution of SNPs (single nucleotide polymorphisms). SNPs are probably the most
prevalent form of genetic variation in the human genome (3 to 4 million). Consequently,
SNPs serve as an extensive and valuable source of information [23].

https://gene.sfari.org/autdb/GS_Home.do
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Molecular pathway analysis may be a promising approach to GWAS data, but it also
has limits. One of the main limits of the genome-wide molecular pathway analysis is
that it relies on known molecular pathways and known genetic functions [24]. Moreover,
this technique is limited by the number of available SNPs included in GWAS, which
means that the risk of false-negative findings due to the inadequate coverage of specific
genes cannot be ruled out. Moreover, European and North American populations are
overrepresented in the international populations. There is a clear need for non-European
and North American samples to be investigated. With this in mind, it is possible to combine
the results of molecular pathway analysis with the current published evidence regarding
specific phenotypes, thereby helping to define the genetic makeup that increases the risk
for a disease or group of diseases. In the present investigation, a molecular pathway
analysis is applied to two available GWAS databases on autism disorder (investigation and
replication samples). The genes harboring variations significantly associated with autism
in one sample are tested for their involvement in specific molecular pathways associated
with the disorder in both samples. As a result of this investigation, the identification of a
molecular pathway associated with increased risk for autism is expected.

2. Methods
2.1. Dataset

Genetic data were available from NIMH genetics (https://www.nimhgenetics.org/)
accessed 15 July 2024. The Autism Dataset 4 (Study 65/TASC GWAS Data) sample was
chosen for the investigation sample. The Autism Dataset 3 (GWAS Data on 1264 Non-AGRE
Samples) served as a replication sample. GWAS were conducted with Affymetrix 5.0 in
both samples.

2.2. Toolset

Plink [25] served for the TDI GWAS analysis and genetic annotations. Plink was
chosen because it is the open-source gold standard for GWAS analysis. R [26] and dedicated
packages served for the permutations analysis and QQ-plot creation. R was chosen along
with dedicated packages because it is an open-source widely used platform for statistical
analysis. Haploview [27] served for the identification of the known available SNPs for
each gene. The Gene Ontology Consortium (http://geneontology.org/) accessed 15 July
2024 was interrogated to detect enriched GO annotations. Given a list of genes, the Gene
Ontology Consortium will provide a list of GO terms that identify the molecular pathways
in which the genes are embedded. This process is made possible by the implementation
of the R packages that were used for the analysis. Annotations of single variations were
manually curated, and the source of information was an international database on genetic
variations (www.gwascentral.org, accessed on 15 July 2024). This information is also
accessed through the R dedicated packages. The enrichment analysis was conducted using
the R software (R-4.3) suite through Bioconductor [28] and the package ReactomePA [29].
Reactome [30] is a manually curated database the includes chemical reactions, biological
processes, and molecular pathways. Further investigations on elements belonging to the
enriched pathways were performed through Cytoscape software 3.10 [31] and the plugins
String 1.5.1, GeneMania 1.0, ClueGO 0.3-66, and CluePedia 0.3-66. Here, the physical and
genetic interactions between the elements were investigated to produce an interaction
network between the six enriched pathways. Further, the same approach was used to
extend the network to include drugs interactions (using the Cytargetlinker 4.1.0 plugin and
Drugbank Database (ver. 5.6.1)).

Chart 1 shows the protocol of the analysis.

https://www.nimhgenetics.org/
http://geneontology.org/
www.gwascentral.org
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Chart 1. The analysis flow is shown. The shadowed areas refer to the analysis of the investigation
sample. Circles indicate the points in which the analysis is meant to stop, and a negative result is
given. Arrows show the direction of the analysis. Enrichment in genelist2 in the replication sample is
conducted while accounting for p thresholds < 0.01 and a consistent direction of association between
the investigation and the replication sample (OR> or <1).

2.3. Analysis Flow
2.3.1. Investigation Sample

TDI (trait-dependent interaction—this analysis investigates how the interaction be-
tween genetics variants can influence the phenotype under analysis) associations were run
with Plink, and the results were annotated. The standard quality thresholds were applied
to the original sample before pruning and imputing. The minor allele frequency was set
at 0.05, the genotype rate was set at 0.95, and the Hardy–Weinberg equilibrium was set at
0.00001. Pruning was set at the standard—indep 50 5 2, where 50 is the number of SNPs
considered at every step, 5 is the number of SNPs to be shifted at every step, and 2 is the
VIF threshold (1/(1 − R2), where R2 is the multiple correlation coefficient). A Rˆ2 equal to
10 implies that two SNPs carry the same signal. A R2 equal to 1 implies that two SNPs are
completely independent. The quality of the results was checked (QQ-plot and λ values;
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please refer to Figures 1 and 2). QQ-plots and lambda values are essential tools for exclud-
ing inflation, which refers to the presence of structural false-positive findings in a dataset.
QQ-plots illustrate the deviation from expected to observed significant associations, while
a lambda value close to one suggests the absence of inflation in the dataset. Variations
associated with autism with a significance threshold inferior to 10 × 10−4 were selected and
the corresponding genes—genes that harbor the selected variations—identified (genelist1).
SNP characteristics and corresponding data are shown in Table 1. Enriched GO (Gene
Ontology) terms were searched in genelist1: the GO Consortium served for the analy-
sis (http://geneontology.org/, accessed on 15 July 2024). Such an analysis investigates
whether specific terms from the GO database are statistically overrepresented in a given
set of genes. Genes within the enriched GO terms were selected (thus, creating genelist2)
and their SNPs identified (www.gwascentral.com, accessed on 15 July 2024) through in-
terrogation of the international online databases that pair, when possible, single genetic
variations to genes and searched for in the available NIMH GWAS dataset. SNPs belonging
to genetlis2 available for the analysis were annotated.
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Figure 1. QQ-plot of the TDI association test in the primary sample. The picture shows the QQ-plot
analysis. The presence of inflation is excluded from the database under analysis. x-axis: Represents
the expected p-values under the null hypothesis (no significant difference between cases and controls).
These values are what you would expect if there were no true associations. y-axis: Represents the
observed p-values from the GWAS analysis, which indicate the significance of the associations found
in the data. If the observed p-values closely align with the expected p-values (i.e., points fall along the
diagonal line), it suggests that there is no significant genetic stratification in the sample, supporting
the null hypothesis. A deviation from this line, particularly where observed p-values are significantly
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lower (indicating higher significance), suggests the presence of true genetic associations. This could
indicate genetic stratification, where the cases and controls differ in ways that affect the results. A
large number of observed p-values that are more significant than expected could indicate that the
sample is genetically stratified. This stratification can lead to inflated type I error rates, meaning
that the study may falsely identify associations that do not exist. The presence of a small fraction of
observed p-values that are significantly lower than expected may indicate true genetic associations,
which are of interest for further investigation.

