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Abstract: In this paper, we study the equivalence problem for quantum circuits: Given two quantum
circuits, are they equivalent? We reduce this problem to the contraction problem of a tensor network.
The order in which the contraction operations between tensors are applied has a crucial impact
on efficiency, which is why many heuristics have been proposed. In this work, we use an efficient
representation of tensors as a tensor decision diagram. Since existing contraction heuristics do not
perform well in combination with these diagrams, we propose two new contraction heuristics. We
demonstrate experimentally that our heuristics outperform other state-of-the-art heuristics. We also
demonstrate that our framework yields state-of-the-art performance for equivalence checking.

Keywords: tensor network; contraction planning; tensor decision diagram; heuristics; quantum
circuit; equivalence checking

1. Introduction

Interest in quantum computing has rapidly increased in both the scientific commu-
nity and industry. Quantum computers promise to speed up certain computations to a
potentially exponential degree [1]. While quantum computers are currently impractical for
industrial use, the rate of improvement is similar to that of early classical computers, and
it is expected that in the near future, practically usable quantum computers will exist. In
order to enable effective use of quantum computers once they mature, the required tools for
supporting quantum computation need to be developed now, e.g., verification of quantum
algorithms against specifications [2,3] or efficient simulation [4,5].

A central task in quantum computing is the design and optimization of quantum algo-
rithms, with the prevailing paradigm being quantum circuits. The circuit design typically
takes place at a high abstraction level, where arbitrary quantum gates can be used. Since a
real quantum computer only has a limited set of quantum gates available, the circuit must
then be transformed, or compiled, into an equivalent circuit meeting these constraints [6].
In addition, the size of a circuit correlates with the noise that occurs during computa-
tion. Since noise is the main challenge to the practical use of quantum computers today,
additional optimization steps are applied to reduce the size of the circuit [7]. Quantum
compilers thus perform an important and nontrivial task, and it is critical that the circuit
they produce is functionally equivalent to the original design [8].

Functional equivalence of two quantum circuits means that, for any input state, the two
circuits agree on the resulting output state. There are strong reasons to believe that checking
for equivalence is hard: deciding approximate equivalence is QMA-complete [9,10], and
deciding exact equivalence is NQP-complete [11]; problems in these complexity classes are
widely believed to require exponential computations in the worst case.

In this work, we study the problem of checking the equivalence of quantum circuits.
Our work is inspired by recent developments in the field, which we briefly summarize next.
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1.1. Related Work

Tensor networks. A tensor is a higher-dimensional generalization of a matrix. A tensor
network is a graph with tensors as nodes. As such, a quantum circuit can be naturally
modeled as a tensor network where every node is a matrix representing a quantum gate [12].

The most important operation in tensor networks is the contraction of two tensors into
one. Iteratively contracting tensors in the network eventually yields a single tensor. Since
the order in which the contractions are applied has a large impact on the intermediate size,
many heuristics have been proposed to find a good contraction order [13,14], several of
which are implemented in the contraction tool COTENGRA [15].

Decision diagrams. A quantum gate matrix can be represented more succinctly in
a symbolic data structure called a decision diagram. Several decision diagrams have been
proposed in the literature [16–20], and we refer to them uniformly as quantum decision
diagrams (QDDs). QDDs may offer exponential compression, but they are no silver bullet.
Since QDDs exploit symmetries in the matrix, different matrices/circuits show different
compression potential. Analogously, a tensor decision diagram (TDD) symbolically represents
a tensor [21], which thus generalizes the QDD. TDDs have recently been demonstrated to
speed up quantum simulations [4].

Quantum circuit equivalence. Checking the equivalence of two quantum circuits
C1 and C2 is a conceptually simple comparison of their characteristic matrices. However,
the size of these matrices is exponential in terms of the number of qubits, and thus, this
comparison cannot be performed for reasonably sized circuits. Alternatively, the problem
reduces to comparing the composition of C1 and the adjoint of C2 to the identity [9]. By
representing gates as QDDs, this “adjoint scheme” can lead to an efficient equivalence
check [22]. By performing the involved matrix multiplications in a clever order, this scheme
performs even better [23], and it is implemented in the tool QCEC [24]. Efforts to identify a
good order using contraction heuristics from tensor networks were not successful [25], at
least when restricted to QDDs; in this work, we instead use TDDs for representing tensor
networks efficiently, and we shall see that this yields a method that is competitive with the
QDD-based approach. Equivalence of dynamic quantum circuits was addressed by directly
encoding the two circuits as TDDs individually and then checking whether these TDDs are
identical, i.e., not using the adjoint scheme that we use [26].

Orthogonal approaches to equivalence checking include ZX-calculus [27], which can
sometimes yield results quickly [28]. Alternatively, if the quantum circuits belong to a
restricted subclass called the Clifford group, a polynomial-time approach exists [29]. TDDs
have been applied to approximate equivalence checking based on computing traces [30].

1.2. Contributions

In this paper, we integrate several of the above techniques into a new approach to the
equivalence checking of quantum circuits. We represent the quantum circuits as a tensor
network with the adjoint scheme described above. When operating on tensor networks,
further benefits arise because tensors of different sizes can be contracted, which is not
possible with QDDs. To efficiently represent the tensors in the network, we use TDDs.

