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Abstract: Background: Altered gene expression in cancers holds great potential to improve the
diagnostics and differentiation of primary and metastatic liver cancers. In this study, the expression
of the protein-coding genes ring finger protein 135 (RNF135), ephrin-B2 (EFNB2), ring finger protein
125 (RNF125), homeobox-C 4 (HOXC4), actin-binding LIM protein 1 (ABLIM1) and oncostatin M
receptor (OSMR) and the long non-coding RNAs (lncRNA) prospero homeobox 1 antisense RNA
1 (PROX1-AS1) and leukemia inhibitory factor receptor antisense RNA 1 (LIFR-AS1) was investi-
gated in hepatocellular carcinoma, cholangiocarcinoma, colorectal liver metastases and pancreatic
ductal adenocarcinoma liver metastases. Methods: This study included 149 formalin-fixed, paraffin-
embedded samples from 80 patients. After RNA isolation, quantification, reverse transcription and
preamplification, real-time qPCR was performed. The gene expression between different groups was
calculated relative to the expression of the reference genes using the ∆∆Cq method and statistically
analyzed. The expression of the genes was additionally analyzed using the AmiCA and UCSC
Xena platforms. Results: In primary cancers, our results showed differential expression between
primary tumors and healthy tissues for all the genes and lncRNA examined. Moreover, we found
downregulation of RNF135 in hepatocellular carcinoma, downregulation of OSMR in colorectal liver
metastases and upregulation of HOXC4 in cholangiocarcinoma compared to primary liver cancers
and metastatic cancers. The major finding is the upregulation of ABLIM1 in cholangiocarcinoma
compared to hepatocellular carcinoma, colorectal liver metastases, pancreatic ductal adenocarcinoma
liver metastases and healthy liver tissue. We propose ABLIM1 as a potential biomarker that differ-
entiates cholangiocarcinoma from other cancers and healthy liver tissue. Conclusions: This study
emphasizes the importance of understanding the differences in gene expression between healthy
tissues and primary and metastatic cancers and highlights the potential use of altered gene expression
as a diagnostic biomarker in these malignancies.

Keywords: hepatocellular carcinoma; cholangiocarcinoma; colorectal carcinoma; pancreatic ductal
adenocarcinoma; colorectal liver metastases; pancreatic adenocarcinoma liver metastases; mRNA;
lncRNA; gene expression; ABLIM1

1. Introduction

The majority of malignant diseases of the liver are adenocarcinomas, which consist
of primary liver tumors and liver metastases. Since the liver is one of the most common
sites of metastasis, metastatic liver adenocarcinomas are more common than primary liver
tumors. The two most common primary adenocarcinomas of the liver are hepatocellular
carcinoma (HCC), which arises from malignant transformation of hepatocytes, and cholan-
giocarcinoma (CCA), which arises from the epithelium of the bile ducts. As most cancers
are very aggressive and are often detected at late stages, patients with HCC and CCA have
a poor prognosis [1,2]. Due to the portal circulation, the liver is particularly susceptible
to metastases of gastrointestinal origin. It is therefore not surprising that one of the most
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common liver metastases is from colorectal adenocarcinoma (CRC), which is the third most
common malignancy worldwide [3]. Another common origin of metastases is pancreatic
ductal adenocarcinoma (PDAC). Most PDAC patients have local progression or metastatic
disease at the time of diagnosis [4]. The presence of liver metastases is associated with a
poorer prognosis, as they continue to be a major cause of morbidity and mortality in CRC
and PDAC patients.

The origin and differential diagnosis of liver adenocarcinomas can usually be deter-
mined by histomorphologic examination and the use of various established and routinely
used immunohistochemical protein and molecular genetic markers. However, in some
cases, primary liver adenocarcinomas are poorly differentiated and indistinguishable from
metastatic adenocarcinomas [5,6]. HCC may have acinar structures or moderately to poorly
differentiated features, making it difficult to differentiate metastatic adenocarcinoma from
CCA [5,6]. Differentiation between CCA and metastatic PDAC is particularly difficult due
to the similar morphologic pattern. In addition, both CCA and PDAC liver metastases
(PCLMs) share immunohistochemical markers (e.g., MUC1 and CK19) and some driver
mutations [7–10]. Without extensive accompanying clinical data, a definitive diagnosis is
not possible. All this underscores the need for further research to identify more specific
molecular markers that could aid in the diagnostic distinction between primary and sec-
ondary liver malignancies and reduce the diagnostic ambiguity. A better understanding of
gene expression in these malignancies could lead to the identification of novel biomarkers
that might improve the diagnostic sensitivity and specificity, particularly in the context of
early detection.

