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Abstract: Grape seed extract (GSE), one of the world’s bestselling dietary supplements, is prone to
frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the
supply chain due to the use of unspecific standard analytical methods for quality control. This research
aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive
quantitative evaluation of GSE powder in the presence of multiple additives. Samples were prepared
by mixing GSE with pine bark extract (PBE) and green tea extract (GTE) on different levels between
0.5 and 13% in singular and dual combinations. Measurements were performed with a desktop
and three different handheld devices for performance comparison. Following spectral pretreatment,
partial least squares regression (PLSR) and support vector regression (SVR)-based quantitative models
were built to predict extract concentrations and various chemical parameters. Cross- and external-
validated models could reach a minimum R2

p value of 0.99 and maximum RMSEP of 0.27% for the
prediction of extract concentrations using benchtop data, while models based on handheld data could
reach comparably good results, especially for GTE, caffeic acid and procyanidin content prediction.
This research shows the potential applicability of NIRS coupled with chemometrics as an alternate,
rapid and accurate quality evaluation tool for GSE-based supplement mixtures.

Keywords: dietary supplement; grape seed extract; chemometrics; handheld device; near-infrared
spectroscopy; machine learning

1. Introduction

One consequence of the recent globalization of the food market and the vast amount of
constantly available food products is the emergence of selective diets with health-preserving
aims. Dietary supplements are products designed for consumption with an aim to enhance
specific elements of the diet. These products (inexhaustibly) include vitamins, minerals,
amino acids, herbs and other botanical derivatives such as concentrates or extracts [1].
Individuals may consume dietary supplements for a variety of reasons; the most prominent
motivations include maintaining adequate nutrition, preventing age-related conditions,
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and safeguarding body tissues from damage. These supplements are often considered a
convenient way to address nutritional deficiencies, enhance overall health, and support
specific bodily functions, such as immune system health or joint protection, particularly
as people age [2,3]. Consumers are presented with an overwhelming array of different
products, brands, and formulations distributed through various marketing channels. The
dietary supplement market was estimated at USD 177.5 billion in 2023 and is predicted to
nearly double by 2030 [4]—the continuous growth in sales implies that these products are
becoming an integral part of people’s diets [5].

Polyphenolic compounds derived from grapes have been associated with the preven-
tion of various diseases, including cancer, cardiovascular and neurodegenerative diseases
such as Alzheimer’s [6–8]. The abundant by-product of the wine industry, grape seeds, is
considered an extremely high source of biologically active compounds, which are often
further condensed by applying extraction and drying processes to create grape seed ex-
tracts (GSE) [9,10]. These extracts are primarily marketed as dietary supplements and are
available in forms such as powder mixtures, tablets or capsules.

Serious concerns have been raised by the US Food and Drug Administration (FDA)
regarding the safety, efficacy and quality of dietary supplements, especially for those of
plant origin, voicing a high risk of adulteration, contamination and the potential absence
of key bioactive compounds. These issues are exacerbated by the lack of compositional
standardization, leading to batch-to-batch inconsistencies, making it difficult to ensure
uniformity in quality and efficacy [11,12]. Furthermore, the compounds themselves are
often insufficiently characterized, and there is also a lack of specific quality control methods
capable of reliably identifying and quantifying their presence in dietary supplements.
Current industrial practices generally rely on unspecific spectroscopic methods, like total
phenolic content (TPC) determination and intentional adulteration with organoleptically
and chemically similar but cheaper and more readily available substitute compounds,
which may go unnoticed in the supply chain [9].

Adding to the significant variability in chemical composition, Villani and colleagues [10],
using a high-performance liquid chromatography (HPLC)-based method, found that 9
out of 21 commercially available GSE-based supplements were adulterated with peanut
skin extract (PSE)—a cheaper compound with less biological activity and a potential aller-
gen risk. The bioavailability of polyphenols varies significantly between different types,
meaning that the most abundant polyphenols in our diet do not always result in the
highest concentrations of active metabolites in target tissues [13]. Even among proan-
thocyanidins, the primary phenolic compounds in GSE with proposed health-promoting
benefits, bioavailability greatly varies based on the degree of polymerization, with multiple
studies highlighting that only monomers and dimers are absorbed in human intestines
in a significant amount [13–15]. Peanut skin extract has a similar total phenolic content
and antioxidant capacity while mainly consisting of the same proanthocyanidins as GSE,
with the difference of containing more of the polymeric fraction with inferior biological
activity [10,16]. Differences have also been observed in the bonding patterns of monomers
composing proanthocyanidins in GSE and PSE. The former mainly consists of singular
bonds (B-type), while the latter consists of double bonds (A-type), generally making the
hydroxyl groups of GSE proanthocyanidins more likely to react to and interact with other
molecules [17].

Pine bark extract (PBE) is another common adulterant with a high chemical similarity
to GSE, containing the same B-type proanthocyanidins (procyanidins with higher poly-
merization and monomers) as GSE. The only reported differences are the presence of low
levels of A-type proanthocyanidins and a relatively higher concentration of biologically
inactive polymers [10,16]. While some studies suggest the complete absence of A-type
proanthocyanidins in GSE, proposing a potential biomarker to reliably detect PSE and
PBE-based adulteration, other research contradicts this, unveiling the presence of type-A
proanthocyanidins in certain grape seed varieties [18].
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Green tea extract (GTE), although not considered an adulterant of GSE due to its
highly active phenolic composition (mainly gallic acid and proanthocyanidin monomers)
and generally high value [19,20], is frequently combined with GSE for positive synergistic
effects [21]. Food authentication refers to the process of verifying that the product’s
ingredients align with its label descriptions and claims [22], and the lack or insufficient
amount of valuable and active additives, like GTE, is also a form of consumer deception.

Due to these characteristics, detecting the mentioned additives in GSE is nigh im-
possible using conventional analytical approaches such as TPC, antioxidant or even total
procyanidin assays without the addition of in-depth proanthocyanidin profiling based
on sophisticated, costly and time-consuming methods [9]. Additionally, solely focusing
on detecting A-type proanthocyanidins might not be sufficient to reliably identify PSE
and PBE-based adulteration in GSE. In contrast, non-targeted (fingerprinting) methods,
where samples are evaluated by their broad physicochemical characteristics rather than a
single biomarker, have proven to be a more realistic approach to identifying these types
of fraud [23]. A wide variety of methods can be categorized as non-targeted, with the
most significant being various “-omics” disciplines (such as genomics, metabolomics, pro-
teomics, etc.), as well as chromatographic, spectrometric, spectroscopic, and multisensory
techniques [24,25]. The speed, non-destructive and non-chemical nature of the measure-
ments and their practical applicability describe the potential application of a vibrational
spectroscopy technique to the above-detailed problem.

Near-infrared spectroscopy (NIRS) is among the most commonly applied and rapidly
evolving analytical techniques to evaluate food commodities in various industrial set-
tings [26–28]. NIRS instruments typically operate based on the Beer–Lambert law, covering
a wavelength range of 800 to 2500 nm, though specific spectral intervals and features may
differ by instrument manufacturer [29]. The technique measures the absorption intensities
as NIR light passes through a sample, which information is then captured, subtracted
and correlated to physical or chemical characteristics using chemometric methods. Tech-
nologies used to capture NIR absorption spectra vary, with the most conventional NIRS
systems using grating or prism setups to split spectra into the desired wavelengths. Digital
Light Processing (DLP)-based spectrometers, on the other hand, use a digital micromirror
device (DMD) and a single-point detector for wavelength selection, which makes them
more suitable for portable designs compared to spectrometers with traditional linear array
detectors [30].