Genes 2025, 16, x FOR PEER REVIEW 10 of 22 
 

 

 

Figure 2. QQ-plot in the secondary sample. The picture shows the QQ-plot analysis. The presence 
of inflation is excluded from the database under analysis. x-axis: Represents the expected p-values 
under the null hypothesis (no significant difference between cases and controls). These values are 
what you would expect if there were no true associations. y-axis: Represents the observed p-values 
from the GWAS analysis, which indicate the significance of the associations found in the data. If the 
observed p-values closely align with the expected p-values (i.e., points fall along the diagonal line), 
it suggests that there is no significant genetic stratification in the sample, supporting the null hy-
pothesis. A deviation from this line, particularly where observed p-values are significantly lower 
(indicating higher significance), suggests the presence of true genetic associations. This could indi-
cate genetic stratification, where the cases and controls differ in ways that affect the results. A large 
number of observed p-values that are more significant than expected could indicate that the sample 
is genetically stratified. This stratification can lead to inflated type I error rates, meaning that the 
study may falsely identify associations that do not exist. The presence of a small fraction of observed 
p-values that are significantly lower than expected may indicate true genetic associations, which are 
of interest for further investigation. 

2.3.2. Replication Sample 

SNPs were derived from genetlist2, and the incidence of observed vs. expected sig-
nificant associations was checked in the replication sample. 

2.4. Selection of Significant Thresholds 

Figure 2. QQ-plot in the secondary sample. The picture shows the QQ-plot analysis. The presence
of inflation is excluded from the database under analysis. x-axis: Represents the expected p-values
under the null hypothesis (no significant difference between cases and controls). These values are
what you would expect if there were no true associations. y-axis: Represents the observed p-values
from the GWAS analysis, which indicate the significance of the associations found in the data. If the
observed p-values closely align with the expected p-values (i.e., points fall along the diagonal line), it
suggests that there is no significant genetic stratification in the sample, supporting the null hypothesis.
A deviation from this line, particularly where observed p-values are significantly lower (indicating
higher significance), suggests the presence of true genetic associations. This could indicate genetic
stratification, where the cases and controls differ in ways that affect the results. A large number of
observed p-values that are more significant than expected could indicate that the sample is genetically
stratified. This stratification can lead to inflated type I error rates, meaning that the study may falsely
identify associations that do not exist. The presence of a small fraction of observed p-values that are
significantly lower than expected may indicate true genetic associations, which are of interest for
further investigation.
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Table 1. SNPs associated with autism with p < 10 × 10−4.

Gene Sequence Position SNP

CAMTA1[intronic] >>NNNTTACAGT(C):(T)TTAACCACTG>> chr1:7,143,344..7,143,344 rs2187901

C1orf110(dist = 3597), RGS4(dist =
196194)[intergenic] >>aaaataactg(C):(T)aagaaaaaag>> chr1:162,842,202..162,842,202 rs12047510

LOC642587(dist = 111217), CAMK1G(dist =
39936)[intergenic] >>aaggtgcaaa(T):(G)atctatgcat>> chr1:209,717,109..209,717,109 rs4844851

ESRRG[intronic] >>atgattcccc(C):(T)atcctggtat>> chr1:216,966,601..216,966,601 rs7355008

C1orf110[intronic] >>aagaaaaaga(C):(T)atacagactg>> chr1:162,835,703..162,835,703 rs12137443

C1orf110(dist = 28505), RGS4(dist =
171286)[intergenic] >>GGATCCAGGG(T):(G)CATAGAACAC>> chr1:162,867,110..162,867,110 rs7533937

TTC7A[UTR3] >>CTGTGGTTGC(C):(T)AGATCCAGTC>> chr2:47,301,744..47,301,744 rs1046263

DKFZp686O1327(dist = 12942),
PABPC1P2(dist = 1497392)[intergenic] >>GAAAAAAAAA(A):(G)TCAATGCCCA>> chr2:145,847,233..145,847,233 rs2663966

TFPI(dist = 395225), GULP1(dist =
342946)[intergenic] >>caataagaga(C):(A)atctgatgta>> chr2:188,814,444..188,814,444 rs10170218

TFPI(dist = 411011), GULP1(dist =
327160)[intergenic] >>aacaataata(C):(T)aGTTAGAAtg>> chr2:188,830,230..188,830,230 rs12105426

TMEM194B(dist = 39273), NAB1(dist =
75107)[intergenic] >>TCATCCAGCT(C):(A)GGAAGCTGCA>> chr2:191,438,741..191,438,741 rs7603849

TMEM194B(dist = 46800), NAB1(dist =
67580)[intergenic] >>TACCTTAGTT(T):(G)ATAATGTACA>> chr2:191,446,268..191,446,268 rs11680758