Cancer cells often exhibit altered patterns of gene expression compared to normal cells.
Common mechanisms that influence gene expression in cancer are epigenetic modifications
(with DNA methylation being the most studied), non-coding RNAs (micro-RNAs and
long non-coding RNAs (lncRNA)), genetic mutations and other genetic alterations [11–14].
Differences in the expression of oncogenes and tumor suppressor genes can contribute to
the uncontrolled growth and progression of cancer. These genetic differences can be used
to classify cancers, predict clinical outcomes and guide treatment decisions. In addition, the
study of gene expression patterns in human adenocarcinomas can provide new insights into
the pathophysiological pathways of cancer development, invasion and metastasis [15,16].

The main goal of our research was to investigate the expression of genes with poten-
tially altered expression in common primary liver cancers and liver metastases. The genes
included in our study were ring finger protein 135 (RNF135), ephrin-B2 (EFNB2), ring finger
protein 125 (RNF125), homeobox-C 4 (HOXC4), actin-binding LIM protein 1 (ABLIM1),
oncostatin M receptor (OSMR), lncRNA leukemia inhibitory factor receptor antisense RNA
1 (LIFR-AS1) and lncRNA prospero homeobox 1 antisense RNA 1 (PROX1-AS1). The
genes included in this study were selected based on published work on bioinformatics and
methylation analysis [17,18]. Briefly, we identified cancer-specific CpG methylation sites
in gene promoters of the HM450 and EPIC platforms by differentially methylated regions
analysis and assessed their methylation status experimentally by methylation-sensitive
high-resolution melting and digital PCR. Based on the methylation bioinformatics data
and experimental validation, a set of cancer-specific genes and/or lncRNAs were selected
that differentiate each cancer type from other cancers and NATs: RNF135 and EFNB2 for
HCC, RNF125, ABLIM1 and HOXC4 for CCA, OSMR and LIFR-AS1 for CRC and CRC
liver metastases (CRLM) and PROX1-AS1 for PDAC and PCLM. This study explores the
potential of altered expression of the investigated genes in the investigated cancer types
to provide more refined and precise diagnostic markers that could complement existing
immunohistochemical markers, particularly in cases where there is diagnostic ambiguity.
To assess the potential differences in the expression of the selected genes, we performed
gene expression analysis.

The aims of this study were to analyze the expression of six protein-coding genes and
two lncRNAs in HCC, CCA, CRC, CRLM, PDAC, PCLM and normal tissues adjacent to
tumors (NATs) and to investigate whether the expression differs between the included
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primary and metastatic liver adenocarcinomas and healthy liver tissue. Additionally, we
investigated whether the expression of OSMR and LIFR-AS1, which are the genes whose
methylation patterns are specific in differentiating CRC from other mentioned cancers,
differs between primary CRC, CRC NATs and CRLM. Similarly, we investigated whether
the expression of PROX1-AS1, whose methylation pattern is specific in differentiating
PDAC from mentioned cancers, differs between primary PDAC, PDAC NATs and PCLM.

2. Materials and Methods
2.1. Study Population, Specimens and Ethics

This study included 149 formalin-fixed, paraffin-embedded (FFPE) resection samples
from 80 patients. Histologic slides of HCC, intrahepatic CCA, CRC, PDAC, CRLM and
PCLM collected between 2017 and 2023 were obtained from the archive of the Institute
of Pathology, Faculty of Medicine, University of Ljubljana. Two certified pathologists
performed the histopathological examination of the tissues and confirmed the diagnosis,
tumor status and non-tumor tissue status. Of the primary tumors, a total of 15 HCCs,
15 CCAs, 15 CRCs and 15 PDACs were included in this study, along with their NATs. In
addition, 19 CRLMs and 10 PCLMs were included. Paired samples of primary CRC, NATs
and CRLM were obtained from 9 of the 19 CRLM patients. Paired samples from patients
with PCLM were not available. The demographic data, including gender and age, with the
disease category, histologic subtype, histologic grade and TNM classification of malignant
tumors for all the patients are presented in Supplementary Table S1 [19–21]. The data
included 45 men and 35 women. The average age of the patients was 66.8 years. This
study was conducted in accordance with the Declaration of Helsinki and approved by the
National Medical Ethics Committee of the Republic of Slovenia (No. 0120-34/2022/3).

2.2. RNA Isolation and Quantification

Tissue cores were punched from FFPE tissue blocks. RNA isolation from the punches
was performed using the customized protocol on the Maxwell® RSC Instrument (Promega
Corporation, Madison, WI, USA). The protocol combined the Maxwell RSC FFPE Plus RNA
Kit (Promega Corporation, Madison, WI, USA) and the Maxwell® RSC miRNA Tissue Kit
(Promega). The first part of the protocol was performed according to the Maxwell RSC FFPE
Plus RNA Kit (Promega Corporation, Madison, WI, USA), which included deparaffinization
of the samples, digestion with proteinase K and de-crosslinking of the RNA. The protocol
was modified so that the protease digestion was performed overnight at 56 ◦C, mixing
every 4 min for 15 s at 300 rpm. The next steps followed the instructions for the Maxwell®