Miniaturized vibrational spectroscopy devices enable on-site and real-time assess-
ments of food quality and production processes in the food industry. They have been em-
ployed for tasks such as authenticating food products [31,32], monitoring quality changes
over time [33,34] and distinguishing foods based on geographical origin [35], indicating the
industrial relevance of cheaper and more compact spectroscopic devices. A combination of
NIRS and chemometric tools has been used in several cases to investigate certain charac-
teristics of grape seeds, with research successfully detecting grape seed oil adulteration
with lower quality edible oils [36] and distinguishing vineyards of origin based on grape
skin and seed [37], as well as multiple studies on the accurate prediction of flavonoid
compounds in grape seeds [38–40].

The benefits of NIR technology can also be observed in the quality control of food
supplements produced using plant extracts. Deconinck and colleagues [41] investigated
the detectability of different active pharmaceutical ingredients dosed with a series of
plant-based supplements using NIRS. Georgieva and colleagues [42] characterized fresh
and stored wild berry extracts (bilberry, cranberry, raspberry, strawberry); Gardana and
colleagues [43] developed a NIRS-based method for the routine quality assessment of
authentic and adulterated bilberry extracts, commonly found in commercial nutritional
supplements. Walkowiak and colleagues [44] reported classification accuracies above
87% when detecting Ginkgo biloba leaf extract adulteration with kaempferol, quercetin
and rutin in supplements. NIRS also expands the industrial application in the control
(i.e., authentication and qualification) of targeted compounds in plants used in manufactur-
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ing dietary supplements. This may be particularly important for the detection of regulated
plant derivatives containing compounds that may have a toxic effect on the consumer, in
addition to reducing product quality, for example, in the case of traditional medicines and
nutraceuticals [45,46].

The overview highlights the extensive use of NIRS both in academic and industrial
applications. Nevertheless, to the best of our knowledge, there are no published scholarly
reports on the detectability and predictability of proanthocyanidin-based adulteration or
fortification in grape seed extracts. Detecting such additions is challenging due to the highly
similar proanthocyanidin profiles of the frequently used compounds. Addressing this gap,
this study aims to develop an NIRS-based method combined with chemometrics to quantify
pine bark and green tea extracts in GSE. Additionally, the study evaluates the performance
of benchtop and multiple portable NIRS devices, as well as various predictive algorithms,
to thoroughly assess the feasibility of the technique in differentiating compounds with high
chemical similarities.

2. Materials and Methods
2.1. Samples and Their Preparation

Authentic grape seed (GSE), pine bark (PBE) and green tea (GTE) extracts were
obtained from Xi’an Rongsheng Biotechnology Co., Ltd. (Shaanxi, China) in powdered
form. The authenticity of the materials was double-checked using an HPLC method
described by Villani et al. (2015) [10]. GSE was mixed with PBE and GTE to formulate
singular mixtures, where only a single additive was used (PBMIX, GTMIX), and dual
mixtures (PBMIX + GTMIX), where both additives were mixed to GSE simultaneously.
Ten additive levels were prepared (0.5, 1, 1.5, 2, 3, 5, 7, 9, 11, 13 w/w%) this way, with the
individual concentrations of added extracts in dual mixtures halved (e.g., 0.25–0.25 w/w%
of PB–GT for level 1, 0.5–0.5 w/w% for level 2, etc.). The concentration range was selected
to align with the industrial practice of adulteration and fortification of these compounds.
Samples containing only the pure compounds (GSE, PBE, GTE) were also prepared. Pure
GSE samples were prepared in 10 replicates, while all other samples were in triplicates,
resulting in a total of 147 samples. All samples were thoroughly homogenized in plastic
sample holders.

2.2. Methods for the Characterization of Grape Seed Extract Adulteration and Fortification

Sample preparation, spectral acquisition and modeling are briefly summarized in
Figure 1 and discussed in detail in the following subsections.

Figure 1. Schematic diagram of the study summarizing sample preparation, spectral acquisition and
predictive modeling.
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2.2.1. Procyanidin Content Determination

For the procyanidin measurement, the method of Porter et al. [47] was adopted. First,
5 mg of the samples was dissolved in 10 mL of methanol (≥99.8% purity). Subsequently,
methanolic extracts were diluted to 1:2, 2:5, 3:10 and 1:5. From each of the diluted samples
and the original sample, an amount of 1 mL was transferred into 8 mL glass vials, then 6 mL
BuOH-HCI solution (95:5) and 200 µL NH4Fe(SO4)2 × 12 H2O solution (2 w/v%) were
added. After mixing, the vials were placed into a water bath and kept at 95 ◦C for 40 min.
The absorbance of the solutions was then measured at 550 nm using a Thermo Electron
Nicolet Evolution 300 UV-Vis spectrophotometer (Waltham, MA, USA). All samples were
prepared in triplicate.

For the calibration, a condensed tannin extract (Silvateam Welltan, quebracho tree
extract (Schinopsis lorentzii) 95%) was used in the 0.02–0.2 mg/mL concentration range.
Based on the calibration curve, the results were calculated in mg (condensed tannin equiv-
alent) per mL of extract (mg/mL). Reagents were acquired from VWR International Kft.,
Debrecen, Hungary.

2.2.2. Antioxidant Capacity Determination

For antioxidant activity (AA) determination, the 2,2-diphenil-1-picrylhydrazil (DPPH)
radical scavenging assay was used [48].

An amount of 0.5 g of GTE, GSE and PBE samples were dissolved in 5 mL of methanol
and stirred for 30 min. Successively, 134 µL of each sample solution was added in a cuvette
containing 3.9 mL of a 6 ∗ 10−5 M methanol solution of DPPH. The cuvette was incubated
in the dark for 40 min at room temperature. The bleaching of DPPH was recorded at 515 nm
by a UV–6300PC Double Beam Spectrophotometer (VWR International S.r.l., Italy) at room
temperature (Asample). A blank experiment was also carried out by applying the same
procedure to a solution without sample (Ablank). The antioxidant activity was expressed as
the percentage inhibition of DPPH and calculated as follows:

% inhibition o f DPPH =

(
Ablank − Asample

)
Ablank

∗ 100

Antioxidant activity was finally expressed as Trolox equivalent. Values were de-
termined by a calibration curve of Trolox standard solutions (60–600 µM), performed
according to sample preparation. The results were expressed as µmol of Trolox equivalent
per gram of sample. Reagents were acquired from VWR International S.r.l., Milan, Italy.

2.2.3. HPLC Method for Proanthocyanidin Monomers (Gallic Acid, Catechin, Epicatechin)
and Caffeic Acid Determination

HPLC analysis was performed using a Hewlett Packard HP-1100 series (Palo Alto, CA,
USA) fitted with an auto sampler and a diode-array detector (DAD). The separation was
achieved on a Poroshell 120 EC-C18 column (150 × 4.6 mm I.D., 4 µm particle size) (Agilent,
Santa Clara, CA, USA). The column temperature was set at 25 ◦C, and the injection volume
was 2 µL. The mobile phase was used in gradient mode. The elution was performed
using 1% acetic acid in acetonitrile (v/v) (A) and 1% acetonitrile in water (B), and the
flow rate was set at 1.2 mL/min. HPLC/DAD analyses were performed monitoring at
280, 310 and 350 nm. Phenolic compounds were identified by comparing retention time
and UV absorption spectra with available standards. Quantification was performed with
standard curves of external standards generated by plotting HPLC peak areas against the
concentrations (mg/L). Final values were expressed in mg/g. Reagents were acquired from
VWR International S.r.l., Italy.



