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Abstract: Background: To validate the automated quantification of cardiac chamber volumes and
myocardial mass on non-contrast chest CT using cardiac MR (CMR) as a reference. Methods: We
retrospectively included 53 consecutive patients who received non-contrast chest CT and CMR within
three weeks. A deep learning model created cardiac segmentations on axial soft-tissue reconstructions
from CT, covering all four cardiac chambers and the left ventricular myocardium. Segmentations on
CMR cine short-axis and long-axis images served as a reference. Standard estimates of diagnostic
accuracy were calculated for ventricular volumes at end-diastole and end-systole (LVEDV, LVESV,
RVEDV, RVESV), left ventricular mass (LVM), and atrial volumes (LA, RA) at ventricular end-diastole.
A qualitative assessment noted segmentation issues. Results: The deep learning model generated CT
measurements for 52 of the 53 patients (98%). Based on CMR measurements, the average LVEDV was
166 ± 64 mL, RVEDV was 144 ± 51 mL, and LVM was 115 ± 39 g. The CT measurements correlated
well with CMR measurements for LVEDV, LVESV, and LVM (ICC = 0.85, ICC = 0.84, and ICC = 0.91;
all p < 0.001) and RVEDV and RVESV (ICC = 0.79 and ICC= 0.78; both p < 0.001), and moderately well
with LA and RA (ICC = 0.74 and ICC = 0.61; both p < 0.001). Absolute agreements likewise favored
LVEDV, LVM, and RVEDV. ECG-gating did not relevantly influence the results. The CT results
correctly identified 7/15 LV and 1/1 RV as dilated (one and six false positives, respectively). Major
qualitative issues were found in three cases (6%). Conclusions: Automated cardiac chamber volume
and myocardial mass quantification on non-contrast chest CT produced viable measurements in
this retrospective sample. Relevance Statement: An automated cardiac assessment on non-contrast
chest CT provides quantitative morphological data on the heart, enabling a preliminary organ
evaluation that aids in incidentally identifying at-risk patients who may benefit from a more targeted
diagnostic workup.

Keywords: chest CT; non-contrast CT; cardiovascular diseases; incidental findings; deep learning

1. Background

Non-contrast chest computed tomography (CT) has a well-established usage spectrum
in clinical imaging. It is centered around the assessment of the airways and the lung
parenchyma, complemented by an evaluation of the mediastinal lymph nodes to the extent
they can be differentiated without intravenous contrast media. A cardiac assessment on
non-contrast chest CT, however, is difficult to perform visually and is generally limited to
gross organ enlargement, pericardial effusion, and signs of pulmonary congestion.
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Automated cardiac segmentation algorithms can support readers by providing ad-
ditional quantitative information and thus offer an opportunity for incidental cardiac
evaluation. Depending on the accuracy of these data, it may help readers to identify cardiac
abnormalities on non-contrast chest CT. Such an automated cardiac assessment could also
be used as an opportunistic screening tool to identify asymptomatic patients potentially
requiring further cardiac evaluation early. This may be especially beneficial for patients at
risk for heart failure since they commonly develop symptoms only when cardiac function is
already relevantly and irreversibly impaired. The prevalence of heart failure underlines the
importance of this issue; in Europe, it is reported to be 1–2% in the general population [1–3],
increasing to above 10% in the age group above 70 years [4,5].

Implementations of automated cardiac segmentation algorithms were long restricted
in scope and precision: the assessment of single chambers, delineation along the epicardial
contours, and a lack of myocardial mass quantification limited their diagnostic value [6–8].
A recently proposed method addresses these limitations by enabling segmentation of all
four cardiac chambers along the endocardial border, complemented by a segmentation
of the left-ventricular myocardium via delineation of the epicardial border [9]. In the
technical report, segmentation results from non-contrast cardiac CT scans in the mid-
diastolic phase were validated against those from paired and phase-matched contrast
cardiac CT scans. Although the authors reported good agreement and correlation in
this intramodal comparison, the method has not yet been validated through intermodal
comparison with the clinical gold standard—cardiac MR (CMR)—for quantifying chamber
volumes and myocardial mass, which is essential to confirm its clinical applicability.