RSC miRNA Tissue Kit (Promega Corporation, Madison, WI, USA). The lysis buffer and
enhancer were added to the aqueous phase (skipping the 1-thioglycerol/homogenization
solution step and proceeding to the next step). The entire lysate was added to the Maxwell
RSC cartridge and extracted using the specific method. The total RNA was eluted in
nuclease-free water. The quantification and quality of the RNA isolates were assessed
with the Nanodrop spectrophotometer (ND-1000, Thermo Fisher Scientific, Waltham, MA,
USA) and a Qubit fluorimeter (Thermo Fisher Scientific, Waltham, MA, USA) using the
Qubit RNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). The ratios of the
absorbance at the wavelengths of 230, 260 and 280 nm (A260/A280 and A260/A230) of all
the included samples can be found in Supplementary Table S2.

2.3. Reverse Transcription and Real-Time Quantitative PCR

Reverse transcription (RT) reactions were performed with the High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific) according to the manufacturer’s in-
structions on the SimpliAmp™ Thermal Cycler (Thermo Fisher Scientific, Waltham, MA,
USA) with the following steps: 10 min at 25 ◦C, 120 min at 37 ◦C and 5 min at 85 ◦C.
Here, 600 ng of RNA was added per RT reaction. After the cDNA synthesis, the quality of
the samples and their suitability for our research was tested using the Hs_GAPDH_1_SG
QuantiTect Primer Assay. The reactions were performed with the SYBR™ Select Master
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Mix according to the manufacturer’s instructions on the QuantStudio Real-Time PCR Sys-
tem (Thermo Fisher Scientific, Waltham, MA, USA). The standard cycling mode with its
thermocycling conditions was 2 min at 50 ◦C, 2 min at 95 ◦C and 45 cycles of 15 s at 95 ◦C
and 1 min at 60 ◦C.

For adequate samples, the preamplification reaction was performed using the Taq-
Man PreAmp Master Mix Kit (Thermo Fisher Scientific, Waltham, MA, USA) accord-
ing to the manufacturer’s protocol. The SimpliAmp™ Thermal Cycler (Applied Biosys-
tems, Thermo Fisher Scientific) and the ProFlex PCR System (Thermo Fisher Scientific,
Waltham, MA, USA) were used for the incubation steps with enzyme activation for 10 min
at 95 ◦C, 14 cycles of annealing and extension for 15 s at 95 ◦C and 5 min at 60 ◦C and
enzyme inactivation for 10 min at 99 ◦C. The final preamplification reaction was diluted
20× according to the manufacturer’s recommendations.

The real-time qPCR reactions for the selected genes were performed using Taq-
Man technology with the FastStart Essential DNA Probe Master (Roche, Basel, Switzer-
land) on the QuantStudio Real-Time PCR System (Thermo Fisher Scientific, Waltham,
MA, USA). The thermocycling conditions were 2 min at 50 ◦C, 10 min at 95 ◦C and
45 cycles of 15 s at 95 ◦C and 1 min at 60 ◦C. The TaqMan assays (Thermo Fisher Scientific,
Waltham, MA, USA) used are listed in Table 1. The samples were run in duplicate, whereas
the qPCR efficiency reactions were run in triplicate. Pools of RNA samples from each group
were created to calculate the efficiency of the qPCR reactions. A two-fold serial dilution of
each pool was prepared in six steps. The dilutions ranged from 20- to 640-fold dilutions.

Table 1. List of used TaqMan assays (Thermo Fisher Scientific).

mRNA or lncRNA Gene Assay ID

GAPDH Hs03929097_g1
B2M Hs99999907_m1
IPO8 Hs00183533_m1

RNF135 Hs00810675_m1
EFNB2 Hs00187950_m1
RNF125 Hs00215201_m1
HOXC4 Hs00538088_m1
ABLIM1 Hs01046520_m1
OSMR Hs01055340_m1

LIFR-AS1 Hs01373895_m1
PROX1-AS1 Hs01368902_m1

2.4. Reference Genes Selection

Candidate reference genes were selected from the literature, including GAPDH, B2M
and IPO8 (Table 1) [22–25]. To evaluate the stability of the candidate reference genes in our
samples and to determine the most stable pair of reference genes, we used the geNorm
algorithm, which is included in the ctrlGene package (version 1.0.1) in the R software
environment (version 4.3.0). For each reference gene, the algorithm calculated the M value,
a measure of the expression stability based on the average pairwise expression ratio, and
suggested the best gene pair and calculated its M value. The gene or combination of genes
with the lowest M value was considered the most stable [26].