Foods 2024, 13, 4164 6 of 25

2.2.4. NIR Spectral Acquisition

One benchtop and three handheld/portable NIR spectrophotometers were used for
spectral acquisition. NIR devices were selected to provide multiple comparison options,
including spectra acquisition technology, recording ranges and resolution.

The NIRS XDS (Metrohm, Glostrup, Denmark) with the RapidContent Analyzer
module was used as the benchtop device. The device operates with a dispersive grating
monochromator to acquire spectra in the 400–2500 nm wavelength range at 0.5 nm intervals.
Diffuse reflectance signals were collected by a silicon (Si) detector in the 400–1099.5 nm
range and a lead sulfide (PbS) detector in the 1100–2500 nm range.

Regarding the handheld instruments, the NIR-S-G1 (InnoSpectra Co., Hsinchu, Tai-
wan) with a DLP micromirror array and an InGaAs detector was used in the wavelength
range of 900–1700 nm and a spectral resolution of 3 nm. The second handheld instrument
was the MicroNIR 1700 EC (Viavi Solutions Inc., Chandler, AR, USA), featuring a mul-
tielement InGaAs array detector paired with a linear variable filter (LVF). Spectra were
collected in diffuse reflectance mode in the 908–1676 nm wavelength spectral range with a
resolution of 6.2 nm. The microPHAZIR (Thermo Fisher Scientific, Waltham, MA, USA), a
fully autonomous handheld instrument with its own built-in user interface, was the third
portable device. The instrument uses a micro-optoelectro-mechanical system (MOEMS) for
wavelength selection and an InGaAs detector; it provides a spectral resolution of 12 nm
(optical) in the measured range of 1596–2396 nm.

With the benchtop device, sample spectra were collected through an optical glass
window cuvette. To minimize variations in light scattering, the powdered samples were
compacted uniformly by gently tapping the cuvette three times on a laboratory workbench
before collecting the spectra. Due to previous findings unveiling a potential better perfor-
mance for scanning samples through plastic bag containers compared to using cuvettes in
the case of DLP-based devices [49], all handheld data were collected by scanning samples
directly in low-density polyethylene (LDPE) bags. Additionally, this approach was also
intended to better simulate the industrial application of portable devices.

All spectra were collected at room temperature (25 ◦C) with 3 consecutive scans,
resulting in a total of 1764 measurements across all samples and spectrometers. Both
temperature and humidity levels during spectral acquisition were monitored using a
Voltcraft DL-121TH multi-data logger (Conrad Electronic, Berlin, Germany) to account for
any substantial environmental condition.

2.3. Statistical Methods
2.3.1. Univariate Statistical Comparison of the Chemical Reference Results

One-way ANOVA was used to identify significant differences between the chemical
measurement values obtained for each raw extract. Prior to this step, the validity of the
input data for ANOVA was ensured; homogeneity of variances was verified by Bartlett’s
test, whereas the Shapiro–Wilk test was used to check for normality. Homogeneity of
variances and normality could not be accepted when comparing gallic acid (K(2) = 13.99,
p < 0.01; W = 0.76, p < 0.01) and catechin values (K(2) = 10.73, p < 0.01; W = 0.8, p < 0.05)
of the different extracts even after the evaluation of skewness and kurtosis; hence, these
parameters were left out of univariate statistical analysis. For the remaining chemical
parameters (procyanidin content, antioxidant capacity, caffeic acid, and epicatechin), which
passed the assumption tests for ANOVA, pairwise comparisons were made between the
extracts using Bonferroni’s post hoc test.

2.3.2. Exploratory Analysis of the NIR Spectroscopy Results

Raw spectra recorded with each spectrometer were visualized to identify prominent
absorbance regions and determine the appropriate spectral pretreatment to apply. Av-
eraged raw spectra of the pure extracts and the second derivatives of the raw spectra
containing only the highest levels of added extracts were also visualized to identify and
match prominent absorbance peaks.
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Principal component analysis (PCA) was employed for the inspection of the data
structure, pattern recognition, and outlier detection [50]. Principal components were also
used as inputs for support vector regression-based modeling. Prior to modeling, various
pretreatments were used to reduce baseline variations and slope differences caused by un-
wanted variance and spectral noise, including Savitzky–Golay (SG) filter with second-order
polynomial and varying smoothing points between 11 and 41, standard normal variate
(SNV), multiplicative scatter correction (MSC), detrending (deTr), first (FD) and second
(SD) derivatives [51]. Optimal combinations were selected by observations on raw spectra
and PCA score plots, following further tuning during supervised modeling. In general, the
combination that reduced baseline shifts and discrepancies in curvature the most while
emphasizing chemically identified prominent absorbance peaks and regions was selected
for supervised modeling. Similarly, specific wavelength ranges were also selected for each
instrument, focusing on regions identified as containing the most valuable information
during the exploratory analysis. During wavelength selection, regions identified as having
poor signal-to-noise ratio, extremely high absorbance values or exhibiting spectral artifacts
originating from sensor/instrument characteristics were generally omitted.

2.3.3. Predictive Modelling of the NIR Spectroscopy Results

The concentration of each extract (GSE, PBE, GTE), the procyanidin content (proan-
thocyanidins with ≥2 level of polymerization), the antioxidant activity, the concentration
of proanthocyanidin monomers (gallic acid, catechin, epicatechin) and caffeic acid were
modeled and predicted using partial least squares regression (PLSR) and support vector
regression (SVR). Each model was individually optimized to reach the highest predictive
performance while avoiding overoptimistic predictions by model overfitting. The models
were cross-validated using leave-three-consecutive-out, and an external validation via a test
set was also applied to the most promising models to definitively assess their robustness.
For test-set prediction, two-thirds of the data (two replicates) were used for training, and
one-third (one replicate) was reserved for testing, repeated three times to have all samples
both in the training and the validation set. Alongside the spectral pretreatments in the
case of PLSR models, latent variable (LV) numbers were also adjusted to capture enough
variance without the risk of overfitting. LV selection was achieved using error plots, model
performance metrics and observations on regression vectors [52].

SVR models were optimized by selecting the number of input PCs and by simultaneous
hyperparameter tuning. Hyperparameter tuning involved adjusting the error weight (C:
0.1–10) and the maximum error value (ε: 0.01–0.5) while also testing different kernel
functions (linear, radial, polynomial, and sigmoid) [53]. The cost function was used to
minimize both the model coefficients and prediction errors simultaneously, aiming to
achieve the best-performing model for each set of parameters [54] while keeping in mind
that excessively large coefficients can reduce the generalization ability of the model by
increasing variance, leading to overoptimistic predictions. The risk of model overfitting
was reduced by setting a maximum acceptable difference of ~15% between calibration
and validation average error values. The difference was followed by scree-plots as the
number of components was gradually increased. As a general rule of thumb, the maximum
number of components was set not to exceed 1/10th of the total number of samples in the
model [55]. For models built with a linear kernel, regression vectors were also visualized
and evaluated.