TMEM194B(dist = 53431), NAB1(dist =
60949)[intergenic] >>AGACATTTTT(T):(G)CAGTGGGAcc>> chr2:191,452,899..191,452,899 rs4321393

TMEM194B(dist = 93698), NAB1(dist =
20682)[intergenic] >>TGCTAGTTAA(A):(G)AGCATGTATA>> chr2:191,493,166..191,493,166 rs887695

SH3BP4(dist = 245560), AGAP1(dist =
192818)[intergenic] >>GCATCAATGA(A):(G)CCTCAAGAAA>> chr2:236,209,918..236,209,918 rs13019316

MECOM(dist = 14218), TERC(dist =
86617)[intergenic] >>ATGCCTATCT(A):(G)GCCTACGGCA>> chr3:169,395,781..169,395,781 rs17507954

ZNF385D (dist = 108667), UBE2E2(dist =
1343301)[intergenic] >>TTTTTAATTT(C):(T)TGATACTTTT>> chr3:21,901,483..21,901,483 rs1679235

PPP2R2C[intronic] >>ATTCAGTGTG(T):(G)CTTCATCTCC>> chr4:6,523,276..6,523,276 rs4075006

GPRIN3(dist = 179798), SNCA(dist =
236291)[intergenic] >>CTTCGAGATG(A):(G)TTTCTACTTA>> chr4:90,408,959..90,408,959 rs17015665

GPRIN3(dist = 206392), SNCA(dist =
209697)[intergenic] >>CGGTCATTAC(T):(G)AGATAGCATT>> chr4:90,435,553..90,435,553 rs924033

IRX4(dist = 740038), IRX2(dist =
123361)[intergenic] >>ATGCCTGCTG(C):(T)GGAGGAGGTG>> chr5:2,622,918..2,622,918 rs172834

LOC100505738(dist = 492614), SEMA5A(dist
= 79315)[intergenic] >>CATAAGAAAA(T):(G)ACCACAAGGA>> chr5:8,955,823..8,955,823 rs6874770

RAB3C[intronic] >>CTAACACTGC(T):(G)CTAATTAAGA>> chr5:57,916,579..57,916,579 rs386161

SLCO4C1[UTR3] >>CAAGGGCTGC(A):(G)TTGTATTTTA>> chr5:101,570,236..101,570,236 rs3811976

AKAP7(dist = 34960), ARG1(dist =
254730)[intergenic] >>TTCTGAGGAC(C):(T)GATCAGAGAT>> chr6:131,639,635..131,639,635 rs1322595

NXPH1(dist = 200291), PER4(dist =
681016)[intergenic] >>ATCAGTTGGG(C):(T)CTATCATTAT>> chr7:8,992,884..8,992,884 rs10250332

C7orf69, PKD1L1[intronic] >>ATTTGTTTAC(A):(G)TGCATGTCTG>> chr7:47,835,174..47,835,174 rs4724645

C7orf69, PKD1L1[intronic] >>tgtaTTCTTT(C):(T)ACTTCAGGAG>> chr7:47,846,770..47,846,770 rs2348460

STAG3L4(dist = 1500655), AUTS2(dist =
776737)[intergenic] >>TCTCTGTGAC(A):(G)TTCCTTCCAA>> chr7:68,287,168..68,287,168 rs6460468

PCLO[intronic] >>GAATGCATAC(C):(A)AAACAAAATT>> chr7:82,653,249..82,653,249 rs6977045

PCLO[intronic] >>TTATACTGCA(A):(G)TATATCCTAA>> chr7:82,659,856..82,659,856 rs12707538
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Table 1. Cont.

Gene Sequence Position SNP

CDK6(dist = 157200), SAMD9(dist =
105685)[intergenic] >>AGGCATTTTC(A):(G)GAACCCGCTA>> chr7:92,623,141..92,623,141 rs1013803

RELN[intronic] >>CAGGGTTAAA(C):(T)TTAGTACTCA>> chr7:103,511,617..103,511,617 rs17133124

RELN[intronic] >>AAACCAATGA(A):(G)ATATAATGCT>> chr7:103,512,401..103,512,401 rs17133142

DPP6[intronic] >>TAATACAATC(C):(T)GTTATGTAAA>> chr7:153,720,890..153,720,890 rs3852281

LZTS1(dist = 462664), LOC286114(dist =
256030)[intergenic] >>CTCAAACCCA(C):(T)GCAGCTCAAG>> chr8:20,575,467..20,575,467 rs6984463

CA8[intronic] >>AATATATAGT(C):(T)TGTTTTATAT>> chr8:61,120,636..61,120,636 rs13261565

KCNQ3[intronic] >>TGTCAACACA(C):(T)AAATAAGTGA>> chr8:133,286,978..133,286,978 rs4736412

COLEC10(dist = 15923), MAL2(dist =
85485)[intergenic] >>CCTAGCTCTT(C):(T)AGTCTTGTAG>> chr8:120,135,125..120,135,125 rs13269842

LCN12(dist = 9064), PTGDS(dist =
12943)[intergenic] >>CTTCCCCGGC(C):(T)GTGTTTGTGT>> chr9:139,859,013..139,859,013 rs7040970

LCN12(dist = 10315), PTGDS(dist =
11692)[intergenic] >>GCAGCTGGCC(C):(T)GATGTGAGCC>> chr9:139,860,264..139,860,264 rs11145951

CCDC3(dist = 87431), OPTN(dist =
10947)[intergenic] >>ACTACACAGC(A):(G)GACCATATAA>> chr10:13,131,135..13,131,135 rs11258183

NCRNA00245(dist = 234721), C10orf11(dist
= 139058)[intergenic] >>AGACCTCTTC(C):(T)AACATTAGAA>> chr10:77,403,461..77,403,461 rs4746315