2.5. Validation with Publicly Available Online Tools

To further corroborate our experimental findings, we searched for publicly available
data and used tools for data collection, visualization and interpretation. To obtain data
on the differential expression of the studied genes in our primary cancers compared to
paired healthy tissues, we used the tool AmiCA [27]. Using the ‘Expression by disease’
tab, we obtained an overview of the log2 fold changes of the investigated genes across the
project from the TCGA database. Furthermore, we collected data for the investigated genes
and lncRNA from the UCSC Xena platform [28]. We collected Illumina HiSeq data and
visualized the expression for individual genes in different primary cancers and healthy
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tissues with boxplots. The data included 50 HCC NAT, 371 HCC, 9 CCA NAT, 36 CCA,
51 CRC NAT, 380 CRC, 4 PDAC NAT and 178 PDAC samples. We calculated the mean
of the log2(norm_count+1) values for each group. The relative changes in the expression
levels, the fold change (FC) and statistics between groups were calculated. Data for CRLM
and PCLM were not available for either platform.

2.6. Statistical Analysis

The gene expression analysis was performed to test whether the expression of the se-
lected genes was statistically significantly upregulated or downregulated between primary
tumors, metastases and healthy liver tissue. The gene expression between the different
groups was calculated relative to the expression of the two reference genes using the ∆∆Cq
method [29]. The ∆Cq data were obtained by normalizing to the geometric mean of the B2M
and IPO8 reference genes for the mRNAs and lncRNAs studied. A higher ∆Cq indicates a
lower mRNA abundance of the target gene, whereas lower ∆Cq values indicate a higher
mRNA abundance of the target gene.

IBM SPSS Statistics 27 was used for the statistical analysis of the experimental results
and the results of the Xena platform. Kolmogorov–Smirnov and Shapiro–Wilk tests were
used to check the normal distribution of the experimental data. If the data were normally
distributed, parametric tests (paired t-tests for dependent samples and t-tests for inde-
pendent samples) were used. If the data were not normally distributed, non-parametric
tests (Wilcoxon signed-rank test for dependent samples and Mann–Whitney U test for
independent samples) were used.

3. Results
3.1. Reference Genes

The gene expression (∆Cq) was calculated relative to the expression of the two ref-
erence genes and used to calculate the FC of the group comparisons. The stability and
suitability of the candidate reference genes for all the included healthy and cancerous
tissues was confirmed using the geNorm algorithm [26]. The stability of the reference genes
in all the included primary tumors, liver metastases and NATs, expressed with the M value
for GAPDH, B2M and IPO8, was 1.27, 1.16 and 1.02, respectively. The highest stability of
0.92 was achieved for the B2M–IPO8 pair, which was then selected as the most suitable
reference gene pair and used for the following calculations. Using the ∆∆Cq method,
we compared the expression between the groups [29]. The ∆Cq values of each group for
the genes analyzed are shown in Figures 1 and 2. The ∆∆Cq, FC and p-values of all the
included comparisons can be found in Supplementary Table S3.

3.2. Differential Expression in Primary Cancers Compared to Paired Healthy Tissues

The first part of our research focused on whether the studied genes were differentially
expressed between the primary tumors for which they were identified and their NATs
(RNF135 and EFNB2 for HCC, RNF125, ABLIM1 and HOXC4 for CCA, OSMR and LIFR-
AS1 for OSMR and PROX1-AS1 for PDAC). We found differential expression between
the primary tumors and healthy tissues for all the genes and lncRNA examined. In HCC,
we focused on RNF135 and EFNB2. When comparing HCC with HCC NATs, RNF135
was downregulated (FC = −2.97, p < 0.0001) and EFNB2 was upregulated (FC = 1.63 and
p < 0.05) (Figure 1A,B). Interestingly, both genes also showed pronounced upregulation
in CCA compared to CCA NATs. Specifically, RNF135 was upregulated by 2.68-fold
(p < 0.0001) and EFNB2 showed an even larger increase of 8.41-fold (p < 0.0001).

In CCA, the genes analyzed included RNF125, HOXC4 and ABLIM1. RNF125 was
downregulated (FC = −4.69, p < 0.01), while ABLIM1 and HOXC4 were upregulated in
CCA compared to CCA NATs (Figure 1C–E). The ABLIM1 expression was 1.92-fold higher
(p < 0.001) and the HOXC4 expression was 10.02-fold higher in CCA than in CCA NATs
(p < 0.0001). In contrast, in HCC, ABLIM1 was the only gene to show a significant difference
compared to HCC NATs, with a downregulation of 1.56-fold (p < 0.01).
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≤ 0.001, **** p ≤ 0.0001; Cq, quantification cycle; HCC NAT, normal liver tissue adjacent to hepato-

cellular carcinoma; HCC hepatocellular carcinoma, CCA NAT, normal liver tissue adjacent to chol-

angiocarcinoma; CCA, cholangiocarcinoma; CRLM, colorectal liver metastases; PCLM, pancreatic 

ductal adenocarcinoma liver metastases. 