All regression models were evaluated based on model performance metrics, including
root mean square error of calibration (RMSEC), root mean square error of cross-validation
(RMSECV), root mean square error of test-set prediction (RMSEP), determination coefficient
of calibration (R2

C), determination coefficient of cross-validation (R2
CV) and determination

coefficient of test-set prediction (R2
P). Material concentration ranges were not selected to

specifically test detection limits due to a more profound focus on modeling real industrial
fortification/adulteration schemes and hence using higher minimum concentrations than
the presumed detection limit of the devices; for the best performing models, the limit of
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detection (LOD) and quantification (LOQ) values were still calculated for comparative
reasons. In general, LOD is defined as the lowest concentration of an analyte in a sample
that can detected, but not necessarily quantified, under specific test conditions, while
LOQ refers to the minimum concentration of an analyte in a sample that can be measured
with sufficient precision and accuracy. LOD and LOQ values were established using a
conventional regression-based method assuming no serious background noise [56], which
is applicable for both SVR and PLSR models equally. For a linear calibration curve, the
instrument response (y) was presumed to have a direct linear relationship with the standard
concentration (x) over the defined range of values. This relationship is expressed as follows:

y = a + bx

where a represents the intercept, and b is the slope indicating sensitivity. Using this model,
the LOD and LOQ can be calculated as follows:

LOD = 3 ∗ Sa
b

LOQ = 10 ∗ Sa
b

where Sa is the residual standard deviation of a test-set predicted model. All data evaluation
and visualization were achieved using R-project (v. 4.3.0, 2023, The R Foundation for
Statistical Computing, Vienna, Austria; using R package: aquap2 [57]).

3. Results
3.1. Chemical Measurement Results of the Extract Mixtures

Chemical measurement results for all three raw extracts are summarized in Figure 2.
The highest average procyanidin content was measured for PBE at 317.5 ± 13 mg/g,
significantly more (F(8) = 373.4, p < 0.01) than in the case of GSE (269 ± 8.1 mg/g) and
GTE (56.5 ± 8.6 mg/g). The applied procyanidin assay does not account for monomeric
flavan-3-ols, which fraction was previously reported to be much higher in GSE than in
PBE [10]. By combining the monomers (gallic acid, catechin, epicatechin), present results
are in agreement with this observation, with GSE having a significantly higher (F(2) = 5759,
p < 0.01) monomeric fraction of 228.9 ± 1.3 mg/g than PBE (186.7 ± 2.6 mg/g) and GTE
(55.4 ± 0.4 mg/g). The magnitude of these results is also in agreement with previous
findings, where authors reported values between 9.3 and 14% [58] and 162.5 mg/g [10] for
the monomeric fraction in GSE. The results can be greatly different if galloylated monomers
are also counted. GTE was reported to have the lowest degree of polymerization out of the
three extracts in previous studies [16,59], explaining the present low procyanidin (which
only counts dimers and up) but comparatively high antioxidant capacity results. The
present study does not discuss galloylated monomers, which are by far the most abundant
phenolic compounds in GTE–the concentration of epigallocatechin gallate (EGCG) alone
reported to reach up to 250–950 mg/g [16], whereas EGCG was also identified as the highest
contributing tea polyphenol in antioxidant assays [60]. In alignment with these, for antioxi-
dant capacity, a significantly higher (F(2) = 108.1, p < 0.01) value was measured for GTE
(53.4 ± 1.9 µmol/g) compared to GSE (15.4 ± 0.4 µmol/g) and PBE (27.6 ± 3.5 µmol/g).
A roughly two times higher antioxidant capacity value for GTE compared to PBE was
similarly reported previously [20]. The main difference between GSE and PBE was the
monomer composition, with GSE showing higher gallic acid and lower catechin values
compared to PBE. Whereas these differences could not be statistically proven, they were
in agreement with previous research [10]. Caffeic acid, a highly bioavailable polypheno-
lic monomer [61], was present in roughly one magnitude lower concentration than the
prominent monomers in each extract, as was expected based on literature data [62].
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3.2. Exploratory Data Evaluation of the NIR Spectroscopy Results Based on Raw Spectra and PCA

The raw spectra of the measured samples are summarized in Figure 3. Due to the
chemical similarities of the extracts, only subtle differences could be identified by visual
inspection of the untreated spectra (Figure 3A), whereas there were some visible differ-
ences between the spectra recorded by the different spectrometers. Most notably, as the
measurements with miniaturized spectrometers were taken directly in the container bags,
the presence of LDPE bands could be noticed in the corresponding spectra. These were best
manifested in the longer wavelength part of the NIR region that only microPHAZIR mea-
sured, i.e., fairly strong and well-resolved peaks at ~2350 nm (binary combinations of CH
stretching and CH deformation modes) and at ~1800 nm (first overtones as well as binary
combinations of CH stretching modes). The polymer bands towards the short-wavelength
boundary of the examined region were weaker; nonetheless, the second overtone of C-
H stretching of LDPE could be seen at ~1220 nm in the spectra acquired by MicroNIR
(relatively better resolved) as well as NIR-S-G1 (less pronounced in the intensity). The
positions and appearance of these peaks are characteristic of PE polymer, regardless of
the matrix [63]. Importantly, the presence of the superimposed bands of the bag material
did not prevent successful predictions of the constituents of interest in this study, both in
the case of handheld instruments operating in the short- and long-wavelength part of the
NIR region.

Spectra acquired with the handheld devices, however, showed distorted results near
the boundaries of their spectral regions in most cases; hence, these regions were deemed
unreliable and were omitted [64,65]. Since the XDS operates with two detectors with a
noticeable baseline shift at 1100 nm, the wavelengths below 1100 nm were excluded before
further modeling. Based on these observations, the 1100–2250 nm range was selected for
the XDS, the 1630–2250 nm range for the microPHAZIR, and the 950–1650 nm range for the
NIR-S-G1 and microNIR as the regions potentially containing the most useful information.
The spectra recorded with handheld devices showed both a baseline and a slope shift,
indicating the necessity to apply spectral correction prior to further analysis. SNV was
applied to account for the baseline variance, whereas detrending proved to be effective at
mitigating slope differences [66].
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Figure 3. Averaged raw spectra of the extract samples: (A) raw spectra of the pure extracts recorded
with all four devices; (B) second derivative of the raw spectra of pure extracts and samples containing
the highest amount of GTE or PBE added, recorded with the benchtop device (XDS). The visible
range of the benchtop device (400–799.5 nm) was excluded. Second derivatives were calculated using
Savitzky–Golay filter with second-order polynomial and 21 smoothing points. Vertical lines indicate
notable peak differences between the spectra of the individual sub-datasets. Vertical offsets provide
better interpretability of the plot; these offsets were not introduced during data analysis.
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By looking at the second derivative of the spectra acquired with the benchtop device
(Figure 3B), subtle differences could be observed between the spectra of pure GSE and
samples that contained the additives in the highest concentration. These differences were
mainly present in the 1650–1750 nm range (the first overtone region), where mainly C-H
stretching bands can be found, with the additional possibility of S-H (aromatic) bands also
manifesting in there [67]. Polyphenolic compounds, like proanthocyanidins, are known
for containing aromatic rings where C-H bonds are present; therefore, this region could
explain compositional differences between samples.