However, as mentioned above, decision diagrams are not equally efficient on different
circuits. Hence, contraction orders that may be beneficial for tensor networks with ordinary
tensors may be suboptimal, or even detrimental, to TDD networks (i.e., tensor networks
where the tensors are represented as TDDs). Thus, we are in need of new contraction
heuristics for TDD networks, and we propose two such heuristics in this work. In our
experimental evaluation, we demonstrate that our heuristics outperform other heuristics
implemented in COTENGRA and that our TDD-based approach for equivalence checking is
competitive with QCEC.

1.3. Outline

The rest of this paper is structured as follows: In Section 2, we summarize background
information on quantum computing, tensor networks, decision diagrams, and contraction
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heuristics. In Section 3, we describe our contraction heuristics. In Section 4, we evaluate
our contraction heuristics and compare them to state-of-the-art methods. In Section 5, we
conclude the paper and discuss future directions.

2. Background

In this section, we recall some basic concepts needed to understand the rest of the paper.
We start with a short introduction to quantum circuits. Then, we explain tensor networks
and how they relate to quantum circuits, followed by describing tensor contraction. After
that, we give a brief overview of tensor decision diagrams. Finally, we discuss how to check
the equivalence of two quantum circuits.

2.1. Quantum Circuits

We briefly recall the main concepts of quantum computing and the quantum circuit
model. For a broader introduction, we refer to the literature [31].

The basic unit in quantum computing is the qubit, like the bit is to digital computing.
While a bit can be in one of two states, 0 or 1, a qubit can be in the basis states |0⟩ or |1⟩
(using the Dirac/BraKet notation), or it can be in a linear combination of these; in the
latter case, the qubit is said to be in a superposition. Formally, a qubit |q0⟩ is described as
|q0⟩ = α|0⟩+ β|1⟩. The values α, β ∈ C are the amplitudes, and they must satisfy the side
condition |α|2 + |β|2 = 1. Measuring |q0⟩ results in the basis state |0⟩ with probability |α|2
and in the basis state |1⟩ with probability |β|2.

We generalize the notion of a quantum state to multiple qubits. Since a quantum state
may be in a superposition of each combination of basis states, it has 2n amplitudes for
n qubits. A quantum state can also be represented as a state vector of the amplitudes
(e.g., [α, β]T for |q0⟩ above).

Example 1 (Quantum state). Consider a quantum state of 3 qubits, q0, q1, and q2. A state vector
for such a state is

[α000, α001, . . . , α111]
T s.t. ∑

i
|αi|2 = 1,

which represents a linear combination of all eight basis states:

|q0q1q2⟩ = α000|000⟩+ α001|001⟩+ · · ·+ α111|111⟩

The probability of measuring the basis state |i⟩ is |αi|2.

Quantum computation aims at transforming quantum states. A common framework
to express these transformations is the quantum circuit model. At the lowest level, a
quantum gate (henceforth gate) transforms a quantum state into a new quantum state. It
is generally sufficient to restrict oneself to gates involving at most two qubits. Each gate
corresponds to the application of a linear map with an associated complex unitary matrix.

Example 2 (Quantum gate). Given a quantum state over a single qubit q0, the Hadamard gate H
has the associated matrix (we abuse notation and write H both for the gate and the associated matrix).

H =
1√
2

[
1 1
1 −1

]
.

The Hadamard gate transforms the basis state |0⟩ = 1 · |0⟩+ 0 · |1⟩ into a superposition:

H|0⟩ = 1√
2

[
1 1
1 −1

]
·
[

1
0

]
=

1√
2

[
1
1

]
=

1√
2
|0⟩+ 1√

2
|1⟩

Similar to a classical digital circuit, we can combine quantum gates into a quantum
circuit (henceforth circuit). Figure 1a shows an example circuit involving three gates on



Entropy 2024, 26, 1058 4 of 19

two qubits. In the example, the CNOT gate acts on two qubits, while the H gate acts
on only one qubit. To compute the effect of the CNOT gate on a two-qubit vector (and
hence a four-dimensional state vector) |q0⟩, we can simply multiply with the associated
4× 4-matrix CX as before: CX · |q0⟩. However, since the H gate only acts on one qubit, we
cannot apply matrix multiplication directly. As an intermediate step, we insert an artificial
identity matrix on the lower qubit wire, as shown in Figure 1b.

(a) (b)
Figure 1. A simple quantum circuit. (a) A two-qubit quantum circuit consisting of two CNOT-gates and
one Hadamard gate; (b) the same circuit after expanding the Hadamard gate H using the tensor product.

In general, we need to compute the effect of multiple parallel gates with qubit counts
n1, . . . , nk, respectively, to a state vector involving n qubits, where n1 + · · ·+ nk = n. This
is achieved by taking the tensor product of the gate matrices.

Example 3 (Quantum circuit). The effect of applying a Hadamard gate to the first qubit of a
two-qubit system (as in Figure 1) can be computed as the tensor product

H ⊗ I =
1√
2

[
1 1
1 −1

]
⊗

[
1 0
0 1

]
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

.

Thus, the whole effect of the circuit in Figure 1a is CX · (H ⊗ I) · CX, or
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 ·


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =
1√
2


1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

.