 

Figure 1. Expression of (A) RNF135, (B) EFNB2, (C) RNF125, (D) HOXC4 and (E) ABLIM1 in HCC,
HCC NATs, CCA, CCA NATs, CRLM and PDLM. The expression is presented as the ∆Cq values
and the significance between the different groups is shown. The whiskers of the boxplots represent
the values of the upper and lower quartiles and the dots represent outliers. The line dividing the
boxplot represents the median and the cross represents the mean. Legend: * p ≤ 0.05, ** p ≤ 0.01
*** p ≤ 0.001, **** p ≤ 0.0001; Cq, quantification cycle; HCC NAT, normal liver tissue adjacent to
hepatocellular carcinoma; HCC hepatocellular carcinoma, CCA NAT, normal liver tissue adjacent to
cholangiocarcinoma; CCA, cholangiocarcinoma; CRLM, colorectal liver metastases; PCLM, pancreatic
ductal adenocarcinoma liver metastases.
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Figure 2. Expression of OSMR and PROX1-AS1. The expression is plotted as the ∆Cq values and
the significance between different groups is presented. The whiskers of the boxplots represent the
values of the upper and lower quartiles and the dots represent the outliers. The line dividing the
boxplot represents the median and the cross represents the mean. (A) OSMR expression in CRC, CRC
NAT, CRLM, PCLM, HCC, HCC NAT, CCA and CCA NAT. (B) PROX1-AS1 expression in PDAC,
PDAC NAT, PCLM, CRLM, HCC, HCC NAT, CCA and CCA NAT. Legend: * p ≤ 0.05, ** p ≤ 0.01
*** p ≤ 0.001, **** p ≤ 0.0001; Cq, quantification cycle; HCC NAT, normal liver tissue adjacent to
hepatocellular carcinoma; HCC hepatocellular carcinoma, CCA NAT, normal liver tissue adjacent to
cholangiocarcinoma; CCA, cholangiocarcinoma; CRC NAT, normal colon tissue adjacent to colorectal
cancer; CRC, colorectal carcinoma; CRLM, colorectal liver metastases; PDAC NAT, normal pancreatic
tissue adjacent to pancreatic ductal adenocarcinoma; PDAC, pancreatic ductal adenocarcinoma;
PCLM, pancreatic ductal adenocarcinoma liver metastases.

In CRC, upregulation of OSMR was observed in CRC compared to CRC NATs
(FC = 2.49, p < 0.05) (Figure 2A). Additionally, OSMR expression differed significantly
in CCA, where it was 4.27-fold higher than in CCA NATs (p < 0.0001).

Downregulation of lncRNA PROX1-AS1 was observed in PDAC compared to PDAC
NATs (FC = −4.96, p < 0.01) (Figure 2B). Moreover, a significant reduction in the PROX1-AS1
expression was also noted in HCC versus HCC NATs, with a fold change of −1.87 (p < 0.05).

3.3. Differential Expression Between Primary Liver Cancers, Liver Metastases and Healthy
Liver Tissue

The second part of our research focused on whether the studied genes and lncRNA
were differentially expressed between the primary CRC and PDAC tumors and their
metastases and whether the expression of these genes differed between the primary liver
cancers, CRLM and PDAC.

From our analysis, three genes emerged as potential biomarkers for differentiating
CCA from other groups, with ABLIM1 being the most promising candidate. ABLIM1 was
significantly upregulated in CCA compared to all the other groups, making it the most distinc-
tive gene for differentiating CCA from both HCC and common liver metastases (Figure 1E).
Specifically, the ABLIM1 expression in CCA was upregulated by 1.92-fold compared to
CCA NATs (p < 0.001), 3.10-fold compared to HCC NATs (p < 0.0001), 4.83-fold compared
to HCC (p < 0.0001), 4.72-fold compared to CRLM (p < 0.0001) and 5.20-fold compared
to PCLM (p < 0.0001). This strong differential expression of ABLIM1 indicates it to be
a promising candidate as a biomarker for differentiating CCA from both primary liver
cancers and metastatic liver cancers.

Another promising gene for differentiating CCA was HOXC4 (Figure 1D). HOXC4
was highly upregulated in CCA compared to CCA NATs (p < 0.0001), showing a 25.70-fold
increase compared to HCC NATs (p < 0.0001), a 19.96-fold increase compared to HCC
(p < 0.0001), a 4.31-fold increase compared to CRLM (p < 0.001) and a 2.73-fold increase
compared to PCLM (p < 0.05).
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OSMR also demonstrated strong potential for differentiating CCA from other
groups (Figure 2A). OSMR was upregulated in CCA compared to CCA NATs, as pre-
viously discussed, and showed significant upregulation compared to HCC (FC = 2.39,
p < 0.0001), HCC NATs (FC = 1.96, p < 0.01), PCLM (FC = 2.65, p < 0.001) and CRLM
(FC = 5.33, p < 0.0001). Additionally, OSMR was downregulated in CRLM compared to
CRC (FC = −3.10, p < 0.001), although no significant difference was found between CRLM
and CRC NATs.