Following the initial application of spectral pretreatments and the selection of the
prominent regions, the results of PCA were summarized in Figures 4 and 5. In the case of
the benchtop device (Figure 4A), the separation of measurement points could mainly be
seen along the third principal component. The corresponding loading vectors (Figure 4C)
unveiled the most important wavelength regions in this separation to primarily be at
~1700–1750 nm with S-H and C-H stretching bands. Another notable peak at ~1908 nm can
predominantly be attributed to moisture and potential O-H stretching vibrations caused by
carboxyl groups of (phenol) carboxylic acids [67]. A certain extent of separation alongside
PC1 was also visible in the form of inter- and intra-group variance, which could probably
be due to the slight differences in moisture content based on the prominent peak at 1922 nm.
In the case of the NIR-S-G1, the PCA score plot (Figure 4B) showed the most notable
separation of measurement points belonging to different additive concentration values
alongside the second principal component, accounting for ~11% of the total variance. By
observing the corresponding loading vectors (Figure 4D), the most significant peaks for
this separation were at 1419 and 1467 nm. Water molecules are known to have strong
absorption at 1400–1450 nm, while aromatic O-H stretching bands are also characteristic of
this region, which could be attributed to the presence of phenolic compounds [67]. PCA
score plots also indicated the necessity for outlier detection prior to regression modeling.
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based on XDS data; (B) PCA score plot based on NIR-S-G1 data; (C,D) corresponding loading vectors.
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In the case of the MicroNIR (Figure 5A) and the microPHAZIR (Figure 5B), measure-
ment points belonging to the different additive concentrations and types on PCA score plots
show a significant overlap. For the MicroNIR, a notable separation could only be identified
along the fourth PC, explaining ~0.4% of the total variance. Prominent peaks could be
identified at the overlap of the first and second overtone regions with O-H, (aromatic), C-H
and N-H stretching vibrations, which could indicate the presence of organic compounds
like carbohydrates, hydrocarbons and proteins. For the microPHAZIR, a separation of
points could be seen alongside PC1, holding ~82.5% of the total variance, with two major
peaks at ~1952 nm and ~2138 nm on the loadings vector (Figure 5D). These peaks are
associated with C-H and O-H and N-H combination bands, and they are also visible on the
XDS PCA loadings (Figure 4C) with a slight drift. Overall, PCA results based on the data
of all devices show notable separation based on additive levels with a high probability of
signaling a change in phenolic compound composition.

3.3. Predicting Extract Concentrations and Chemical Parameters Using PLSR and SVR

As anticipated [49,68], the best models for every parameter were built using the
benchtop (XDS) dataset. The results of extract concentration prediction using PLSR and
SVR are summarized in Tables 1 and 2, respectively. For the prediction of GSE concentration,
the best-performing model using the XDS dataset and PLSR could reach an R2

CV value of
0.99 with an RMSECV value of 0.446%, followed by the MicroNIR and PLSR combination
with an R2

CV of 0.767 and an RMSECV of 2.128%. To quantify pine bark-based adulteration,
both the PLSR and the SVR models could reach remarkable fit quality using the benchtop
dataset with the highest R2

CV value of 0.993 and the lowest RMSECV value of 0.268%.
Models built on handheld datasets, however, had poor to medium model fits in predicting
PBE concentrations, with the microPHAZIR dataset proving to be the best with an R2

CV of
0.671 and an RMSECV of 1.79%. For the prediction of green tea extract concentration, high
predictive performance was reached with almost all dataset-algorithm combinations, with
the best model built by combining XDS data with SVR, reaching an R2

CV of 0.985 and an
RMSECV of 0.396%. Out of the handheld devices, a comparably good performance was
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achieved by using the NIR-S-G1 dataset and PLSR with an R2
CV of 0.965 and an RMSECV

of 0.630%.
For the prediction of procyanidin, antioxidant capacity and caffeic acid (Tables 3 and 4),

most dataset-algorithm combinations resulted in models with good predictive performance.
By far, the best models to predict proanthocyanidin content were achieved using the XDS–
SVR and NIR-S-G1–PLSR combinations, with respective R2

CV and RMSECV values of
0.988, 0.805 mg/g and 0.95, 1.629 mg/g. These results are comparable to previous research
predicting procyanidin content using NIRS data [69]. For antioxidant capacity prediction,
models built with SVR generally performed better than PLSR, with once again the XDS
and NIR-S-G1 datasets proving most suitable for model building, reaching respective
R2

CV and RMSECV values of 0.983, 0.167 µmol/g and 0.914, 0.373 µmol/g. Comparing
the other two devices for antioxidant capacity prediction, the model built on MicroNIR
compared to microPHAZIR data was slightly more feasible, in agreement with previous
findings [70]. To predict caffeic acid content—similarly to the case of procyanidin content
prediction—the XDS–SVR and NIR-S-G1–PLSR combinations provided the best models
with respective R2

CV and RMSECV values of 0.982, 0.019 mg/g and 0.951, 0.031 mg/g. In
general, models predicting caffeic acid based on NIR-S-G1 and MicroNIR data were close
to the performance of the benchtop model, with the microPHAZIR reaching slightly worse
model metrics. This implies the significance of the second overtone region in predicting
this particular phenolic monomer.

The predictive results for the proanthocyanidin monomers were summarized in
Tables 5 and 6. Compared to the performance of benchtop-based models, models built
on handheld device data showed a notably worse performance for all monomers. Out of
the handheld datasets, contrary to the observations for caffeic acid, these monomers were
predicted with the lowest average error using microPHAZIR data in all cases, indicating
the potential significance of the first overtone and combination band regions to predict
these compounds. This region was also prominent for the separation on PCA score plots for
the XDS and microPHAZIR datasets (Figures 4A and 5B). Gallic acid, the most abundant
monomer in GSE, was predicted with an R2

CV of 0.985 and RMSECV of 0.682 mg/g with
the XDS-PLSR combination, while the model based on microPHAZIR data could reach an
R2

CV of 0.769 and RMSECV of 2.738 mg/g. Outside of gallic acid prediction, SVR provided
slightly better models for the XDS datasets, while PLSR was undeniably better at building
predictive models for all handheld datasets when predicting proanthocyanidin monomers.

As anticipated, the benchtop spectrometer produced the most information-rich and
reliable data, leading to the best-performing predictive models. All the miniaturized
instruments examined in this scenario showed measurably lower performance, which
must be accepted for on-site applications. Among the handheld instruments, the NIR-S-G1
achieved the best model fits and lowest average errors in most cases. Comparing the
regression methods, while SVR provided some of the best-performing models, mainly for
the benchtop instrument, PLSR showed an overall better performance across the board,
especially in the case of handheld datasets. Interestingly, the available literature presents
an inconsistent background for this conclusion; previous studies both align with [71]
and contradict [72] the observation that PLSR offers better performance in modeling the
relationship between NIR spectral data and polyphenolic reference. When looking at
the different parameters, the best model fit for the benchtop device was achieved when
predicting PBE concentration, while it was the prediction of GTE concentration for the
NIR-S-G1.

For these reasons, test-set prediction was performed for the XDS and NIR-S-G1 for the
prediction of PBE and GTE, respectively, while using both PLSR and SVR as algorithms.
The results of test-set prediction are shown in Figures 6 and 7.
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Table 1. PLSR results for all instruments to predict extract concentrations. Error values are in %w/w.