Therefore, our objective was to assess the accuracy of an existing deep learning model
for the fully automated quantification of cardiac chamber volumes and myocardial mass
on non-contrast chest CT by comparing its results to clinical CMR as a reference standard.

2. Methods
2.1. Study Sample

We queried the local picture archiving and communication system for all CMR,
and non-contrast chest CTs performed as clinical examinations between April 2020 and
April 2023. The results were matched at a patient level and pairs with an intermodal
time difference of three weeks or less were kept. If a CMR or CT appeared in multiple
examination pairs, the pair with the smallest intermodal time difference was selected to
minimize temporal discrepancies. A general exclusion criterion was the presence of situs
inversus. Exclusion criteria specific to CMR were non-assessment of the ventricles due to
unavailability or incompleteness of short-axis cine sequences and severe image artifacts.
Exclusion criteria specific to CT were examinations performed in other than the supine
position and scan length not covering the full chest in the craniocaudal direction. The final
study sample comprised 53 patients (Figure 1).

2.2. Patient Characteristics

The study sample comprised 19 female and 34 male patients. The mean patient age
was 64 years. The mean BMI was 25.8 ± 5.3 kg/m2. The full patient characteristics are
compiled in Table 1.

Table 1. Patient characteristics and selected CT scan parameters for the study sample.

Parameter Value

Gender (female) 19 (36%)
Age (years) 64 ± 16
Height (cm) 171 ± 10
Weight (kg) 76 ± 19

BMI (kg/m2) 25.7 ± 5.3
BSA (m2) 1.9 ± 0.3
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Table 1. Cont.

Parameter Value

ECG gating (n) 10 (19%)
Pitch Factor 1.5 ± 1.1

Peak Tube Voltage (kV)
80 1 (2%)
90 16 (30%)

100 23 (43%)
110 6 (11%)
120 3 (6%)
150 4 (8%)

Tube Current-Time Product (mAs) 143 ± 104
CTDIvol (mGy) 3.1 ± 1.6

Slice thickness (mm)
0.60 2 (4%)
0.75 13 (25%)
1.00 37 (70%)
3.00 1 (2%)

Kernel
Bf36 9 (17%)
Bf39 1 (2%)
Bf40 38 (72%)
Br40 2 (4%)
Bv36 3 (6%)

The data are presented as counts with percentages or as mean ± standard deviation. BMI: body mass index,
BSA: body surface area, CTDIvol: volumetric computed tomography dose index, ECG: electrocardiogram.
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Figure 1. Flowchart of patient inclusion.

2.3. CMR: Imaging and Expert Segmentations as a Reference Standard

The CMR examinations included acquisitions on 1.5 T and 3 T scanners, specifically
the 1.5 T models MAGNETOM Aera (n = 4), Avanto Fit (n = 2), and Espree (n = 10), as
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well as the 3 T models MAGNETOM Skyra (n = 13) and Vida Fit (n = 24) (all Siemens
Healthineers, Erlangen, Germany).

The CMR image segmentations were performed in cvi42 (version 5.14, Circle Car-
diovascular Imaging Inc., Calgary, AB, Canada). The LV epicardial, LV endocardial, and
RV endocardial borders were automatically contoured in balanced steady-state free pre-
cession (bSSFP) technique short-axis cine sequences at end-diastole and end-systole. The
left atrial (LA) and right atrial (RA) endocardial borders were automatically contoured in
bSSFP long-axis cine sequences in four-chamber (both atria) and two-chamber (LA only)
views at end-diastole to perform biplane or monoplane volume calculations, respectively.
Two experts blinded to the diagnoses then assessed and, if necessary, manually corrected
all segmentations in consensus: one board-certified radiologist with six years and one
cardiology resident with three years of professional experience, including CMR. Severely
interfering susceptibility artifacts warranted the exclusion of the affected chamber. The
finally extracted parameters were LV and RV volumes at end-diastole and end-systole
(MRLVEDV, MRLVESV, MRRVEDV, MRRVESV) for 53 patients, LA and RA volumes at
ventricular end-diastole (MRLA, MRRA) for 52 and 49 patients, respectively, and LV mass
at ventricular end-diastole (MRLVM, assuming a myocardial density of 1.05 g/mL) for
53 patients. The left and right ventricles were additionally classified as normal or dilated
based on end-diastolic volumes normalized to the body surface area (BSA), following
the CMR reference ranges of the European Association of Cardiovascular Imaging [10]:
MRLVEDV ≤ 96 mL/m2 for females and ≤105 mL/m2 for males, MRRVEDV ≤ 112 mL/m2