KCNMA1[intronic] >>AATCAAGATG(A):(G)TAAGAAAGAT>> chr10:79,212,639..79,212,639 rs16934809

NRG3[intronic] >>tctcttctca(A):(G)tttctcaact>> chr10:83,964,496..83,964,496 rs1764072

PTEN(dist = 71081), RNLS(dist =
234008)[intergenic] >>GCAAGACCAA(A):(G)TGTGTGTAGG>> chr10:89,799,613..89,799,613 rs692788

MAML2[intronic] >>TTATAATTTC(A):(G)TTTATGCCCT>> chr11:95,991,923..95,991,923 rs1978763

DSCAML1[intronic] >>TTCCTGGAGC(A):(G)AACTTGGCAG>> chr11:117,661,100..117,661,100 rs625447

OR8B8(dist = 59751), OR8B12(dist =
41886)[intergenic] >>AAGCTTTTGA(A):(G)TTTGCCTCAG>> chr11:124,370,732..124,370,732 rs7119089

OR8B8(dist = 75030), OR8B12(dist =
26607)[intergenic] >>GAAACTTCTT(C):(T)ATAAATCAAG>> chr11:124,386,011..124,386,011 rs4282990

FAR1(dist = 199511), SPON1(dist =
30510)[intergenic] >>AGGATTTCAG(C):(T)CTACAGAGGA>> chr11:13,953,404..13,953,404 rs16913463

SHANK2[intronic] >>TCATCCACAG(C):(G)AGGCCCTGCT>> chr11:70,801,075..70,801,075 rs4627107

SLC16A7(dist = 1133479), FAM19A2(dist =
793154)[intergenic] >>TTTCTATTAT(A):(G)AAAAATGTTA>> chr12:61,308,887..61,308,887 rs1480174

TRPC4[UTR5] >>CTATTTCTTC(A):(G)TCTCTGAAAG>> chr13:38,357,494..38,357,494 rs12583681

PCDH9[intronic] >>ATCATCTGAC(T):(G)TAGTTTCACA>> chr13:67,487,682..67,487,682 rs10492592

CHGA[intronic] >>CTCAAATGGT(C):(T)CCGCACAGGT>> chr14:93,400,879..93,400,879 rs750678

CYFIP1[intronic] >>GGAATTCTGC(C):(T)GTACGTGGTA>> chr15:22,972,196..22,972,196 rs17841095

LOC145845[ncRNA] >>AGACAAATTG(A):(G)GACAGGATAT>> chr15:37,167,090..37,167,090 rs8039031

MEIS2[intronic] >>CTCTAAATTG(A):(G)CTACAAATTG>> chr15:37,259,697..37,259,697 rs896052

GCOM1(dist = 25118), ALDH1A2(dist =
210749)[intergenic] >>ATTTTCAAAC(C):(T)TGTTCCCTTC>> chr15:58,034,873..58,034,873 rs12912067

FTO[intronic] >>TTATTGCTAT(C):(T)ACACAGAATT>> chr16:54,009,328..54,009,328 rs9921255

FTO[intronic] >>CTGTACTCTA(C):(T)GAATCTTACC>> chr16:54,009,545..54,009,545 rs9302654

HTA(dist = 218362), LOC100506172(dist =
74670)[intergenic] >>tgaaattgtg(A):(G)cacgtgacaa>> chr16:73,346,034..73,346,034 rs6564635

AP2B1[intronic] >>TAAGCCAAGA(C):(A)AGTGACCGCC>> chr17:33,988,453..33,988,453 rs9911836

AP2B1[intronic] >>CTCTTTCCCC(A):(G)ATCTTAAAGA>> chr17:33,996,764..33,996,764 rs9906872

AP2B1[intronic] >>CAACAAGGTG(A):(G)GTGTTCAACA>> chr17:34,042,468..34,042,468 rs9904187
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Table 1. Cont.

Gene Sequence Position SNP

NPTX1[UTR3] >>GCTGTCAAAG(T):(G)CCCCCAAAAA>> chr17:78,443,507..78,443,507 rs4889852

NPTX1[exonic] >>TGGTGGCCCC(T):(G)CCGTAGATCT>> chr17:78,444,658..78,444,658 rs12943620

None NA NA rs4890026

CBLN2(dist = 158798), NETO1(dist =
39028)[intergenic] >>accatatcaG(A):(G)TACTTATTTT>> chr18:70,370,521..70,370,521 rs1564793

BMP2(dist = 950910), HAO1(dist =
151811)[intergenic] >>AAACCCTGAT(C):(T)TATGATCTAT>> chr20:7,711,820..7,711,820 rs8121909

XRN2[intronic] >>TTATATATTA(C):(T)TATTTTTGTC>> chr20:21,320,653..21,320,653 rs1546995

XRN2[intronic] >>ATTGTTTTTA(A):(G)TTTAAGCATA>> chr20:21,324,510..21,324,510 rs6082391

XRN2[intronic] >>CATTCTTTGA(C):(T)TTCAGATCCA>> chr20:21,325,711..21,325,711 rs6035850

TMEM189-UBE2V1(dist = 25078),
CEBPB(dist = 11963)[intergenic] >>TGGCACGCCT(A):(G)TAATTAAAGT>> chr20:48,795,413..48,795,413 rs6125931

TMEM189-UBE2V1(dist = 32659),
CEBPB(dist = 4382)[intergenic] >>TTTCACTACC(A):(G)GTCCTGAGCA>> chr20:48,802,994..48,802,994 rs6020348

RPS6KA3(dist = 176767), CNKSR2(dist =
931019)[intergenic] >>GCCAATAGGG(C):(T)CCTTGTTGAG>> chrX:20,461,517..20,461,517 rs5990877

RPS6KA3(dist = 185595), CNKSR2(dist =
922191)[intergenic] >>CCTAAGCCTA(C):(T)GGGTGCAATG>> chrX:20,470,345..20,470,345 rs5950318

RPS6KA3(dist = 197922), CNKSR2(dist =
909864)[intergenic] >>ATATGGGAGA(C):(T)TTATATACCA>> chrX:20,482,672..20,482,672 rs10521908

RPS6KA3(dist = 211946), CNKSR2(dist =
895840)[intergenic] >>TCCCAAGTAG(A):(G)GAATGGGAAG>> chrX:20,496,696..20,496,696 rs2035111

2.3.2. Replication Sample

SNPs were derived from genetlist2, and the incidence of observed vs. expected
significant associations was checked in the replication sample.