Grape Seed Extract Content Pine Bark Extract Content Green Tea Extract Content

Instrument NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR

Range (wl) 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250

Pre-treat. SG-31 +
SNV

SG-21 +
deTr

SG-11 +
deTr + SNV

SG-11 + deTr
+ SNV

SG-21 +
MSC

SG-31 +
deTr + SNV

SG-21 +
deTr + SNV SG-11 + SNV SG-21 +

SNV
SG-11 +

deTr
SG-21 +

deTr + SNV SG-11 + SNV

LV 7 8 12 9 7 12 14 10 4 8 12 6
RMSEC 0.393 2.037 1.769 1.929 0.234 1.822 1.704 1.580 0.394 0.550 0.795 0.982
R2

C 0.992 0.786 0.839 0.809 0.995 0.688 0.717 0.744 0.985 0.973 0.943 0.915
RMSECV 0.446 2.271 2.128 2.140 0.277 2.083 2.061 1.790 0.423 0.630 0.914 1.092
R2

CV 0.990 0.734 0.767 0.764 0.992 0.592 0.586 0.671 0.983 0.965 0.925 0.895

Table 2. SVR results for all instruments to predict extract concentrations. Error values are in %w/w.

Grape Seed Extract Content Pine Bark Extract Content Green Tea Extract Content

Instrument NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR

Range (wl) 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250

Pre-treat. SG-31 +
SNV

SG-21 +
deTr

SG-11 +
deTr + SNV

SG-11 + deTr
+ SNV

SG-21 +
MSC

SG-31 +
deTr + SNV

SG-21 +
deTr + SNV SG-11 + SNV SG-21 +

SNV
SG-11 +

deTr
SG-21 +

deTr + SNV SG-11 + SNV

PC 7 23 8 17 12 14 8 17 13 16 26 17
Kernel linear linear linear linear linear linear linear linear linear linear linear linear
ε 0.1 0.5 0.1 0.01 0.01 0.5 0.5 0.5 0.01 0.1 0.1 0.5
Cost 10 1 0.25 110 10 0.24 0.4 10 10 10 10 1
RMSEC 0.512 2.131 2.659 2.772 0.233 2.186 2.262 2.231 0.374 0.561 0.809 1.565
R2

C 0.986 0.762 0.626 0.596 0.995 0.559 0.486 0.510 0.987 0.971 0.938 0.766
RMSECV 0.566 2.448 2.768 2.957 0.268 2.372 2.678 2.492 0.396 0.644 0.903 1.673
R2

CV 0.983 0.685 0.600 0.540 0.993 0.480 0.290 0.388 0.985 0.961 0.924 0.733
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Table 3. PLSR results for all instruments to predict the procyanidin content (mg/g), antioxidant capacity (µmol/g) and caffeic acid content (mg/g) of the samples.

Procyanidin Content Antioxidant Capacity Caffeic Acid Content

Instrument NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR Micro-
PHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR

Range (wl) 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250

Pre-treat. MSC SG-25 +
deTr + SNV

SG-21 +
deTr + SNV SG-11 + SNV SG-21 +

deTr + MSC
SG-21 +

deTr + SNV
SG-11 +

deTr + SNV
SG-11 +

MSC
SG-21 +

deTr + SNV SNV SG-21 +
SNV SG-11 + SNV

LV 4 12 11 6 3 4 6 10 4.000 8.000 14 10
RMSEC 0.948 1.329 2.167 2.165 0.202 0.379 0.478 0.400 0.018 0.026 0.031 0.039
R2

C 0.983 0.967 0.919 0.913 0.976 0.918 0.863 0.905 0.984 0.963 0.951 0.915
RMSECV 1.012 1.629 2.530 2.391 0.214 0.403 0.528 0.456 0.019 0.031 0.038 0.045
R2

CV 0.980 0.950 0.890 0.894 0.974 0.907 0.8331 0.877 0.982 0.951 0.929 0.890

Table 4. SVR results for all instruments to predict the procyanidin content (mg/g), antioxidant capacity (µmol/g) and caffeic acid content (mg/g) of the samples.

Procyanidin Content Antioxidant Capacity Caffeic Acid Content

Instrument NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR

Range (wl) 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250

Pre-treat. MSC SG-25 +
deTr + SNV

SG-21 +
deTr + SNV SG-11 + SNV SG-21 +

deTr + MSC
SG-21 +

deTr + SNV
SG-11 +
deTr +
SNV

SG-11 + MSC
SG-21 +
deTr +
SNV

SNV SG-21 +
SNV SG-11 + SNV

PC 13 13 26 18 7 18 24 21 9 19 12 22
Kernel linear linear linear linear linear linear linear linear linear linear linear linear
ε 0.01 0.01 0.01 0.5 0.01 0.01 0.1 0.1 0.1 0.1 0.5 0.01
Cost 10 0.1 1 1 1 1 10 10 1 10 10 1
RMSEC 0.764 2.018 1.960 3.500 0.159 0.335 0.385 0.648 0.017 0.029 0.053 0.067
R2

C 0.989 0.922 0.925 0.761 0.984 0.930 0.907 0.737 0.985 0.957 0.854 0.764
RMSECV 0.805 2.331 2.206 3.753 0.167 0.373 0.436 0.704 0.019 0.034 0.058 0.070
R2

CV 0.988 0.896 0.907 0.726 0.983 0.914 0.883 0.690 0.982 0.938 0.823 0.737
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Table 5. PLSR results for all instruments to predict the gallic acid (mg/g), catechin (mg/g) and epicatechin (mg/g) content of the samples.

Gallic Acid Content Catechin Content Epicatechin Content

Instrument NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR

Range (wl) 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250

Pre-treat. SG-21 +
deTr + SNV

SG-21 +
deTr

SG-21 +
deTr + MSC SG-11 + SNV SG-21 +

deTr + SNV
SG-21 +

FD
SG-21 +

deTr + MSC SG-11 + SNV
SG-21 +
deTr +
SNV

SG-21 +
deTr

SG-21 +
deTr + SNV SG-11 + MSC

LV 6 9 11 10 6 15 15 11 6.000 15.000 15 15
RMSEC 0.609 2.680 2.947 2.447 0.318 1.798 1.983 1.807 0.086 0.401 0.426 0.369
R2

C 0.988 0.774 0.727 0.816 0.994 0.775 0.724 0.784 0.990 0.768 0.750 0.821
RMSECV 0.682 2.978 3.506 2.738 0.373 2.224 2.492 2.030 0.097 0.484 0.531 0.446
R2

CV 0.985 0.721 0.614 0.769 0.991 0.655 0.5634 0.727 0.987 0.663 0.610 0.738

Table 6. SVR results for all instruments to predict the gallic acid (mg/g), catechin (mg/g) and epicatechin (mg/g) content of the samples.

Gallic Acid Content Catechin Content Epicatechin Content

Instrument NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR NIRS XDS NIR-S-G1 MicroNIR MicroPHAZIR

Range (wl) 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250 1100–2250 950–1650 950–1650 1630–2250

Pre-treat. SG-21 +
deTr + SNV

SG-21 +
deTr

SG-21 +
deTr + MSC SG-11 + SNV SG-21 +

deTr + SNV
SG-21 +

FD
SG-21 +

deTr + MSC SG-11 + SNV SG-21 +
deTr + SNV

SG-21 +
deTr

SG-21 +
deTr + SNV SG-11 + MSC

PC 7 8 6 18 9 9 5 22 9 8 5 21
Kernel linear radial linear linear linear radial radial linear linear radial radial linear
ε 0.01 0.5 0.5 0.1 0.01 0.1 0.1 0.5 0.01 0.1 0.5 0.1
Cost 10 0.3 0.25 10 10 0.3 0.5 10 1 0.25 0.3 10
RMSEC 0.727 3.506 3.666 3.496 0.313 2.609 2.808 2.521 0.086 0.539 0.563 0.555
R2

C 0.983 0.613 0.574 0.614 0.994 0.546 0.466 0.578 0.990 0.605 0.566 0.582
RMSECV 0.809 3.696 3.852 3.764 0.360 3.248 3.447 2.816 0.093 0.662 0.682 0.608
R2