2.2. Tensor Networks

Matrices are sufficient to express quantum gates (and circuits). A tensor is a general-
ization to higher dimensions. We can thus use tensors to represent both quantum gates
(two-dimensional matrices) and quantum states (one-dimensional vectors).

Tensors have an associated index vector I , where each entry is an index variable for
the corresponding dimension. In our context, a tensor will have an index for each qubit,
and the corresponding index variable has two possible values, one for each of the two basis
states (|0⟩ and |1⟩). Figure 2 shows a three-dimensional tensor together with its indices.

Figure 2. Example of a three-dimensional tensor with corresponding indices i, j, and k.
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The elements in our tensors are complex numbers, so tensors have the form T ∈ C2|I| .
We will use lowercase symbols to denote a concrete index vector, e.g., i⃗ ∈ {0, 1}|I|.

Example 4 (Tensor). Let I = [i, j, k]T be a three-dimensional vector of index variables. Consider
the tensor T depicted in Figure 3, which is shown in two alternative (but equivalent) representations.
A (concrete) index vector is i⃗ = [0, 0, 0]T, with the corresponding tensor entry T⃗i = T000.

Figure 3. A tensor with three index variables i, j, and k, equivalently depicted both as a column vector
and as a matrix, showing how indices correspond to the position of the elements.

As shown in Figure 3, the placement of elements is determined by the indices, and the
alignment with rows and columns does not have any meaning for the tensor.

Just as gates can be combined into quantum circuits, we can combine multiple tensors
into tensor networks. A tensor network is a graph whose vertices are tensors and whose
edges connect tensors if they share an index. The same index can only be shared by
two tensors, and we hence use the words edges and indices interchangeably in this context.

Circuits contain input and output wires which are only connected to one gate, the other
end being free (unless a state vector is supplied as an input). Similarly, our tensor networks
also have dedicated input and output indices which are only connected to one tensor; we
refer to these as outer edges. Formally:

Definition 1 (Tensor network). A tensor network is an undirected graph G = (V, E, Eouter, S),
where V ⊆ ⋃

m∈NC2m
is the finite set of vertices, each of which is a tensor of some index di-

mension m; S is the finite set of index variables; E ⊆ V × V × 2S is a set of (inner) edges; and
Eouter ⊆ V × 2S is a set of outer edges. Each edge is labeled with a nonempty set of index variables.

Example 5 (Tensor network). Consider the tensor network (V, E, Eouter, S) depicted in Figure 4a.
It consists of three tensors: V = {CX f gjk, Hgh, CXhikl}. The tensors are the matrices corresponding
to the respective gates, as indicated by the names. (For convenience, we use the naming convention
that a tensor is named after its gate with its indices in the subscript.) The index set S of the tensor
network is determined by the possible index variables of all tensors in the tensor network, here
S = { f , g, h, i, j, k, l}. The outer edges Eouter are the edges that only attach to one tensor, i.e., those
labeled with f , i, j, and l. The remaining edges each connect two of the tensors. For our tensor
network, we have the following sets of edges:

E = {(CX f gjk, Hgh, {g}), (CX f gjk, CXhikl , {k}), (Hgh, CXhikl , {h})}
Eouter = {(CX f gjk, { f }), (CX f gjk, {j}), (CXhikl , {i}), (CXhikl , {l})}

Similarly to how the gate matrices can be combined into a single matrix representation
of a circuit by matrix multiplication, the tensors of the tensor network can be combined into
a single tensor representing the same circuit. The operation for combining tensors is tensor
contraction, which generalizes matrix multiplication. The operation multiplies the elements
of each tensor with corresponding index values together, summing over shared indices.
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(a) (b) (c)
Figure 4. The tensor network of the circuit in Figure 1a being contracted into a single tensor in
two contraction steps. The edges between two tensors are labeled with the shared indices. (a) Original
tensor network; (b) contraction of CX f gjk and Hgh; (c) final result.

Definition 2 (Tensor contraction). Let T⃗I ,⃗J and T′
J⃗,K⃗

be two tensors with their index variables

split into shared variables J⃗ and unique variables I⃗ and K⃗, respectively. The result of the (tensor)
contraction is the tensor

R⃗i,⃗j = ∑
x⃗∈{0,1}|⃗J|

T⃗i,⃗x · T
′
x⃗,⃗j

.

Example 6 (Tensor contraction). Recall the tensor network from Figure 4a. By contracting the
tensors CX f gjk and Hgh over the {g} edge, we obtain the tensor (depicted in Figure 4b)

K f hjk = ∑
x∈{0,1}

CX f xjk · Hxh.

Next, by contracting the tensors K f hjk and CXhikl over the {h, k} edge, we obtain the tensor
(depicted in Figure 4c)

R f ijl = ∑
x,y∈{0,1}

K f xjy · CXxiyl .

2.3. Tensor Decision Diagrams

A tensor decision diagram (TDD) is a symbolic representation of a tensor. TDDs
exploit symmetries to avoid storing (multiples of) the same tensor entries several times.

Definition 3 (Tensor decision diagram [21]). A tensor decision diagram is a weighted, rooted,
and directed acyclic graph (V, E, idx, wg) over a set of indices S, defined as follows:

• V = VN ∪ {vT} is the set of nodes, where VN is a finite set of non-terminal nodes, and vT is
the terminal node.