RNF135 was identified as a promising marker for differentiating HCC from liver
metastases (Figure 1A). RNF135 was significantly downregulated in HCC compared to
CCA, CRLM and PCLM (FC = −2.42, FC = −3.95, FC = −2.99, all p < 0.0001). However,
there was no significant difference in the RNF135 expression between HCC and CCA NATs,
suggesting a tumor-specific downregulation in HCC.

EFNB2 exhibited the lowest expression in CCA NATs and was consistently upregulated
in all the other groups when compared to CCA NATs (Figure 1B).

RNF125 had the lowest expression in primary liver tumors (Figure 1C). A significant
downregulation of RNF125 was observed in CCA compared to HCC NATs (FC = −3.19,
p < 0.001) and a significant difference was also observed between HCC and CCA NATs
(FC = −4.22, p < 0.05). RNF125 was additionally downregulated in CRLM compared to
healthy liver tissue.

Lastly, the lncRNA PROX1-AS1 exhibited differential expression between PDAC,
PDAC NATs and PCLM. PROX1-AS1 was upregulated in PCLM compared to PDAC
(FC = 4.09, p < 0.05), although no significant difference was observed between PCLM and
PDAC NATs (Figure 2B).

3.4. Additional Validation with AmiCA and USCS Xena Platforms

To support our experimental results, we used two publicly available tools: the AmiCA
and Xena platforms [27,28]. We used data from the primary cancers as data for CRLM
and PCLM were not available. Using the AmiCA tool, we obtained an overview of the
differential expression of the investigated genes in primary liver cancers compared to
paired healthy tissues. Similarly, we have collected and statistically analyzed data for
1079 primary cancer and healthy tissue samples from the Xena platform. The results
from the AmiCA and Xena platforms for RNF135, EFNB2, RNF125, HOXC4, OSMR and
PROX1-AS1 are presented in Supplementary Figure S1. Here, we focused on the best-
performing gene, ABLIM1 (Figure 3). The AmiCA results confirm the upregulation of
ABLIM1 in CCA compared to healthy liver tissue (Figure 3A). Taking an overview of the
different cancers, we can see that ABLIM1 is downregulated in the majority of other cancers,
including HCC, which is consistent with our experimental results (Figure 1E). For the
ABLIM1 analysis from the Xena platform, we included 466 samples of CCA, CCA NAT,
HCC and HCC NAT samples. The results showed a 2.82-fold upregulation of ABLIM1 in
CCA compared to CCA NATs (p < 0.001). The expression of ABLIM1 was also upregulated
in CCA compared to HCC and HCC NATs (FC = 2.70, p < 0.0001 and FC = 2.87, p < 0.0001,
respectively) (Figure 3B).

3.5. Gene Functions

To gain a deeper understanding of the role of specific genes and lncRNAs in cancer
development, we conducted a comprehensive literature review. Supplementary Table S4
provides an overview of the investigated genes and lncRNAs and describes their functions
and involvement in cancer. These genes and lncRNAs contribute to cancer progression
by regulating key processes such as cell proliferation, migration, invasion, epithelial–
mesenchymal transition and apoptosis. Some also influence angiogenesis, alter the tumor
microenvironment and enhance tumor immunity by inhibiting immune cell infiltration. In
addition, some of them modulate ubiquitination and proteasome-mediated degradation.
They influence important oncogenic signaling pathways such as the PI3K/AKT/mTOR,
MAPK/ERK, Wnt/β-catenin and TGF-β1-SMAD3-ID1 signaling pathways [30–66].
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CCA, cholangiocarcinoma.

4. Discussion

Comparison of the gene expression profiles of primary and metastatic liver cancers
has great potential to increase diagnostic accuracy. Organ-specific and cancer-specific gene
expression patterns can aid in the diagnosis of liver cancer. Studies on gene expression
in liver metastases from CRC successfully demonstrate the potential of this approach to
differentiate between primary liver cancer and liver metastases, with an accuracy of over
90% in identifying the primary tumor sites [16]. Incorporating gene expression assays
into clinical practice will allow oncologists to offer precise treatments, improving care and
outcomes for patients with primary and metastatic liver cancers. In addition, understanding
the differences in expression between CRLM, PCLM and primary liver cancers (HCC and
CCA) may provide insights into their distinct biological behavior, indicating potential
therapeutic targets and prognostic markers.

Our experimental results (Figures 1 and 2) show altered gene expression of the investi-
gated genes between HCC, CCA, CRLM, PCLM and healthy liver tissue and are therefore
a promising additional tool to differentiate between primary liver cancers and liver metas-
tases, which is in line with the literature data [16]. Furthermore, additional validation with
the AmiCA and USCS Xena platforms showed agreement with our experimental results.