CV 0.979 0.570 0.529 0.553 0.991 0.297 0.195 0.473 0.988 0.404 0.363 0.499
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Following the test-set split, pine bark extract concentration could be predicted with
almost equally good model metrics using PLSR and SVR, with PLSR models exhibiting
slightly lower average error values, resulting in an R2

P of 0.993 and an RMSEP of 0.264%.
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A slightly lower LOD and LOQ value was also observed for the PLSR model at 0.873%
and 2.647%, respectively. Upon inspecting the regression vectors (Figure 6C,D), several
prominent peaks could be identified throughout the entire recorded spectral range, with
the highest intensity bands visible at the intersection of the first and second overtone
region between ~1370 and 1750 nm. The most notable peaks in this region could cor-
respond to (aromatic) hydrocarbons and (aromatic) hydroxyl groups, which are strong
indicators of the presence of phenolic compounds. Other significant peaks were visible
in the ~2060–2080 nm wavelength range of the combination band region, which area also
corresponds to the vibration of hydroxyl groups, either aliphatic or phenolic. These obser-
vations are in good agreement with the PCA loadings (Figure 4C), where measurement
points belonging to the different additive concentrations were separated based on these
same regions.

Test-set validated models built to predict green tea extract concentration with the
NIR-S-G1 dataset reached slightly better performance metrics when using SVR compared
to PLSR (Figure 7). The best-performing model could reach an R2

P of 0.934 and RMSEP
of 0.826% with a corresponding LOD value of 2.28% and LOQ value of 6.91%. A roughly
3 times higher LOD and LOQ value between benchtop and handheld NIR spectrometers
was also reported in a similarly designed recent study [49]. Upon comparing PLSR and
SVR regression vectors (Figure 7C,D), although with a slight drift, the same prominent
bands were visible with the strongest contribution of the region in the overlap of the first
and second overtones, more specifically between ~1380 and 1600 nm. These peaks can be
identified on the PCA loadings vectors when separating measurement points along the
increase in additive concentration (Figure 4D) and on the regression vectors corresponding
to models based on benchtop data (Figure 6C,D). Test-set validation and calibration average
errors in the case of all models were less than 15% apart, while the identical observations
on loadings and regression vectors across different devices and algorithms imply robust
model fits, presumably capturing the chemical differences between samples.

4. Discussion

NIRS offers multiplexing analytical capacity, i.e., the absorption characteristics of
sample results from the co-additive contribution of all its chemical constituents rather
than solely focusing on any specific one of them. Consequently, it can effectively identify
foreign substances in chemically similar matrices even without selecting a biomarker,
as demonstrated in this and previous research [49,53,68,73]. This is especially true for
matrices where only subtle differences can be identified, but between multiple chemical
constituents at once. The scientific literature available for direct comparison of the present
results is very scarce. Studies presenting chemical measurements for extracts in focus here
show great variability both for the exact chemical profile and the concentration ranges.
Villani and colleagues (2015) [10] measured an average of 383.5 mg/g proanthocyanidin
content (involving monomers) in GSE, supporting present findings (497.8 mg/g, combining
monomers with procyanidin result), whereas other researchers have reported values much
higher, around 900 mg/g measured with multiple methods [58]. This is also true for PBE,
where there is a report of total proanthocyanidin values as low as 64.4 mg/g [10] and as high
as 883 mg/g [20]. Values can greatly differ based on the exact way a measurement method
is applied and the variety of the plant from which the extracts are derived. For instance,
Masson pine bark extracts are reported to be 5–10 times cheaper than extracts of maritime
pine bark, with a vastly different ratio of proanthocyanidin fractions [16]. The present
results, which demonstrate that PBE has a higher antioxidant capacity (27.6 ± 3.5 µmol/g)
compared to GSE (15.4 ± 0.4 µmol/g), are generally contradicted by previous findings,
where GSE was reported to have 10–30% higher antioxidant values compared to PBE [10,74].
The different results could be attributed to the different PBE variants used, as well as the
proposed high sensitivity of the DPPH assay to catechin over gallic acid. Both similar [60]
and higher [75] radical scavenging activities for catechin compared to gallic acid have
been reported before. This is logical from a structural point of view, as catechin, a more
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complex molecule, has more hydroxyl groups to donate hydrogen atoms from to contribute
to radical scavenging. On a side note, in vitro assays do not account for absorption and
bioavailability, where gallic acid has been reported to significantly outperform other, more
complex phenolic compounds [76,77].

The structural similarities and differences of these molecules could also explain the
results of NIR modeling. The overall lowest predictive performances were reached in the
case of catechin and epicatechin, presumably due to the similarity of these compounds to
each other and to the fact that procyanidins are also mainly built up by these molecules.
This could explain the generally poor performance of models built on handheld device data
to predict these two monomers. Among other technical differences, their inferior spectral
resolution is most likely the primary limiting factor, as well as a narrow wavelength range
to characterize these subtle chemical variances. The present results also pointed out that
the first overtone and combination band regions are presumably the most important to
characterize proanthocyanidin monomers, whereas procyanidin concentrations can be well
predicted just by using the first overtone region for spectral acquisition, generally showing
promising results with handheld devices covering this region. However, the performance of
this analysis seems to be matrix-dependent and requires a case-to-case feasibility screening,
as previous research has reported high predictive accuracies for catechin (R2 = 0.962) and
epicatechin (R2 = 0.942) using the same DLP-based handheld device when investigating
instantized green tea samples [78]. Gallic acid, the most abundant monomer in GSE with
more distinct structural characteristics, was generally predicted with better metrics in the
present study. These results, however, are still slightly inferior to previous research predict-
ing gallic acid concentration in black tea samples with a handheld device covering a similar
spectral range and PLSR, reaching an R2 of 0.865 and RMSECV of 4.94 mg/100g [79]. These
differences (among many other factors) could be attributed to the more complex matrices
used in the present study, highlighting the heavy matrix dependency of the technique [80].
Caffeic acid, on the other hand, despite its low concentration and small differences between
samples, was very well predicted with most handheld devices, probably due to its more
distinct structure compared to the rest of the molecules in the matrix. These results were
comparable to a previous study, where the authors used a handheld device covering the
same 900–1700 nm spectral range to predict caffeic acid content in jujube, reporting an R2

of 0.878 and an RMSECV of 6.79 µg/g [81].
While predicting the chemical parameters is important to characterize these matri-

ces, the present study focused more on the detection and quantification of the extracts
as a whole. While there are several studies using (portable) NIRS in combination with
chemometrics to accurately quantify various types of proanthocyanidins in different
matrices [64,69,70,78,79,81,82], to the authors’ best knowledge, no attempts were made
so far to characterize GSE adulteration/fortification using the technique before. A general
observation could be made that extracts with higher chemical similarities (GSE, PBE) were
more difficult to predict based on handheld data but not based on the benchtop data
with better spectral resolution and wavelength range, potentially capturing enough of the
variance among samples. Out of the handheld devices, the microPHAZIR, operating in
the first overtone and combination band region of the NIR spectrum, was more feasible
to capture the variance differentiating these two extracts, much like in the case of the
prominent proanthocyanidin monomers building them up. Green tea extract, due to its
more distinct proanthocyanidin composition, was much better predicted with all devices,
with the NIR-S-G1, a device limited mainly to the second overtone region, contributing to
models nearly as feasible as the benchtop device, even when a test-set was applied. Once
again, this observation was in agreement with the chemical composition prediction, where
models based on NIR-S-G1 and MicroNIR data had better overall performance.
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It should be noted that the measurements using the benchtop spectrometer corre-
sponded to the idealized setting representative for a typical in-lab analysis. This means
better-controlled sample presentation using cuvettes that lead to uniformly compacted sam-
ples, which reduces variability in light scattering. Handhelds measured samples through
LDPE bags, which introduces a degree of variability due to the absorbance of the container
material and sample packing, which influences the scattering and reflectance properties.
These effects did not prevent a successful analysis with the handhelds, and the examined
approach is a perfect representation of a practical application scenario in which rapid,
through-bag scanning directly on-site (i.e., independent from the laboratory, mitigating
any need for sample preparation) delivers a breakthrough advantage. That being said, as
discussed earlier, none of the examined handheld instruments could deliver consistently
superior results among all analytical properties in consideration here.