• E ⊆ VN × V ×C× {low, high} is the set of weighted edges. Each node in VN has exactly
one outgoing low edge and one outgoing high edge.

• idx : VN → S assigns an index from the index set S to each non-terminal node.
• wg ∈ C is a global weight associated with the root node.

While there are multiple TDD representations of the same tensor, in practice, one uses
a normalization procedure such that for each tensor there exists a corresponding canonical
TDD. For further details on TDDs, we refer to the original presentation [21].

Example 7. Figure 5 shows the TDDs for the tensors from Figure 4 before and after contraction.
The representation size after contraction (7 nodes) is smaller than before contraction (8 + 3 nodes).

2.4. Quantum Circuit Equivalence

We now turn to the equivalence problem for quantum circuits. First, we consider
again the quantum circuit model, and later generalize the idea to tensor networks.

Recall that each circuit corresponds to the application of a single unitary matrix. In this
light, we define the equivalence of two quantum circuits via their corresponding matrices.
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1

11

(a)

1

11

(b)

1

11

(c)
Figure 5. TDDs of two tensors in Figure 4, and the resulting TDD after contraction. (a) TDD for
CX f gjk; (b) TDD for Hgh; (c) TDD for K f hjk.

Definition 4 (Quantum circuit equivalence). Two circuits C1 with n1 qubits and C2 with n2
qubits and with matrix representations UC1 and UC2 , respectively, are functionally equivalent,
written C1 ≡ C2, if and only if n1 = n2, and we have that

∃θ ∈ [0, 2π) : UC1 = eiθ ·UC2 .

Note that the matrices only need to be identical up to a factor eiθ called the global
phase; this is due to the quantum phenomenon that two states can only be experimentally
distinguished up to this factor.

However, computing the matrices of two n-qubit circuits is expensive, since the
matrices have 2n × 2n (i.e., exponentially many) entries. We thus turn to potentially cheaper
ways of determining equivalence.

Since unitary matrices are invertible, all gates (and hence circuits) are reversible.
We denote the adjoint of a matrix U by U†. Then, we get the following alternative [22]:

Proposition 1. Given two n-qubit circuits C1 and C2, we have:

C1 ≡ C2 ⇐⇒ ∃θ ∈ [0, 2π) : UC1 ·U
†
C2

= eiθ · I.

In other words, we can multiply the first circuit with the adjoint of the second circuit
and compare the result to the identity matrix. (To simplify the presentation, we ignore the
global phase in the following and only compare to the identity.)

While there is no immediate advantage in using this combined circuit setup as opposed
to checking whether the matrix representations of two circuit are equivalent, there is a
possibility of exploiting the fact that gates from one circuit are negated by gates from the
inverse of the other circuit. In particular, if C1 and C2 are identical, then the last gate of C1
and the first gate of C2 cancel out, and this holds true for all other pairs of gates.

Additionally, there exist alternative data structures (quantum decision diagrams
(QDDs)) to represent quantum matrices, potentially avoiding the exponential space require-
ments. Hence, by performing matrix multiplication on gates from both circuits, we may be
able to maintain such a data structure without an exponential blow-up and thus obtain an
efficient procedure for checking the equivalence of quantum circuits. It should be noted
that there is no guarantee that this blow-up can generally be avoided. However, it has been
demonstrated that it can be avoided in many practical cases [23].

For tensors and tensor networks, we can apply a similar approach. Initially, we trans-
form the two circuits C1 and C2 into two tensor networks. This is a standard construction
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(e.g., [32]) using the matrix as the tensor for each gate. Next, the straightforward approach
would be to contract both tensor networks and finally compare the two resulting tensors
for equality (up to a global phase). Again, we can apply the same trick as in Proposition 1
and build a single tensor network with C2 inverted. Then, we contract that tensor network
and in the end check whether the resulting tensor is the identity (up to a global phase).

As with quantum circuits, we do not necessarily gain anything from this construction
if we use an explicit tensor representation. However, just as with QDDs, when representing
tensors with TDDs, we can often avoid an exponential blow-up in practice.

Note that working with tensors as compared to quantum gates has potential benefits.
Gates are represented as matrices, and thus, contraction corresponds to matrix multipli-
cation, for which the two matrices need to have the same dimension. General tensor
contraction can be performed on any subset of shared indices. This allows one to partially
contract tensors resulting from parallel gates in a quantum circuit, whereas a gate-based
approach has to multiply with all of the gates at the same time. For example, in Figure 4,
we contracted a CX tensor with an H tensor, whereas a gate-based approach would have
to insert an identity gate (using a tensor product) as in Figure 1b.

2.5. Contraction Heuristics for Tensor Networks and TDD Networks

Recall that, to contract a tensor network to a single tensor, we just have to repeatedly
apply the contraction operation for two tensors with shared indices. The sequence in
which tensors are contracted is called the contraction plan. Each contraction step will reduce
the number of tensors in the network by one, thus eventually resulting in one tensor
representing the whole network. This final tensor is unique, independent of the contraction
plan, but the intermediate tensors are not. Thus, the contraction plan has a large impact on
the size of the intermediate representation. Correspondingly, a significant amount of work
has gone into finding good heuristics to choose a good contraction plan.