2.4. Selection of Significant Thresholds

Genelist1 was created after selecting SNPs which strength of association with the
investigated phenotype was stronger than 10 × 10−4. This threshold was chosen in order
to prioritize the best available SNPs after the genetic association analysis while retaining
a sufficient number of SNPs to identify a list of candidate genes also available in the
replication sample. In the following steps of the analysis, the p thresholds were set to a
less punitive level in order to identify the possible positive associations while abating the
risk for false-positive associations with permutations (see Section 2.6). We were interested
in analyzing the hypothesis that the prevalence of SNPs from genelist2 associated with
the phenotype under analysis was higher—and not lesser—than the prevalence of the
same SNPs in genelist2. Since we were not interested in one side of the distribution of
probabilities (we were only interested in “more represented” and not “less represented”), a
more punitive 0.025 (instead for 0.05) and 0.005 (instead for 0.01) threshold was chosen.

2.5. Index Pathway Definition

The index pathway is defined as the molecular pathway that is significantly overrepre-
sented in genelist1. Genes belonging to the overrepresented molecular pathways are stored
in genelist2.

2.6. Simulation

A subset of SNPs was selected in the replication sample while respecting the following
characteristics:

1. should be associated with autism at a p threshold < 0.001 in the investigation sample;
2. should be available in the replication sample;
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3. should have the same direction of association (OR> or <1 as in the investigation sample).

Permutations were run until a monotone number of different outputs resulted from
the process. The permutated molecular pathways had the same length (number of SNPs)
of the pathway in list1 in order to avoid an overrepresentation of SNPs associated with the
phenotype under analysis due to the difference in lengths of the permutated molecular
pathways (more genes equals to higher probability to analyze more SNPs). The probability
of having a random pathway presenting with a number of significant (p < 0.05) associations
superior to or equal to the index pathway (extracted from the investigation sample and
tested in the replication sample) was then calculated.

Therefore, 10 × 106 permutations were conducted in the investigation sample, creating
a number of molecular pathways similar to the index pathway in terms of the number of
missense splicing variations and variations without annotation. The probability of having a
random pathway presenting with a number of significant (p < 0.05 and p < 0.01) associations
superior to or equal to the index pathway was then calculated. Permutations were instru-
mental in accepting or rejecting the hypothesis that a statistically significant enrichment
was observed for the same pathway in both the investigation and replication sample.

2.6.1. Acceptance of H0 (Null Hypothesis)

Under the null hypothesis, enrichment of the index pathway is to be considered a
false-positive finding.

Acceptance of the null hypothesis was to take place in case of more than 2.5% and
0.05% of the simulated pathways showing the same or an increased number of SNPs
significantly (p < 0.05 and p < 0.01) associated with the phenotype under analysis.

2.6.2. Acceptance of H1 (Enrichment Hypothesis)

Under H1, enrichment of the index pathway is to be considered a true-positive finding.
Acceptance of H1 was to take place in case of less than 2.5% and 0.5% of the simulate

pathways showing the same or an increased number of SNPs significantly (p < 0.05 and
p < 0.01) associated with the phenotype under analysis. In case of the acceptance of H1,
SNPs in the replication sample that are harbored by genes in genelist2 were identified and
their association (p-values) and direction of association (OR> or <1) with autism recorded.
SNPs and OR were recorded in list1.

3. Results
3.1. Investigation Sample

The database under analysis was the Autism Dataset 4 (Study 65/TASC GWAS Data)
sample. The phenotype under analysis was the “nimh_autism_dataset4_altpheno_plink.txt”,
as downloaded from the NIMH genetics dataset. Therefore, 2890 individuals (1824 males,
1069 females) with non-missing phenotypes were found: 936 cases, 1954 controls, and
3 missing. Additionally,1930 founders and 963 non-founders were found, and the total
genotyping rate was 0.93. Also, 965 nuclear families were detected, two founder singletons
were found, and 963 non-founders with two parents in 963 nuclear families were included
in the analysis. Finally, 934 affected offspring trios were identified, and 1,160,305 markers
were available for the analysis.

Genomic inflation was excluded (λ = 1.002) in Figure 1.
The analysis of the molecular pathways associated with genetlis1 resulted in the

identification of a single molecular pathway showing a significant overrepresentation.
The molecular pathway extracted from genelist1 based on its overrepresentation was the
central nervous system development pathway (GO:0007417, index pathway). The results
are reported in Table 2. Table 3 shows the genes that belong to GO:0007417 and were found
to harbor SNPs associated with autism. Additionally, 1124 SNPs belonging to the index
pathway were identified and were available for the analysis in the investigation sample.
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Table 2. Analysis of the overrepresentation of specific molecular pathways.

Upload_1
(p-Value)

Upload_1 (Fold
Enrichment)

Upload_1
(Over/Under)

Upload_1
(Expected)

Upload_1
(48)

Homo Sapiens—
REFLIST (20814)

GO Biological
Process Complete

2.84 × 10−2 >5 + 2.01 11 870 central nervous system
development (GO:0007417)

0.00 × 100 0.81 − 9.85 8 4272 Unclassified (UNCLASSIFIED)

Table 3. GO terms enrichment analysis. Genes belonging to the enriched GO pathway are detailed.