The major finding of our study is the upregulation of ABLIM1 in CCA compared
to HCC, CRLM, PCLM and healthy liver tissue. ABLIM1, the expression of which had
not previously been studied in CCA, was upregulated and may also serve as a potential
biomarker for CCA. Other studies showed upregulation of ABLIM1 in CRC patients and
demonstrated its function in promoting tumor growth and metastasis in vitro [55]. In HCC,
high expression of ABLIM1 was associated with a poor prognosis [54].
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Similarly, our results show significantly higher expression of HOXC4 in CCA compared
to the other groups, suggesting its potential role as a biomarker. Careful interpretation is
necessary, as HOXC4 has been identified as an oncogene in various cancers. Higher expres-
sion was found in cancer tissues compared to normal tissues in 21 tumor types, including
HCC, CCA, CRC and PDAC, which is consistent with our experimental results [53].

Our findings reveal variable OSMR expression across cancer types: it is elevated in
CRC compared to CRC NATs but downregulated in CRLM. It may act as a tumor suppressor
and its low expression has been associated with resistance to tumor growth inhibition [62].
Notably, the OSMR levels were lowest in CRLM compared to CCA, CRLM and PCLM,
indicating OSMR could serve as a biomarker to differentiate CRLM from other cancers.
Targeted therapies that block OSMR or its ligand OSM are currently being explored [58–61].

Another important finding is the significant downregulation of RNF135 in HCC
compared to CCA, CRLM and PCLM, suggesting that its lower expression is characteristic
of HCC and may help to differentiate HCC from other cancers. Our results confirm Wang’s
findings that RNF135 is downregulated in HCC, where it acts as a tumor suppressor and
is linked to a poor prognosis [32]. The high expression of RNF135 in CRLM is aligned
with the Qiu et al.’s report of RNF135 upregulation in CRC [35]. It is also associated
with chemotherapy resistance [35]. As DNA methylation regulates RNF135 expression,
patients with low RNF135 expression may benefit from demethylation drugs, potentially
improving their clinical outcomes [32]. Our previous study also revealed hypermethylation
of the RNF135 promoter, which may explain the reduced RNF135 expression observed
in our samples and additionally support the role of methylation in regulating RNF135
expression [17].

RNF125 expression is significantly downregulated in several cancers, including CCA,
HCC and CRC, and is negatively correlated with the clinical stage, whereas higher ex-
pression is associated with better clinical outcomes [38,39,42]. Our results confirm this, as
RNF125 was downregulated in HCC and CCA compared to healthy liver tissue. Further-
more, the hypermethylation of the RNF125 promoter in CCA discovered in our previous
study may explain its reduced expression, as promoter hypermethylation has also been
associated with its downregulation in other diseases [17,36]. RNF125 was also downreg-
ulated in CRLM in comparison to healthy liver tissue, which may be consistent with the
downregulation of RNF125 in primary CRC [42]. RNF125 downregulation is associated
with a poor prognosis and disease progression [39,41].

EFNB2 has been linked to HCC progression, with significantly higher expression
in HCC compared to normal tissue, which our results confirm [43,44]. Similarly, EFNB2
is upregulated in CCA and CRLM compared to normal liver tissue, which aligns our
results with previous findings [45,49]. Other studies also reported overexpression in CRC
samples [48,50]. In PDAC, EFNB2 is overexpressed and associated with tumor progression,
making it a potential treatment target [47].

We investigated the expression of the lncRNA PROX1-AS1, which is involved in tumor
growth and metastasis in some malignancies [63–65]. Our results revealed PROX1-AS1
downregulation in PDAC and HCC compared to their NATs, but its expression increased
from PDAC to PCLM. In CRC and other cancers, PROX1-AS1 expression is upregulated
and high PROX1-AS1 expression is associated with poor overall survival [63].

Another interesting finding is that the expression of some of the investigated protein-
coding genes and lncRNAs differs between HCC NATs and CCA NATs (Figures 1 and 2).
These differences may stem from the distinct cellular origins and functions: hepatocytes
for HCC and biliary epithelial cells (cholangiocytes) for CCA. In HCC, the adjacent tissue
may show alterations related to liver metabolism and regeneration, whereas in CCA, the
surrounding tissue may show changes in gene expression related to bile duct function and
inflammation [67,68]. To better understand the observed differences, the expression of our
mRNAs was compared to the protein expression data from the Human Protein Atlas, which
is based on conventional immunohistochemistry [69]. Comparing the mRNA levels with the
protein expression, we found consistency for RNF135 and EFNB2 but some discrepancies
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for ABLIM1 and OSMR. The protein expression of RNF125 was not detectable in either
hepatocytes or cholangiocytes. Data for HOXC4 were not available. Differences may arise
due to post-transcriptional regulation or molecular changes influenced by proximity to
tumors, positioning NAT tissue as an intermediate between the healthy and malignant
states [70,71]. Further studies are needed to understand the differences in expression
between HCC NATs and CCA NATs.