Example 8 (Tensor contraction (alternative)). Recall the tensor network from Figure 4a. In
Example 6, we chose one of three possible contraction plans. The two alternatives are

1. Contract CXhikl and Hgh via edge h to obtain Kgikl . Then contract CX f gjk and Kgikl via
edges {g, k}.

2. Contract CX f gjk and CXhikl via edge k to obtain K f gjhil . Then contract Hgh and K f ghjil via
edges {g, h}.

Existing heuristics have been designed under the assumption that the tensors are
explicitly stored as high-dimensional vectors. In this work, we instead represent tensors
implicitly as TDDs. TDDs representing tensors with the same number of elements may have
vastly different representation sizes. Hence, it is not clear whether the existing heuristics
will perform equally well in our scenario. The gap in representation size can be exponential;
for example, the TDD representing the identity tensor is linear in the number of qubits,
whereas the explicit tensor has exponentially many entries. The main objective of this paper
is to find a good contraction plan when the tensors are represented as TDDs; in particular,
we aim for small intermediate TDD representations.

Example 9. To reduce the complexity, we now simplify our running example to use only unary
gates. Figure 6 shows the TDDs for the tensor network consisting of a Z gate followed by two H
gates. Clearly, the two H gates cancel each other out, and thus, the circuit is equivalent to a Z gate.

Initially, we can choose between two contractions: (1) of the Z and the first H gate or (2) of the
first and the second H gate. The results are shown in Figure 6d and Figure 6e, respectively. As can
be seen, the first contraction has a smaller intermediate representation. Thus, this contraction would
be preferred for us. The final TDD is equivalent to the TDD of the Z gate, as expected.
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x0

x1 x1

1

1

1 −1

1 1

(a)

x1

x2

1

1√
2

1 1

1

−1

(b)

x2

x3

1

1√
2

1 1

1

−1

(c)

x0

x2

1

1√
2

1 −1

1

−1

(d)

x1

x3 x3

1

1

1 1

1 1

(e)

x0

x3 x3

1

1

1 −1

1 1

(f)

Figure 6. TDDs for the tensor network
x0
−Z

x1
−H1

x2
−H2

x3
−. (a) TDD for

x0
−Z

x1
−; (b) TDD for

x1
−H1

x2
−;

(c) TDD for
x2
−H2

x3
−; (d) the resulting TDD when contracting

x0
−Z

x1
−H1

x2
− via x1; (e) the resulting TDD

when contracting
x1
−H1

x2
−H2

x3
− via x2; (f) the (unique) resulting TDD when contracting the whole

tensor network.

In the simplest case, a (offline) contraction heuristic works in two phases. In the
planning phase, a contraction plan is found. In the execution phase, the plan is executed. In
this paper, we focus on (online) heuristics which alternately perform one planning step
(i.e., identify the next contraction step) and one execution step (i.e., execute the contraction
step). The advantage of such an online heuristic is that it does not have to predict what
happens after the next step.

3. Contraction Heuristics for TDD Networks

In this section, we present two contraction heuristics for TDD networks. Both heuristics
work online, i.e., they interleave planning and execution by only determining the next
contraction step and executing it immediately.

The first heuristic, which we call the lookahead method, is a greedy method which
results in a good contraction order but requires additional computations in the planning
steps. Motivated by this success, the second heuristic, which we call the counting method,
approximates the first heuristic; as a result, it still produces an overall good contraction
order but also uses fast planning steps.

3.1. Lookahead Method

Our first heuristic method follows a greedy policy. In the planning step, each possible
next contraction of two connected TDDs is evaluated, and the contraction with the smallest
resulting TDD is selected for the next execution step. Consequently, we call this heuristic
the lookahead method.

The planning steps of the lookahead method seem computationally expensive. In par-
ticular, there are concerns regarding the cost of the (hypothetical) contractions in a single
planning step and that these computations have to be repeated in each planning step.
Fortunately, there are a number of reasons why the method still works favorably in practice.
Below we argue that the number of contractions is limited, most of the contractions take
place in the first planning step, where computations are cheap, and only very few updates
are required in each of the later planning steps.

Let m be the number of TDDs in the initial TDD network. First, while there are O(m2)
pairs of TDDs to contract in the worst case, tensor networks obtained from quantum circuits,
which typically only contain unary and binary gates, are sparsely connected. Hence, the
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number of connected pairs is ≤ 4 m, and the quadratic worst case is not observed in our
scenario. Second, only the very first planning step requires many contractions. After any
execution step of contracting two TDDs D1 and D2, all other hypothetical contraction
results from the previous planning step that involve neither D1 nor D2 remain valid. Hence,
by storing the previous contraction results, planning steps in later iterations involve only
a few new computations. Third, contractions in the first planning step are often efficient,
since they correspond to the combination of two quantum gates. Even writing out the
matrix representation (a 4× 4 matrix in the worst case) is cheap.

We summarize the lookahead method in Algorithm 1. The algorithm maintains a
priority queue (Q), which stores pairs (k, v) of keys k (natural numbers) and values v.
The values are pairs of TDDs, while the keys are the size of the TDD resulting from their
contraction. Note that the queue can store multiple values for the same key. Moreover, note
that a priority queue allows for efficient enqueue and remove operations (O(log ℓ) with ℓ
elements in the queue), and an O(1) remove_minimum operation. First, we initialize Q with
each possible pair of TDDs for contraction (which can be easily obtained from the layout of
the quantum circuit), where we store the resulting size if we were to contract these TDDs.