A closer inspection of the predictive performance of the miniaturized spectrome-
ters generally shows that all the analyses in focus here can be reliably performed with
these instruments. However, the consistency of the performance among the compared
handheld spectrometers is not as great as it is for the benchtop one. With consistency
in mind, the NIR-S-G1 tends to perform the best, particularly in PLSR for procyanidin
content (R2

CV = 0.950, RMSECV = 1.629 mg/g) and antioxidant capacity (R2
CV = 0.907,

RMSECV = 0.373 µmol/g). It also outperforms other handhelds in green tea extract
prediction (R2

CV = 0.965, RMSECV = 0.630%). The MicroNIR shows generally moderate
performance; on PLSR, it exhibits worse performance than the NIR-S-G1, notably in grape
seed extract (R2

CV = 0.767, RMSECV = 2.128%) and antioxidant capacity (R2
CV = 0.833,

RMSECV = 0.528 µmol/g) analysis. However, the MicroNIR in none of these cases deliv-
ered a particularly inferior performance, showing a good all-around robustness.

On the other hand, the microPHAZIR tends to perform best for selected single con-
stituent analysis like gallic (R2

CV = 0.738, RMSECV = 0.446 mg/g), catechin (R2
CV = 0.727,

RMSECV = 2.030 mg/g), and epicatechin (R2
CV = 0.738, RMSECV = 0.446 mg/g), outper-

forming other handhelds in these cases. However, its predictive performance drops for
procyanidin and caffeic acid. The microPHAZIR also tended to deliver a good performance
for procyanidin and green tea extract content prediction, particularly with SVR models (re-
spectively, R2

CV of 0.726, RMSECV of 3.753 mg/g, and R2
CV of 0.895, RMSECV of 1.092%).

This seems to show a somewhat greater selectivity of this instrument towards specific
chemical constituents. Given the narrowest wavelength region of microPHAZIR and the
fact that the absorption bands of the bag material are manifested within it, this outcome is
understandable. This suggests that its capability to detect and quantify specific constituents
depends on the specific characteristic bands of these molecular structures located in the
combination band region, provided the LDPE absorption bands do not interfere too greatly
with the targeted analyte bands.

Regarding the differences between the two applied algorithms, the general consensus
of previous research is that SVR, due to its tolerance to outliers and flexibility with different
kernel functions, provides better predictive models for complex matrices compared to
strictly linear algorithms, like PLSR [53,54,72]. Present findings, however, do not support
the clear superiority of SVR in building predictive models based on these proanthocyanidin-
rich extracts. While it produced marginally better models based on benchtop data in most
cases, it was overall less feasible to build models based on handheld data. This could
potentially be due to the bigger sample size requirement of SVR [83] to build reliable models
and the observation that the correlation between spectral data and the predicted analyte is
mostly linear in the current study. This was proposed by the superior performance of linear
kernels for most SVR models. Some of the previous research compared these algorithms
while investigating milk powder samples [53,84], a matrix known for much more complex
vibrational bands and interactions due to the presence of various macromolecules. In this
regard, the chemical composition of these extracts is simpler, mainly containing C-H and
O-H groups and an occasional aromatic ring, which, therefore, does not necessitate the use
of more sophisticated algorithms capable of dealing with non-linear patterns.
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Apart from certain limitations of a feasibility study, these findings highlight the poten-
tial of benchtop NIR devices, covering the first and second overtone as well as combination
band regions, in combination with PLSR or SVR, to reliably detect GSE adulteration and
fortification while simultaneously quantifying key chemical parameters. Additionally, the
results suggest that handheld devices, which capture most of the key spectral regions, can
also predict these parameters decently. For this to be properly verified, the application of
portable devices specifically designed for this region should be investigated. To improve
robustness and facilitate industrial application, predictive models should include extracts
of different plant variants to mitigate the effects of matrix dependency. While the present
results do not warrant it, the application of more sophisticated non-linear predictive algo-
rithms should also be considered, especially if the complexity of the matrix is to be further
increased [65]. While the study focused more on the fingerprinting benefits of NIRS to
quantify extracts, detailed chemical profiling and the identification of exclusive biomarkers
in these compounds could still be valuable to produce more specific predictive models. The
authors believe that the present study laid the groundwork for these developments and
managed to take one step forward to a future where plant-based dietary supplements are
safer and better characterized on the market.

5. Conclusions

Plant-based dietary supplements, such as grape seed extracts, are important com-
modities of the market not just because of their well-proven health-promoting benefits but
because of their contribution to waste management and circular economy, as most of these
compounds are derivatives of agri-food industry by-products. These products, despite
their high economic value, are currently very poorly characterized on the market, where
misclassification, batch-to-batch inconsistency, and economically motivated adulteration
are all too common. One of the main issues behind this phenomenon is the lack of rapid,
affordable and adequately selective quality control methods capable of reliably character-
izing these commodities. The present research aimed at filling this gap by proposing for
the first time an NIRS-based method using benchtop and multiple portable NIRS devices
to characterize and quantitatively assess grape seed extract adulteration or fortification.
During the chemical investigation, characteristic phenolic compounds were identified for
each extract by combining wet chemistry results with exploratory NIR spectroscopic data
analysis based on raw spectra and PCA. Univariate statistical analysis unveiled significant
differences between the composition of the different extracts, whereas PLSR and SVR were
applied as multivariate data analysis tools to build and optimize predictive models for
each parameter and device combination. Models based on the benchtop device gave robust
predictions with both algorithms, reaching a minimum R2

p value of 0.99 and maximum
RMSEP of 0.27% for the prediction of all extract concentrations. Models based on handheld
device data were comparably feasible to predict green tea extract concentration, procyani-
din and caffeic acid content, whereas weaker performance was observed when predicting
pine bark extract concentration and proanthocyanidin monomers. The present findings
suggest that handheld devices covering the wavelength range between ~1400 and 2200 nm,
identified as prominent for the analysis in focus here, should provide feasible results to
predict most parameters that characterize these extracts. The study further verifies the
applicability of handheld devices to assess the quality of dietary supplements by scanning
directly through the packaging, which is a valuable benefit of the NIRS technique at various
steps of production. The authors also propose further research investigating additional
polyphenolic extracts (e.g., peanut skin extract) and different variants of the current ones
while applying more sophisticated machine learning algorithms to build robust, industri-
ally applicable predictive models. The current study has proven the relevance of (portable)
NIR spectroscopy to better characterize plant-based extracts and could serve as the basis
for future developments to improve the safety and transparency of the dietary supplement
industry, which is in dire need of improving quality control schemes.
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