Tagging
SNPs Exons End Position Start

Position Position Ensembl Long Name/Synonyms Gene

547 9 67369460 66163708 13q21.32 ENSG00000184226 Cadherin (PC00069) PCDH9

1229 1 117852683 117372348 11q23 ENSG00000177103

immunoglobulin receptor
superfamily (PC00197); protein
phosphatase (PC00084); protein

phosphatase (PC00124);
immunoglobulin receptor

superfamily (PC00181);
immunoglobulin superfamily cell

adhesion molecule (PC00195)

DSCAML1

102 11 92871382 92570164 7q21-q22 ENSG00000105810

non-receptor serine/threonine
protein kinase (PC00220);

non-receptor tyrosine protein
kinase (PC00137); non-receptor
serine/threonine protein kinase
(PC00193); non-receptor tyrosine

protein kinase (PC00167)

CDK6

393 11 37905191 37598481 13q13.3 ENSG00000133107 ion channel (PC00227) TRPC4

203 3 6782147 6765808 replicated_SNPs
20p12 ENSG00000125845 growth factor (PC00207) BMP2

1664 65 104067175 103394123 7q22 ENSG00000189056 Homo sapiens RELN

413 17 132534741 132066872 8q24 ENSG00000184156
voltage-gated potassium channel

(PC00227); voltage-gated ion
channel (PC00133)

KCNQ3

585 22 169750828 168996455 3q26.2 ENSG00000085276 KRAB box transcription factor
(PC00218) MECOM

96 26 20284672 20132332 Xp22.2-p22.1 ENSG00000177189

non-receptor serine/threonine
protein kinase (PC00220);
transfer/carrier protein
(PC00137); non-receptor

serine/threonine protein kinase
(PC00193); annexin (PC00167);

calmodulin(PC00219)

RPS6KA3

225 5 80478069 80465366 17q25.3 ENSG00000171246 antibacterial response protein
(PC00090) NPTX1

78 16 87988203 87847163 10q23.3 ENSG00000171862 protein phosphatase (PC00181);
protein phosphatase (PC00195) PTEN

The prevalence of significant associations within the pathway was 6.4% at a p level of
0.05 (28% more than expected) and 1.3% at a p level of 0.01 (30% more than expected).

The number of simulated pathways that had the same or an increased number of SNPs
significantly associated with the phenotype under investigation in the investigated sample
was 2.2% at a p level of 0.05. The null hypothesis was then rejected, and the index pathway
was deemed significantly enriched after the TDT in the sample of autistic patients.

3.2. Replication Sample

The Autism Dataset 3 (GWAS Data on 1264 Non-AGRE Samples) was the replication
sample, and 1233 individuals were available from the dataset: 789 males, 444 females, and
588 cases. Additionally, 333 nuclear families and three founder singletons were detected.
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Also, 579 non-founders with two parents in 321 nuclear families, 14 non-founders without
two parents in 9 nuclear families, and 579 affected offspring trios were detected. Finally,
393,763 markers were included in the analysis.

Genomic inflation was excluded (λ = 1.03) in Figure 2.
The SNPs belonging to the index pathway in the investigation sample (n = 1124) were

identified in the replication sample, and 519 SNPs were detected that belonged to the index
pathway from the investigation sample and represented in the replication sample and had
the same direction of association with autism as in the investigation sample. The prevalence
of SNPs associated with autism in the replication sample was 5.4% at a p level of 0.05 and
1.9% at a p level of 0.01 (Figure 3). After the permutation analysis, the prevalence of SNPs
associated with autism was confirmed at a p level of <0.01.
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Figure 3. Replication findings. SNPs associated with autism in the investigation sample, available
in the replication sample, and having the same direction of association in both samples are shown.
The prevalence of SNPs belonging to the index pathway is slightly more superior than expected at a
p threshold < 0.05 and double the expected at a p threshold < 0.01. The latter enriched resisted the
permutation test.

As a final result, the hypothesis that the enriched pathway in the investigation sample
could be replicated in the replication sample was accepted after the risk for false positives
was abated by 10 × 105 permutations. The main results are reported in Tables 4 and 5.

Table 4. SNPs which associations with autism were replicated at a p level < 0.01.

Gene Sequence Position SNP

TMPRSS4 >>CTGTCTACCA(C):(T)TTTGGAGCAG>> chr11:118,002,372..118,002,372 rs11216779

TRPC4 >>atttctagcc(A):(G)ttattattcc>> chr13:38,777,701..38,777,701 rs2460316

TRPC4 >>gctggcaatg(A):(T)gtcagtacca>> chr13:38,805,771..38,805,771 rs2202120

TRPC4 >>gaaaatgagt(T):(G)gatacaaaca>> chr13:38,814,602..38,814,602 rs7320458
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Table 4. Cont.

Gene Sequence Position SNP

TRPC4 >>tggacaagac(A):(G)taaaaggaag>> chr13:38,814,629..38,814,629 rs7338934

TRPC4 >>gttctgacat(A):(G)tttctagtgt>> chr13:38,814,687..38,814,687 rs7336867

TRPC4 >>taagtcagaa(C):(T)ttggaactgc>> chr13:38,814,817..38,814,817 rs6563591

TRPC4 >>TATTCGATTC(A):(G)GAAAAATATG>> chr13:38,804,435..38,804,435 rs9315565

>>ACAATTGTAT(A):(G)ACCAGTACAC>> chr13:68,233,727..68,233,727 rs17619273

PCDH9 >>AAATTCGTCT(C):(G)AAATATAGCA>> chr13:68,246,757..68,246,757 rs17535905

Table 5. Genes which associations with autism were replicated in the present investigation (at least
one SNP associated at a p level < 0.01).