In each iteration of the contraction loop (line 6), we start with a planning step that
selects two TDDs D1 and D2 whose contraction result is minimal. In case of multiple
options (line 7), any tie breaker can be used (we use the implementation of Q). In the
execution step, we execute the contraction to obtain the resulting TDD D3. Finally, we need
to update Q because TDDs D1 and D2 do not exist anymore, and instead, we establish
connections with the new TDD D3. Note that the loop in line 9 iterates over the whole
queue, which takes O(ℓ) steps (where ℓ is the number of elements in the queue).

Algorithm 1 Lookahead method
Input : TDD network
Output : TDD describing the contraction result
// initialize priority queue with possible contraction results

1 Q← create_priority_queue();
2 foreach connected TDDs {D1, D2} do
3 D3 ← contract({D1, D2});
4 enqueue(Q, |D3|, {D1, D2});
5 end
6 while contractions left do

// planning step part 1: dequeue minimal element from queue
7 {D1, D2} ← remove_minimum(Q);

// execution step
8 D3 ← contract({D1, D2});

// planning step part 2: update queue for next iteration
9 foreach D12 in [D1, D2] do // update entries with D1 or D2 to D3

10 foreach (k′, {D12, D4}) ∈ Q do
11 remove(Q, k′, {D12, D4});
12 D5 ← contract{D3, D4};
13 enqueue(Q, |D5|, {D3, D4});
14 end
15 end
16 end
17 return resulting TDD

In our implementation, instead of only storing the size and then recomputing the
contraction D3 from {D1, D2}, we also directly store the TDD D3 in the queue. This
way, we avoid recomputing the contraction later. While this seems expensive in terms of
memory consumption, the overall memory consumption is typically dominated by the
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most expensive (single) contraction results, which would already fail in the lookahead step
before even getting to the contraction step.

We conclude the algorithm description with an example:

Example 10. We run Algorithm 1 on the TDD network from Example 9 (Figure 6). Initially, the
priority queue contains the following key-value pairs: Q0 = [3 7→ {{Z, H1}}, 4 7→ {{H1, H2}}].
In this case, the lookahead method will execute the contraction of Z and H1 (as it results in the
smaller TDD) to the TDD ZH1. Since H1 is part of both pairs in the queue, both pairs will be
removed from the queue, and only the final contraction will be inserted: Q1 = [4 7→ {{ZH1, H2}}].
Finally, this contraction is executed and the algorithm terminates.

3.2. Counting Method

While we argued that the lookahead method is not as expensive as it seems at first
glance, the planning time is still significant and dominates the total contraction time,
specifically for circuits with many gates. In particular, the most expensive contractions still
have to be evaluated but are then not actually applied.

When we evaluated the lookahead method, we observed a pattern that the next
contraction would often happen between two TDDs that have not been contracted in a
long time. Our intuition is that, in many cases, the resulting TDD is bigger than both input
TDDs, and thus, one should often favor small TDDs.

Thus, to imitate a typical contraction order as obtained from the lookahead method,
our second heuristic method is designed to avoid the redundant tentative contractions
and simply rank TDDs based on counting how long they have not been involved in any
contraction. Accordingly, we call our second heuristic method the counting method.

We summarize the lookahead method in Algorithm 2. Instead of a priority queue, the
algorithm only requires a standard first-in-first-out (FIFO) queue (Q), for which enqueue
and dequeue are O(1) operations. The order in which to initialize the queue is arbitrary (in
our implementation, we select the order we obtain from iterating over the network).

Algorithm 2 Counting method
Input : TDD network
Output : TDD describing the contraction result
// initialize queue with possible contraction pairs

1 Q← create_queue();
2 foreach connected TDDs {D1, D2} do // arbitrary order
3 enqueue(Q, {D1, D2});
4 end
5 while contractions left do

// planning step part 1: dequeue next element from queue
6 {D1, D2} ← dequeue(Q);

// execution step
7 D3 ← contract({D1, D2});

// planning step part 2: update queue for next iteration
8 foreach D12 in [D1, D2] do // update entries with D1 or D2 to D3
9 foreach {D12, D4} ∈ Q do

10 remove(Q, {D12, D4});
11 enqueue(Q, {D3, D4});
12 end
13 end
14 end
15 return resulting TDD

The first planning step simply dequeues the pair {D1, D2} from Q that has been in
the queue for the longest time. The execution step computes the contraction, resulting in
TDD D3. Finally, we need to move all other pairs involving the TDDs D1 and D2 to the end
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of the queue and update these entries to the new TDD D3. We note that the corresponding
loop in line 8 can be implemented efficiently (i.e., without iterating over the whole queue)
with little overhead by implementing the queue as a doubly linked list and storing for each
TDD D all pointers to pairs involving D.