for females and ≤121 mL/m2 for males. The left myocardium was classified as normal
or hypertrophic with cutoff values of MRLVM ≤ 81 g/m2 for females and ≤85 g/m2 for
males [10]. BSA was calculated using height and weight from the CMR examinations and
the Mosteller formula [11].

2.4. Non-Contrast Chest CT: Imaging and Fully Automatic Cardiac Segmentations

The non-contrast chest CTs were acquired on two third-generation dual-source dual-
energy scanners (SOMATOM Force, Siemens Healthineers, Erlangen, Germany). The
scanning protocols included non-ECG-gated (n = 43) and prospectively ECG-gated (n = 10)
variants. In the ECG-gated series, the targeted phase was 65% of the R-R interval and the
measured phase ranged from 47% to 79%. The full scan parameters are listed alongside
patient characteristics in Table 1. The mean difference in examination dates between CT
and CMR was 3 ± 4 days (range 0–16 days).

For all CT examinations, a non-contrast axial image series with a soft-tissue reconstruc-
tion kernel and a thin slice thickness was processed using a deep learning segmentation
model (AI-Rad Companion Research, Siemens Healthineers, Erlangen, Germany). The
segmentation algorithm was trained on coronary CT angiography scans from a multi-center
cohort of 2594 patients (mean age 60.2 ± 11.4 years, 45% female). Each scan comprised
paired, cardiac-phase matched non-contrast, and contrast-enhanced series. Segmenta-
tion masks for the contrast-enhanced series were obtained using an automated approach
and then registered to the non-contrast series through deformable registration to obtain
ground truth segmentations for the cardiac chambers and the left ventricular myocardium.
The quality of all ground truth segmentations on non-contrast scans was verified by hu-
man annotators before being used for model development. The deep learning model
utilizes an image-to-image segmentation network, combined with a conditional varia-
tional autoencoder. Further details on the model architecture have been published by
Jacob et al. [9]. In the present study, the model was used in combination with a heart
isolation model to segment the cardiac chambers in non-contrast chest CT. Schematics of
the training and inference pipelines are shown in Supplementary Figure S1. Algorithm
development was done independently from and finalized prior to the results presented in
this manuscript, and the training dataset did not include any data from the same institution
as this validation study.
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The algorithm output comprised the CT images (Figure 2) with a segmentation overlay
and a set of derived parameters: LV (CTLV), RV (CTRV), LA (CTLA), and RA (CTRA)
volumes, LV myocardial volume, and whole-heart volume. LV myocardial mass (CTLVM)
was then calculated assuming the same myocardial density as for CMR, and all values were
rounded to the nearest integer. All segmentations were visually assessed for plausibility
and rated on a 3-point Likert scale: 1—no issues, 2—minor issues (limited to the cardiac
structures and presumed not to induce a relevant volume error), 3—major issues (not
limited to the cardiac structures or presumed to induce a relevant volume error). The effects
of cardiac implants on the subjective segmentation accuracy were also noted. The density
delta of the ventricular septum and left-ventricular blood pool was determined through
two regions of interest at the basal to mid-ventricular level, sized as large as possible up to
100 mm2 and placed as accurately as possible given the non-contrast images. Additionally,
the hematocrit from a blood sample close to the CT date (cutoff ≤ 5 days) was extracted
from the clinical information system.
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Figure 2. Examples of automatic cardiac chamber and myocardium segmentations on images from
non-contrast chest CT scans. (a) Shows twelve axial slices from cranial to caudal for one example
patient. (b,c) Show multiplanar reconstructions from another patient along the cardiac short-axis
(ventricular base to apex, contours not displayed at the level of the annulus fibrosus due to the
overlap of all four chambers) and long-axis in the 4-chamber view, respectively.