N Tagging SNPs N Exons Stop Start Position Ensembl Gene

547 9 67369460 66163708 13q21.32 ENSG00000184226 PCDH9

393 11 37905191 37598481 13q13.3 ENSG00000133107 TRPC4

259 16 118132778 118069737 11q23.3 ENSG00000137648 TMPRSS4

4. Discussion

ASD is a frequent condition in the general population [32] that is characterized by
impaired social abilities, restricted interests, and repetitive behavior. The disorder has
consistently been shown to have a genetic basis, with the number of involved genes po-
tentially reaching into the hundreds (source: SFARI Gene). This suggests a polygenic
nature, indicating that different genetic backgrounds may converge on the same pheno-
type. To investigate the convergence of specific molecular pathways related to autism
spectrum disorder (ASD), a metabolic pathway analysis was conducted using both an
investigation sample and a replication sample of autistic trios. The inclusion of a replication
sample and the use of permutations were implemented to reduce the risk of false-positive
findings. The analysis of complex disorders through a molecular pathway analysis is
a well-known and implemented type of analysis, used both in psychiatry and in non-
psychiatric disorders [33–35]. Research into the genetics of autism has been ongoing for
decades, indicating a long-standing interest in understanding its hereditary components.
Autism, like many complex psychiatric disorders, is influenced by numerous genetic factors.
Individual common genetic variations often have minimal effects on the overall genetic
architecture of autism, making it challenging to pinpoint specific risk factors. Genome-
wide epigenetic investigations have not yielded conclusive results, suggesting that the
interplay between genetics and environmental factors in autism is complex and not fully
understood [36]. Increasing sample sizes in genetic studies is a common strategy to en-
hance the power of detecting associations. Larger samples can help identify variants with
small effects that might otherwise go unnoticed. While this approach has led to some
interesting findings [37], interpreting these results can be difficult due to the multifactorial
nature of autism. A promising strategy to address the limitations of focusing solely on
single common variations is the molecular pathway approach. This method combines
the effects of multiple genetic variations that contribute to specific biological pathways,
potentially providing a more comprehensive understanding of the genetic risk for autism.
This approach has shown success in other psychiatric disorders [38–41], suggesting it could
be beneficial for autism research as well. However, its application in autism studies has
not been widespread, indicating a gap in the current research methodologies. This finding
can be instrumental in developing genetic screening tools for early diagnosis, bridging
the gap between psychiatry and other specialties [42–45]. An interesting approach may be
Mendelian randomization, which uses genetic variants that are associated with a modifiable
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exposure as proxies to infer the causal effect of that exposure on the risk of being diagnosed
with autism [46,47].

As a result of this hypothesis-free approach, the GO:0007417 pathway (development
of the nervous system) was found to be enriched in the investigation sample. Several
variations within this pathway were associated with autism in both samples, as detailed
in Tables 3 and 4. The risk of false positives in the replication analysis was mitigated
through permutations, and the findings remained significant at a nominal p-value of 0.01,
as illustrated in Figure 3. This supports the theory that autism is a neurodevelopmental
disorder and is further confirmed by previous studies [48,49].

The present investigation offers a list of SNPs and identifies a GO molecular pathway
associated with an increased risk of autism. This identification enhances our understanding
of the molecular mechanisms involved in autism, potentially paving the way for new
treatments. In this context, we recommend further analysis of the following genes, as
reported in Table 5: PCDH9 (Protocadherin 9), also previously found to be associated with
autism [50]; TRPC4 (Transient Receptor Potential Cation Channel Subfamily C Member
4), also previously associated with autism [51]; and TMPRSS4 (Transmembrane Serine
Protease 4), also previously found to be potentially associated with autism [52].

This aspect is of prime relevance, in that most patients with autism are pharmacologi-
cally treated in order to target non-core symptoms of their disease, including self-injury,
aggression, irritability, and hyperactivity [53]. The molecular pathways that are targets for
such treatments are represented in Figure 4. Some drugs have been used in order to treat
the target core of the disorder, including growth factors [54], glutamatergic drugs [55–57],
GABAergic drugs [58,59], and oxytocin [60]. The results are encouraging, but further
research is required [61].
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Figure 4. The network below represents the target of molecular drugs used in the treatment of
non-core symptoms of autism.

The network was built from the Drugbank database. The query was performed
through the CyTargetLinker plugin of Cytoscape 3.10.3 software.

Dark-shadowed hexagons indicate the targeted proteins of pharmaceutical com-
pounds. The proteins were obtained from the previous analyses on GO:0007417. Dark-
shadowed circles indicate the compounds which interactions with the targeted proteins
have been validated in the Drugbank Database.