We again conclude the algorithm description with the same example as before:

Example 11. As in Example 10, we run Algorithm 2 on the TDD network from Example 9
(Figure 6). Initially, the queue Q contains the following TDD pairs (note that the order is arbitrary):
Q0 = [{Z, H1}, {H1, H2}]. In this case, the counting method will execute the contraction of Z
and H1 (as it comes first in the queue) to the TDD ZH1. Again, since H1 is part of both pairs in the
queue, both pairs will be removed from the queue, and only the final contraction will be inserted:
Q1 = [{ZH1, H2}]. Finally, this contraction is executed and the algorithm terminates.

4. Evaluation

In this section, we report on the evaluation results of our contraction heuristics when
applied to checking the equivalence of quantum circuits. First, we describe our implementa-
tion and the benchmark problems we use in the evaluation. Next, we compare our heuristics
to other state-of-the-art contraction heuristics implemented in the tool COTENGRA [15]. Fi-
nally, we compare our approach to checking the equivalence of quantum circuits to the tool
QCEC [24], which has the same aim.

4.1. Experimental Setup

Our implementation consisted of three components. First, we implemented a TDD
library in C++ for which we substantially extended a preliminary implementation (we ex-
tended the preliminary implementation from https://github.com/Veriqc/TDD_C, accessed
on 25 May 2024). Second, we implemented our contraction heuristics in C++. Third, we
implemented our equivalence checking approach in Python for easy integration with
COTENGRA (see below).

All experiments were run on an Intel i5-14600KF CPU with 27 GB RAM and a GeForce
RTX 4070 Super 12 GB GPU. The operating system was Ubuntu 20.04, and we used C++17
and Python 3.9.

To evaluate our approach, we use the application to check equivalence of quantum
circuits. For this purpose, we choose quantum circuits from the MQT BENCH [33] bench-
mark suite, which contains many well-known quantum circuits on four different levels
of a compilation pipeline. In our evaluation, we select the algorithmic (first) level and the
target-dependent (third) level, which differ significantly in their gate sets and circuit layouts,
making the task of equivalence checking challenging.

In particular, we use the following quantum circuits (short explanations are avail-
able online (https://www.cda.cit.tum.de/mqtbench/benchmark_description, accessed
on 1 November 2024): Deutsch-Jozsa algorithm (DJ), Greenberger-Horne-Zeilinger state
preparation (GHZ), graph state preparation (GS), quantum Fourier transformation applied
to entangled qubits (QFTE), real amplitudes ansatz with random parameters (RAR), and W
state preparation (WS). All circuits have a parametric number of qubits and are available
with varying sizes. This allows us to study the scalability in the number of qubits.

4.2. Evaluation: Lookahead and Counting Heuristics

In the first experiment, we evaluate our two proposed heuristics. As discussed before,
we should expect that the lookahead heuristic spends significantly time on the contraction
planning because it tries out all possible next contractions before selecting the best one. The
counting heuristic was motivated because it circumvents this cost.

Figure 7 shows that this intuition is indeed correct. The planning time of the counting
heuristic is significantly shorter compared to the lookahead heuristic.

https://github.com/Veriqc/TDD_C
https://www.cda.cit.tum.de/mqtbench/benchmark_description
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Figure 7. Contraction planning times of the lookahead heuristic and the counting heuristic. The times
(y-axis) are shown for three different families of quantum circuits (different markers) and for varying
numbers of qubits (x-axis).

Figure 8 shows the total time for equivalence checking with both heuristics. The count-
ing heuristic clearly outperforms the lookahead heuristic (note the log scale). Consequently,
we mainly use the counting heuristic in later experiments.

Figure 8. Total equivalence checking time using the lookahead and the counting heuristics. The times
(y-axis; log-scale) are shown for three different families of quantum circuits (different markers) and
for varying numbers of qubits (x-axis).

4.3. Evaluation: COTENGRA Contraction Heuristics

In this experiment, we compare our counting heuristic to other contraction heuristics
from COTENGRA [15], a state-of-the-art contraction planning tool for tensor networks im-
plemented in Python. Based on prior experimentation, we select the two heuristics that
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perform best for our setup: Betweenness and RandomGreedy. The Betweenness heuristic
is based on edge betweenness centrality (a graph-theoretic concept) and identifies graph
communities in order to perform contractions in these communities first. The Random-
Greedy heuristic samples random contraction plans multiple times and selects the best plan
according to the sum of the expected amount of floating-point operations of the entire plan.

To gain better insights into how these different heuristics work, we visualize the
contraction order for the DJ circuit in Figure 9. The lookahead heuristic indeed spreads
the contractions over the whole network more or less uniformly. As before, the counting
heuristic imitates this behavior, although in a different order. The Betweenness heuristic
starts on the very top of the network and sweeps to the bottom, while the RandomGreedy
heuristic uses yet another order.

(a) (b)

(c) (d)

(e) (f)
Figure 9. Visualization of different contraction orders on the DJ circuit. The contraction order is
encoded in the color spectrum from green (contracted first) to purple (contracted last). (a) A simple
contraction from left to right; (b–e) our two heuristics and the two other heuristics implemented in
COTENGRA, specifically: (b) lookahead heuristic; (c) counting heuristic; (d) COTENGRA’s Betweenness
heuristic; (e) COTENGRA’s RandomGreedy heuristic; (f) the heuristic used in [25], which exploits
the fact that the tensor network originates from two circuits and contracts corresponding gates
proportionally from the inside out.