2.5. Statistics

Statistical analysis was conducted using SAS (version 9.4, SAS Institute Inc., Cary,
NC, USA). Descriptive statistics were determined by means and standard deviations for
continuous variables with normally distributed data or as percentages for categorical
variables. Absolute differences between the CT-based assessment and the CMR reference
were calculated as ‘CT minus CMR’. For the ventricles, the CMR reference included end-
diastolic and end-systolic volumes, and the differences were calculated for both timepoints.
For the subset of cases where CTLV or CTRV fell outside the respective reference range,
the absolute differences to the nearest MR measurements were additionally calculated.
Agreements between paired measurements were evaluated using Bland–Altman analyt-
ics and their differences were tested using the Wilcoxon signed-rank test or the paired
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t-test, depending on data distribution. Additionally, the within-subject coefficients of
variance were calculated. The differences between independent measurements (esp. the
influence of ECG-gated and non-ECG-gated acquisition techniques on measurement agree-
ments) were tested using the Mann–Whitney U test or the unpaired t-test. Correlations
between CMR and CT measurements were calculated using the intraclass correlation coeffi-
cient (ICC). ICC values were classified as “poor” (<0.50), “moderate” (0.50–0.74), “good”
(0.75–0.90), or “excellent” (>0.90) [12]. Agreement between CMR and CT assessments for
the categorical classification of ventricular volumes as normal or dilated was determined
using percentages and binary confusion matrices in combination with the corresponding
evaluation metrics. Univariable linear regression models were used to identify factors
associated with the myocardial volume error between CMR and CT assessments. The level
of statistical significance was set at p < 0.05.

3. Results
3.1. Availability of CT Measurements

The deep learning model generated CT measurements for 52 of the 53 patients (98%)
included in the final study sample. These data, along with CMR measurements and selected
statistical analysis results, are presented in Table 2.

Table 2. Results from cardiac chamber volume and myocardial mass quantification on cardiac MR
and non-contrast chest CT.

Parameter n CMR CT p
Bland–Altman

WCV (%) ICC
Difference Limits of

Agreement

LV volume (mL) 52 166 ± 64 (ED)
94 ± 60 (ES) 144 ± 61 <0.001

<0.001
−22 ± 35
51 ± 34

−90; 47
−16; 118

18.9
40.4

0.85
0.84

LV mass (g) 52 115 ± 39 (ED) 142 ± 42 <0.001 30 ± 32 −33; 93 18.7 0.91

RV volume (mL) 52 144 ± 51 (ED)
79 ± 44 (ES) 161 ± 64 0.001

<0.001
18 ± 37
82 ± 36

−55; 91
11; 154

18.9
53.7

0.79
0.78

LA volume (mL) 51 48 ± 31 (ED) 96 ± 42 <0.001 48 ± 26 −4; 100 56.5 0.74
RA volume (mL) 48 48 ± 27 (ED) 86 ± 43 <0.001 38 ± 32 −24; 100 47.2 0.61

The data are presented as counts (n), mean ± standard deviation for CMR and CT measurements, p values,
Bland–Altman analytics (including differences and lower/upper limits of agreement), within-subject coefficients
of variation (WCV), and intraclass correlation coefficients (ICC). CMR: cardiac magnetic resonance imaging,
CT: computed tomography, ED: end-diastole, ES: end-systole, LA: left atrium, LV: left ventricle, RA: right atrium,
RV: right ventricle.