The GO:0007417 pathway represents a comprehensive network that encompasses
several biological subprocesses involved in the development and physiological functions
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of the central nervous system. A detailed view of the network and its subnetworks within
GO:0007417 is illustrated in the figure below (Figure 5a,b). In particular, Figure 5b highlights
various molecular interactions associated with GO:0007417, including those related to
astrocyte and oligodendrocyte differentiation, the development of the limbic system, and
postsynaptic transmission, among others. This representation is particularly noteworthy,
as the role of glial cells in shaping neuronal networks during development may be crucial
for understanding several psychiatric disorders, including autism [62]. Moreover, the
involvement of the limbic system may play a major role in the pathophysiology of autism,
which is characterized by a diminished ability to process affective inputs [63,64].
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Figure 5. (a) In the following diagram, the biologic processes related to the genes under investigation
are represented. The diagram shows the subnetworks, and the genes not included in subnetworks,
that belong to GO:0007417. In the network below is presented a graphic visualization of the molecular
network. The asterisks indicate when the correlation between the subnetworks and the set of genes
under investigation is significant (*) or highly significant (**). This was calculated by the Cluepedia
plugin for Cytoscape 3.10.3 software. To calculate the degree of significance for each biological
process, the software evaluates the ratio between (1) the number of genes within the network under
investigation that also belong to the biological process and (2) the total number of genes composing
the same biological process. (b) GO:0007417. The molecular pathway is represented, along with some
of the connected molecular networks, including the astrocyte and oligodendrocyte differentiation,
the development of the limbic system, and postsynaptic transmission, among others. The network
was built from the GO Biological Process database (9 February 2016). The query was performed
through the ClueGO plugin of Cytoscape software. Details on the query, including kappa score, the
Tree interval considered, and others, are available upon request.
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Radial glia cells help neurons migrate towards their final neurological destination
through the developmental process, starting from the fetal period [65]. The migration
from the germinal areas of the nervous system, which is dependent on the correct activity
of the glia system, shapes some nervous structures later during the developing period,
called cortical mini columns [66]. Those structures were found to be significantly altered
in the brains of autistic patients, containing more neurons when compared to the normal
controls and signs for a global GABAergic dysfunction [67]. Finally, the glia is involved
in the pruning process, an event that continues in late adolescence and is central to the
development of brain structures. This process is mediated in part by glia cells [68], as it was
demonstrated that the glia is overrepresented in the brains of autistic patients, which shows
a pattern of activation that is aberrant or consistent with a pro-inflammatory state [69].

This is consistent with the hypothesis that autism arises from disruptions in the
physiological interregional connectivity between brain regions. Our findings align with
previous observations in the literature and suggest an involvement of neurodevelopmental
events, as well as a potential role of glial cells in shaping these processes. However, the
present investigation has limitations that necessitate further independent studies.

One significant limitation is the low number of markers and the inconsistencies be-
tween markers in the investigation and replication samples. This resulted in a heteroge-
neous representation of the same molecular pathways across the two genetic databases.
Replication was possible because different genes covered in the various genetic databases
were found to be enriched and clustered within the GO:0007417 pathway. The lack of
comprehensive coverage and the differing SNPs included in the two arrays may have
contributed to a decrease in the power of the current analysis.

The linkage disequilibrium (LD) structure of the variations under analysis was consid-
ered in the quality assessment of the results (using QQ-plots and lambda values), but the
impact of LD cannot be entirely ruled out. The samples analyzed are considered medium to
large in the context of GWAS, which may also have influenced the power of this investiga-
tion. We attempted to mitigate the risk of false-positive findings by including a replication
sample and conducting permutation analyses. Nevertheless, further independent analyses
are essential before confirming our results.

Finally, our results strengthen the idea that further research is needed focused on the
genes and molecular cascades that characterize the GO:0007417 pathway. These genetic
insights could inform the development of targeted therapies for autism.

5. Dataset
5.1. Investigation Sample

Genetic data were available from the NIMH Center for Collaborative Genetic Studies.
NIMH Study 65, also known as AGP or TASC (PI: Gallagher), deposited genotype

data in four sets, cleaned and raw, stage1 and stage2. NIMH then combined the cleaned
stage1 and stage2 data into one dataset named Autism Dataset 4 in the PLINK file format.
The n = 2893 records in Dataset 4 occur in n = 964 families (99% trios), of which n = 935
families have one or more probands with a diagnosis, ranging from strict to broad autism;
see the documentation for definitions.

The AGP Simplex Collection (TASC) was funded by an award from Autism Speaks
and by funding support to the repository development by the NIMH. The principal inves-
tigator and co-investigators in this study were Louise Gallagher, Trinity College Dublin;
Astrid Vicente, Instituto Gulbenkian de Ciencia, Oeira; Joseph Buxbaum, Mount Sinai
School of Medicine; Peter Szatmari, McMaster University; William McMahon, University of
Utah; Michael Cuccaro, University of Miami; James Sutcliffe, Vanderbilt University; Chris-
tine Freitag, Klinikum der Johann-Wolfgang Goethe-Universität, Frankfurt/Main; Sabine
Klauck, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg; Veronica Vieland (DCC
Director), Research Institute at Nationwide Children’s Hospital, Ohio; Dan Geschwind,
AGRE/UCLA; John Nurnberger, University of Indiana; Ed Cook, University of Illinois at
Chicago; Raphael Bernier, University of Washington/CPEA.
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5.2. Replication Sample

Genotype data were generated by Dan Arking and Aravinda Chakravarti using
1264 samples that were obtained from the NIMH Center for Collaborative Genetic Studies
on Mental Disorders. This study was supported by grants from the NIMH (R01 MH060007)
to Aravinda Chakravarti and Dan Arking.

Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M, Lin
S, Cook EH, Jr., Chakravarti A. A Common Genetic Variant in the Neurexin Superfamily
Member CNTNAP2 Increases Familial Risk of Autism. Am J Hum Genet 2008; 82:160–164.

5.3. Computational Power

A computer cluster was used to undertake the analyses. Computation power was
required for the permutation analysis. The GenomeDK HPC cluster at Aarhus University
comprises 190 nodes (3384 compute cores) connected with 10GigE/Infiniband. Each node
has from 16 to 32 cores and either 64 GB, 128 GB, 256 GB, 512 GB, or 1 TB of RAM. The cluster
has been designed specifically for bioinformatic workloads and has a storage capacity of
3.5 PB.

Author Contributions: Conceptualization, A.D. and C.C.; methodology, A.D. and M.C.; software, A.D.
and M.C.; validation, A.D.; formal analysis, A.D. and M.C.; investigation, A.D. and M.C.; resources,
A.D.; data curation, A.D.; writing—original draft preparation, A.D. and M.C.; writing—review and
editing, A.D. and C.C.; visualization, M.C.; supervision, A.D. and C.C.; project administration, A.D.
All authors have read and agreed to the published version of the manuscript.
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