The limitation of our study is the small sample size for individual cancers. Another
technical limitation of this study is the low detection limit of expression by real-time
qPCR. In addition to the presented genes and lncRNA, another lncRNA, LIFR-AS1, was
investigated in this study. We were able to determine its expression in less than half of
the healthy colon tissue and only in one CRC sample. We can assume that LIFR-AS1
was downregulated, so that its expression was below the detection limit in the majority of
samples. Regarding the bioinformatics validation of our experimental results, we found that
there are no data for CRLM and PCLM in the publicly available databases and platforms.
If available, additional data on the expression profiles of metastases would allow further
confirmation of our experimental results. Another limitation is the lack of in situ analysis
of the diagnostic biomarkers used at the protein level by immunohistochemistry.

This study demonstrates the possibility of using signature genes to differentiate be-
tween primary liver cancer, liver metastases and healthy liver tissue. A large-scale clinical
study with a larger number of patients is needed to further substantiate our results.

5. Conclusions

This study expands our understanding of the transcriptomic behavior of RNF135,
EFBN2, RNF125, ABLIM1, HOXC4, OSMR and PROX1-AS1 in HCC, CCA, CRLM, PCLM
and NATs. They have unique and overlapping mRNA and lncRNA expression profiles.
Our results show differential expression between primary tumors and healthy tissues for
all the genes and lncRNAs examined. Our most important finding is the significantly
higher expression of ABLIM1 compared to healthy liver tissue and other cancers. Therefore,
ABLIM1 has the potential to differentiate CCA from HCC, CRLM, PCLM and healthy liver
tissue. In addition, significantly higher expression of HOXC4 was detected in CCA, signifi-
cantly lower expression of RNF135 in HCC and significantly lower expression of OSMR
in CRLM compared to the other cancers. In conclusion, comparing the gene expression
profiles of primary and metastatic liver cancer holds the potential to identify diagnostic
biomarkers, increase diagnostic accuracy and identify potential therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes15121545/s1. Table S1: The demographic data, includ-
ing gender and age, disease type, histologic subtype, histologic grade and TNM classification of
malignant tumors. TNM staging was performed in accordance with the UICC 8th edition 2017.
Histological grading was performed using the standard grading system according to the WHO
Classification of Tumors (well, moderately or poorly differentiated) and a classification based on
the histopathological criteria focusing on the structural and cytological features of the tumor into
one of the two recommended groups for mucinous adenocarcinomas (differentiated or undiffer-
entiated). Legend: M, men. F, female. HCC, hepatocellular carcinoma. CCA, cholangiocarcinoma.
PDAC, pancreatic ductal adenocarcinoma. PCLM, pancreatic ductal adenocarcinoma liver metastases.
CRC, colorectal adenocarcinoma. CRLM, colorectal liver metastases. NOS, not otherwise specified.
Table S2: Nanodrop measurements. Included are the ratios of absorbance at the wavelengths of 230,
260 and 280 nm (A260/A280 and A260/A230) of all the included samples. Abbreviations: HCC,
hepatocellular carcinoma; CCA, cholangiocarcinoma; PDAC, pancreatic ductal adenocarcinoma;
PCLM, pancreatic ductal adenocarcinoma liver metastases; CRC, colorectal adenocarcinoma; CRLM,
colorectal liver metastases; NAT, normal tissue adjacent to tumor. Table S3: The ∆∆Cq, FC and
p-values of all the included comparisons. The statistically significant results are highlighted in bold.
Abbreviations: HCC, hepatocellular carcinoma; CCA, cholangiocarcinoma; PDAC, pancreatic ductal
adenocarcinoma; PCLM, pancreatic ductal adenocarcinoma liver metastases; CRC, colorectal adeno-
carcinoma; CRLM, colorectal liver metastases; NAT, normal tissue adjacent to tumor. Table S4: An

https://www.mdpi.com/article/10.3390/genes15121545/s1
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overview of the included genes and lncRNAs with a description of their functions, their involvement
in cancer and their involvement in cancer-related signaling pathways. Figure S1: The results of
the analyses of the AmiCA and Xena platforms for RNF135, EFNB2, RNF125, HOXC4, OSMR and
PROX1-AS1. For the lncRNA PROX1-AS1, the data were sourced solely from the Xena platform,
as the AmiCA platform does not contain lncRNA data. From the Xena platform, we included
1079 samples of HCC, HCC NAT, CCA, CCA NAT, CRC, CRC NAT, PDAC and PDAC NAT samples.
Abbreviations: HCC, hepatocellular carcinoma; CCA, cholangiocarcinoma; PDAC, pancreatic ductal
adenocarcinoma; CRC, colorectal adenocarcinoma; NAT, normal tissue adjacent to tumor; * p ≤ 0.05,
** p ≤ 0.01; *** p ≤ 0.001, **** p ≤ 0.0001.
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