3.2. Non-Contrast CT for the Assessment of Left Ventricular Volume and Myocardial Mass

In the overall sample, CTLV fell within the range of MRLVEDV and MRLVESV in
37 of 52 cases (71%) (Figure 3). The outlier measurements tended to overestimate, with
a mean difference of 10 ± 33 mL (p = 0.22) between CT and CMR, equivalent to a mean
relative volume error of +6.2%. There was no significant difference in adherence to the
MRLVEDV-MRLVESV range between the ECG-gated and non-ECG-gated subsamples
(ECG-gated: 70% of cases; non-ECG-gated: 71%, p = 0.15). The mean difference between
CTLV and MRLVEDV was −22 mL (95% CI: −90 mL, 47 mL), and this tendency to underesti-
mate did not differ with statistical significance between the subsamples (p = 0.31) (Figure 4).
The agreement between CTLV and MRLVESV was inferior compared to MRLVEDV, with
a mean difference of 51 mL (95% CI: −16 mL, 118 mL; p < 0.001). The correlations be-
tween CTLV with both MRLVEDV and MRLVESV were good (ICC = 0.85, p < 0.001 and
ICC = 0.84, p < 0.001, respectively) and similar across subsamples for LVEDV (ECG-gated:
ICC = 0.84, p = 0.003; non-ECG-gated: ICC = 0.85, p < 0.001) and LVSEV (ECG-gated:
ICC = 0.79, p = 0.002; non-ECG-gated: ICC = 0.85, p < 0.001) (Figure 5). At the categorical
level for classifying normal and dilated LV, the classification ability of the CT results was
moderate: of the 15 patients with a dilated LV, seven (47%) were correctly identified, while
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eight were falsely classified as negative. One patient was falsely identified as positive
(Supplementary Figure S2, Supplementary Table S1).
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Figure 3. Range-based agreement for MR and CT segmentations. The MR segmentations (bars)
included end-diastolic as well as end-systolic volumes for the left (a) and right (b) ventricles, thus
providing a volume range within which the results from the automatic CT segmentation (dots) using
non-phase-matched images were expected to lie. Asterisks: Cases with major CT segmentation
failures in the visual quality assessment. LV: left ventricle, RV: right ventricle.

For the myocardial mass, CTLVM showed a tendency to overestimate, with a mean dif-
ference to MRLVM of 30 g (95% CI: −33 g, 93 g, p < 0.001). It did not improve with
statistical significance in the ECG-gated compared to the non-ECG-gated subsample
(p = 0.36) (Figure 4). The overall correlation coefficient was excellent at ICC = 0.91
(p < 0.001). The ECG-gated and non-ECG-gated subsamples showed disparate corre-
lation coefficients (ICC = 0.62, p = 0.009 and ICC = 0.79, p < 0.001, respectively). At the
categorical level for classifying normal and hypertrophic myocardium, the classification
ability of the CT results was moderate: of the five patients with a hypertrophic LV, one
(20%) was correctly identified, while four were falsely classified as negative. No patient
was falsely identified as positive (Supplementary Table S1).

The individual LV components in terms of endocardial volume and myocardial volume
showed inferior agreements and lower correlations than their combined total, represented
by LV size, with a mean difference of 4.9 mL (95% CI: −74 mL, 84 mL) and a correlation
coefficient of ICC = 0.92 (p < 0.001), using measurements at MR end-diastole. In univariate
linear regression, none of the following predictors had an effect on the differentiation
accuracy between LV cavity and myocardium: density difference (p = 0.87), hematocrit
(p = 0.21), BMI (p = 0.45), tube current-time product (p = 0.66, volumetric computed
tomography dose index (p = 0.44), ECG-gating (p = 0.85).
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Figure 4. Bland–Altman plots for MR-based and CT-based measurements. (a) Left ventricular
volumes and mass, (b) right ventricular volumes, (c) left atrial and right atrial volumes at ventricular
end-diastole. LA: left atrium, LV: left ventricle, RA: right atrium, RV: right ventricle. Blue dots:
Cardiac MR paired with non-ECG-gated chest CT. Green dots: Cardiac MR paired with ECG-gated
chest CT.
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3.3. Non-Contrast CT for the Assessment of Right Ventricular Volume