Figure 10 shows the results of the three evaluated heuristics for our application: the
equivalence checking of quantum circuits. The results of the counting heuristic are identical
to those presented in Figure 8. Of the two COTENGRA heuristics, Betweenness generally
performs better than RandomGreedy.

Our counting heuristic consistently outperforms the COTENGRA heuristics on all
three circuits by 1–2 orders of magnitude. This is surprising, as the COTENGRA heuristics
are much more sophisticated. We conjecture that the advantage of the counting heuristic
stems from two sources: the very efficient planning time and the specific application of
quantum circuit equivalence. Studying the performance of our heuristics on further tensor
network contraction benchmarks beyond our application is outside the scope of this paper.
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(a)

(b)

Figure 10. Equivalence checking time using our TDD-based approach with the counting heuris-
tic and the heuristics implemented in COTENGRA. The times (y-axis; log-scale) are shown for
six different families of quantum circuits (different markers) and for varying numbers of qubits
(x-axis). (a) Three families of quantum circuits: DJ, GHZ, GS; (b) Three families of quantum circuits:
QFTE, RAR, WS.
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4.4. Evaluation: Equivalence Checking of Quantum Circuits

As another baseline for our equivalence checking approach, we use QCEC (Quantum
Circuit Equivalence Checking) [24]. QCEC is a C++ library and implements equivalence
checking based on quantum decision diagrams (QDDs), which is similar in nature to our
approach and thus makes for a good comparison [23]. QCEC also uses ZX-calculus [27]
in a preprocessing step, as it can sometimes very quickly prove circuit equivalence. Due
to its fundamental difference and orthogonal performance, we deactivate the usage of
ZX-calculus in the evaluation for a fair comparison to the QDD approach.

As outlined in Section 2.4, to check for the equivalence of two circuits C1 and C2, we ask
whether the combined circuit C1 C†

2 is the identity. We then transform the combined circuit
into a tensor network and represent the tensors as TDDs, which we then contract using a
contraction heuristic. Finally, we compare the result to the TDD for the identity matrix.

QCEC’s strategy is related but differs in several aspects. First, it operates at the gate
level and represents gates as QDDs. Second, it instead considers the circuit C1 I C†

2 with
an additional identity gate in the middle; then, it explores the circuit from the inside out,
alternately multiplying one gate to the left or right in each step (see Figure 9f). Similar to
our approach, the resulting QDD is finally compared to the QDD for the identity matrix.

Figure 11 shows the results of the comparison of our approach with QCEC. For the
first three quantum circuits (first plot), there is no clearly best approach, but the results are
mostly consistent within the same family of circuits. QCEC performs better on the GHZ
circuit. For the DJ circuit, QCEC is faster for small instances, but the run time grows faster
than for the counting heuristic, which consequently outperforms on the largest instances.
For the GS circuit, QCEC only manages to get up to 96 qubits within a time limit of 1000 s,
while our approach scale much better, easily reaching 256 qubits. On the second plot
(some data points in Figure 11b (QFTE beyond 10 qubits; RAR beyond 6 qubits; WS for
14 or 15 qubits; and the counting heuristic) are missing due to issues with floating-point
precision; this exemplifies that quantum computations are nontrivial to implement on a
classical computer), QCEC outperforms our approach on all circuits. Notably, the lookahead
heuristic performs better than the counting heuristic on the QFTE circuit.

(a)
Figure 11. Cont.
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(b)

Figure 11. Equivalence checking time using our TDD-based approach with the counting heuristic
and the QDD-based approach implemented in QCEC. The times (y-axis; log-scale) are shown for
six different families of quantum circuits (different markers) and for varying numbers of qubits
(x-axis). (a) Three families of quantum circuits: DJ, GHZ, GS; (b) three families of quantum circuits:
QFTE, RAR, WS.

5. Conclusions

In this paper, we have described a framework for checking the equivalence of quantum
circuits. In our framework, we reduce this problem to the contraction of a tensor network.
We represent the tensor network efficiently using tensor decision diagrams (TDDs). As our
main contribution, we have described the first contraction heuristics specifically designed
for TDD networks. Our first heuristic, called the lookahead method, evaluates all possible
next contractions with their effect on the TDDs and, in the end, picks the best contraction
greedily. While the lookahead method performs very well, it also comes with a computa-
tionally heavy overhead. Our second heuristic, called the counting method, is designed to
imitate the lookahead method while avoiding its overhead by distributing the contractions
over the entire network.

In our experimental evaluation, we have demonstrated that our contraction heuristics
outperform those implemented in the state-of-the-art library COTENGRA on this application.
Moreover, we have demonstrated that equivalence checking via TDD networks is a viable
approach that can sometimes outperform the QDD-based approach QCEC.

There are several directions for future work. First, it would be interesting to study
our contraction heuristics on other contraction benchmarks beyond quantum circuit equiv-
alence, which we left open. Second, by studying the benchmarks where QCEC performs
better than our TDD-based approach, we hope to identify more powerful contraction
heuristics. Third, our current implementation is purely sequential and does not exploit
parallelization; modern hardware supports massive concurrent operations, and since our
contraction heuristics operate in different regions of the TDD network, the computations
would be easily parallelizable. Finally, we see great potential in finding contraction plans
with the help of modern machine learning.
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