In the overall sample, CTRV fell within the range of MRRVEDV and MRRVESV in
31% of cases (Figure 3). The outlier measurements all overestimated the RV volume, with
a mean difference of 36 ± 29 mL between CT and CMR (p < 0.001), equivalent to a mean
relative volume error of +27.5%. There was no significant difference in adherence to the
MRRVEDV-MRRVESV range between the ECG-gated and non-ECG-gated subsamples
(ECG-gated: 50%, non-ECG-gated: 26%, p = 0.98). The mean difference between CTRV
and MRLVEDV was 18 mL (95% CI: −55 mL, 91 mL), and this tendency to overestimate
did not differ with statistical significance between the subsamples (p = 0.21) (Figure 4).
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The agreement between CTRV and MRRVESV was significantly inferior compared to
MRRVEDV, with a mean difference of 82 mL (95% CI: 11 mL, 154 mL; p < 0.001). The
correlations between CTRV with both MRRVEDV and MRRVESV were good (ICC = 0.79,
p < 0.001 and ICC = 0.78, p < 0.001, respectively) and similar across subsamples for RVEDV
(ECG-gated: ICC = 0.77, p = 0.004; non-ECG-gated: ICC = 0.80, p < 0.001) and RVSEV
(ECG-gated: ICC = 0.76, p < 0.001; non-ECG-gated: ICC = 0.79, p < 0.001) (Figure 5). At the
categorical level for classifying normal and dilated RV, the single patient with a dilated
ventricle was correctly identified, while six patients were falsely classified as positive
(Supplementary Figure S2, Supplementary Table S1).

3.4. Non-Contrast CT for the Assessment of Atrial Volumes

In the overall sample, CTLA and CTRA were predominantly higher than MRLA and
MRRA, with mean differences of 48 mL (95% CI: −4 mL, 100 mL, p < 0.001) for the LA and
38 mL (95% CI: −24 mL, 100 mL, p < 0.001) for the RA (Figure 4). The agreements between
the ECG-gated and non-ECG-gated subsamples did not differ with statistical significance
for either the LA (p = 0.83) or the RA (p = 0.14). The CTLA and CTRA measurements
showed moderate correlations with MRLA and MRRA via coefficients of ICC = 0.74
(p < 0.001) and ICC = 0.61 (p < 0.001), respectively (Figure 5). For LA volumes, the
correlation was stronger in the non-gated subsample (ECG-gated: ICC = 0.63, p = 0.003;
non-ECG-gated: ICC = 0.75, p < 0.001), whereas for the RA volumes, it was stronger in the
gated subsample (ECG-gated: ICC = 0.74, p = 0.005; non-ECG-gated: ICC = 0.61, p < 0.001).

3.5. Visual Quality Assessment of the CT Segmentations

The CT segmentations were without quality issues in 38 of 52 cases (73%). Minor
issues were seen in 11 cases (21%) for one or two chambers in the form of small underseg-
mentations or oversegmentations into epicardial fat, pericardial effusion, and pericardial
fat, or slight segmentation irregularities along the interventricular septum. Major issues
were found in three cases (6%) and either involved the LV contours missing three caudal
slices, the LV epicardial contour extending into an adjacent rib, or the RA contour extending
significantly into the pericardial effusion. These cases included two ECG-gated and one
non-ECG-gated examination. The two major oversegmentations of the LV affected cases
with dilated LV cavities, one of which was incorrectly classified as normal by the CT-based
assessment. The presence of cardiac implants in two cases, comprising an LV patch and
leads from a cardiac resynchronization therapy device, did not appear to negatively affect
the segmentation quality.

4. Discussion

We assessed the accuracy of a fully automated algorithm for the quantification of
cardiac chamber volumes and myocardial mass in non-contrast chest CT. A quantitative
and qualitative analysis against a CMR reference demonstrated solid performance for
ventricular volumes and myocardial mass, albeit with statistically significant tendencies
towards overestimation for the RV volume and myocardial mass. A moderate perfor-
mance was observed for atrial volumes. A subgroup analysis stratified by ECG-gated
and non-ECG-gated acquisitions did not reveal statistically significant differences between
the groups.

Previously published studies demonstrated that the automated segmentation of car-
diac chamber volumes and other substructures is feasible in contrast-enhanced images from
cardiac CT or CT pulmonary angiography [13–16]. Other approaches capable of processing
non-contrast CT images, some with the ability to discriminate the myocardium, were
primarily designed for radiotherapy planning and have not been evaluated for accuracy
in volume and mass quantification [8,17–20]. A recent method demonstrated excellent
estimation of myocardial mass on non-contrast coronary calcium score CT scans [21]. The
algorithm used in the present paper permits a more comprehensive cardiac assessment on
non-contrast CT images that encompasses quantification of all cardiac chamber volumes
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and myocardial mass. A recent retrospective study validated its technical accuracy on
420 image series from non-contrast cardiac CT paired with contrast-enhanced coronary CT
angiography as a phase-matched ground truth [9]. The observed correlation coefficients for
ventricular and atrial volumes ranged between 0.92 and 0.98. The testing did not include
image series from non-ECG-gated CT. However, a validation against CMR, which is the
clinical gold standard for the assessment of cardiac function and structure, has not yet
been performed.

Based on the results of our study, there is a good linear correlation with measurements
from CMR. The observed trend towards overestimation of volumes and mass may be par-
tially compensated for by multiplying the results with different constants. The potential to
produce false positive results for dilatation may be favorable or unfavorable in a screening
tool, depending on the preference for higher sensitivity or specificity. Notably, there was
no significant volume error in the assessment of LV volumes. Moreover, no patient in this
study received a false negative classification for LV dilatation. The performance deficit in
assessing atrial volumes compared to ventricular volumes may partly stem from the one-
dimensional monoplane and two-dimensional biplane volume estimation methods used
in CMR, which can underestimate atrial volumes due to geometrical assumptions [22–24].
Consequently, it appears plausible that the three-dimensional CT-based assessment of atrial
volumes in this study was more accurate than the CMR-based reference.

Using a different model than the present study, Naghavi et al. extracted cardiac
chamber volumes and myocardial mass from non-contrast coronary artery calcium CT
scans acquired in the MESA trial and found that this additional information significantly
enhanced traditional calcium score-only risk prediction for cardiovascular events and
all-cause mortality [25]. The authors also demonstrated that automatic left atrial volumetry
from these non-contrast CT scans predicted incident atrial fibrillation and stroke over
15 years with performance comparable to manual left atrial volume measurements ob-
tained from CMR [26]. The current study used non-contrast chest CT, which is frequently
performed in clinical service and has a central role in the ongoing introduction of imaging-
based lung cancer screening programs. These datasets are continuously acquired in large
numbers; however, as is the case with non-contrast coronary artery calcium CT scans,
information on cardiac chamber volumes and mass is most often lost since it is not visu-
ally accessible. The potential value of filling this information gap by using an automated
quantification algorithm is underlined further by the high prevalence of subclinical cardiac
dysfunction or heart failure in the general population, which poses a major health burden.
The associated 5-year mortality rate is reported to be 67% [27]. A parallel screening for
signs of heart failure, although not providing an ejection fraction, may, therefore, benefit a
significant number of patients or screening participants. Miller et al. made progress in this
area through the automatic segmentation of cardiac structures on low-dose, non-contrast,
non-gated chest CT scans in the NLST trial [28]. The biomarker estimates were predictive
of all-cause and cardiovascular mortality.

Future prospective studies could expand upon these endpoints by assessing the
ability of these methods to opportunistically identify patients who may benefit from dedi-
cated cardiac evaluation. Possible applications lie in both routine and emergency settings.
Since cardiac dysfunction can be an adverse effect of cancer treatments like anthracycline
chemotherapy, an automated cardiac assessment could also be useful in CT performed
for oncologic staging. It would support heart failure screening via echocardiography and
complementary tests (e.g., NT-proBNP) conducted before, during, and after the application
of cancer treatments [29,30].

The following limitations of our study deserve consideration: The limited sample
size of 53 retrospectively included patients restricts sample homogeneity and results in
the underrepresentation of pathologies, which constitutes the primary limitation of the
study. A larger sample size would have enabled more selective patient inclusion. As
known from an earlier analysis, segmentation of cardiac substructures on non-contrast
CT images is difficult primarily due to the lack of visibility of the endocardial border [7].
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In our sample, the relatively constant volume relation between LV myocardium and LV
blood pool meant the accuracy of the segmentation model when faced with a pathologically
thickened myocardium was not assessed. Nonetheless, the training dataset did include a
substantial share of patients with LV hypertrophy [9]. Depending on the population the
sample is drawn from, even a larger study may need an oversampling of cases with the
relevant cardiac pathologies. Given a larger sample size, it will additionally be feasible
to correlate the assessment precision with different severities of dilatation or hypertrophy.
Another limitation is that we did not phase-match the CMR and CT image series to increase
the precision of measurement comparisons. Nevertheless, this phase-matching would only
have been obtainable in the ECG-gated subgroup. While using phase-matched images
may have improved the correlations in our study, they likely would have stayed below
those observed in the aforementioned study by Jacob et al., which used contrast-enhanced
coronary CT angiography as a reference, as the intramodal comparison with another
three-dimensional dataset will reduce inaccuracies. Furthermore, although we tested
the model on images acquired with a variety of different scanning parameters, these all
originated from the same scanner model. Yet once more, the algorithm was trained on
a more comprehensive dataset [9]. Lastly, the density measurements of the ventricular
septum and left-ventricular blood pool may have suffered from partial volume effects
by unwillingly including portions of the adjacent right-ventricular and left-ventricular
blood pools or papillary muscles, given that these measurements could only be performed
approximately on the non-contrast CT images.

In conclusion, the evaluated model for automated cardiac chamber volume
and myocardial mass quantification on non-contrast chest CT produced viable measure-
ments in relation to the clinical gold standard of CMR in this retrospective sample. A
prospective cohort could fully confirm its suitability for opportunistic screening in tri-
als or routine clinical service to identify patients potentially benefiting from dedicated
cardiac evaluation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14242884/s1, Figure S1: Overview of training and
inference pipelines for CT image segmentation; Figure S2: Linear regression analyses of left and right
ventricular volumes derived from non-contrast chest CT and cardiac MR segmentations (normalized
to body surface area) with 95% confidence limits; Table S1: Classifications of normal and dilated
ventricles and normal and hypertrophic left ventricular myocardium based on non-contrast chest CT
and cardiac MR, using reference ranges from the European Association of Cardiovascular Imaging.
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BMI body mass index
BSA body surface area
CMR cardiac magnetic resonance imaging
CT computed tomography
CTLA CT-based measurement: left-atrial volume
CTLV CT-based measurement: left-ventricular volume
CTLVM CT-based measurement: left-ventricular mass
CTRA CT-based measurement: right-atrial volume
CTRV CT-based measurement: right-ventricular volume
ECG electrocardiogram
ICC intraclass correlation coefficient
LA left atrium
LV left ventricle
MR magnetic resonance (imaging)
MRLA MR-based measurement: left-atrial volume
MRLVEDV MR-based measurement: left-ventricular end-diastolic volume
MRLVESV MR-based measurement: left-ventricular end-systolic volume
MRLVM MR-based measurement: left-ventricular mass
MRRA MR-based measurement: right-atrial volume
MRRVEDV MR-based measurement: right-ventricular end-diastolic volume
MRRVESV MR-based measurement: right-ventricular end-systolic volume
RA right atrium
RV right ventricle
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