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Abstract: The human mitochondrial proteome comprises approximately 1500 proteins, with only 13
being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated
by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The
process of mitochondria-destined protein import is mediated by several intricate protein complexes
distributed among the four mitochondrial compartments. The focus of this mini-review is the
translocase of the inner membrane 23 (TIM23) complex that assists in the import of ~60% of the
mitochondrial proteome, which includes the majority of matrix proteins as well as some inner
membrane and intermembrane space proteins. To date, numerous pathogenic mutations have been
reported in the genes encoding various components of the TIM23 complex. These diseases exhibit
mostly developmental and neurological defects at an early age. Interestingly, accumulating evidence
supports the possibility that the gene for Tim50 represents a hotspot for disease-causing mutations
among core TIM23 complex components, while genes for the mitochondrial Hsp70 protein (mortalin)
and its J domain regulators represent hotspots for mutations affecting presequence translocase-
associated motor (PAM) subunits. The potential mechanistic implications of the discovery of disease-
causing mutations on the function of the TIM23 complex, in particular Tim50, are discussed.
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1. Introduction

Mitochondria are endosymbiotic organelles comprising four sub-compartments, namely,
the semipermeable mitochondrial outer membrane (OM), the aqueous intermembrane
space (IMS), the impermeable mitochondrial inner membrane (IM), and the aqueous ma-
trix [1–4]. The human mitochondrial matrix maintains 2–10 copies of a 16 kb circular
genome containing 37 genes, which encode for 13 subunits of respiratory complexes, 22 mi-
tochondrial tRNAs, and 2 rRNAs [1,5–8]. The human mitochondrial proteome comprises
around 1500 proteins. Thus, the majority of mitochondrial proteins are encoded by the
nuclear genome, cytoplasmically translated, and then imported into and sorted within
the organelle [9–12]. Mitochondria are vital for the viability of essentially all eukaryotes,
serving a vast number of functions, including ~80% of total cellular energy production [13],
the metabolism of amino acids, lipids, and nucleotides, the biosynthesis of iron–sulfur
(Fe–S) clusters and co-factors [9,14,15], the maintenance of calcium homeostasis [13], par-
ticipation in various signaling processes, cellular differentiation, control of the cell cycle
and cell growth [16], and quality control via mitophagy [17,18] and apoptosis [19]. The
mitochondrial protein import machinery was suggested to play a role in cytosolic quality
control by transporting aggregation-prone proteins into mitochondria, facilitating their
degradation [20].

Genes 2024, 15, 1534. https://doi.org/10.3390/genes15121534 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes15121534
https://doi.org/10.3390/genes15121534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://doi.org/10.3390/genes15121534
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes15121534?type=check_update&version=1


Genes 2024, 15, 1534 2 of 13

These diverse functions are performed by multiple protein machineries found in the
different sub-compartments of mitochondria [14,21]. As the cellular demand for mito-
chondrial functions is known to vary along the life cycle of cells or in different tissues,
the mitochondrial complexome is constantly dynamic, with the expression level of each
protein in a given complex being regulated at the level of transcription, translation, im-
port, folding, and degradation. Seven intricate protein complexes residing in different
mitochondrial compartments play key roles in the maintenance and regulation of the mi-
tochondrial proteome by mediating protein uptake from the cytosol [13,14,22]. The outer
membrane contains three such complexes, namely, the translocase of the outer membrane
(TOM) complex [23], the sorting and assembly (SAM) complex [24], and the mitochondrial
import (MIM) complex [25]. The mitochondrial IMS assembly (MIA) complex is located
in the IMS/IM. The translocase of the inner membrane 23 (TIM23) complex, the TIM22
complex [26], and the cytochrome oxidase assembly (OXA) complex all reside in the inner
membrane [27].

The TOM complex, considered to be the general import pore for translocation across
the outer membrane, comprises the Tom20 and Tom70/Tim71 primary receptors [28], the
Tom22 central receptor [29], the Tom40 channel [30], and the smaller proteins Tom5, Tom6,
and Tom7 [31,32]. The SAM complex facilitates the insertion of β-barrel-specific proteins
and a majority of α-helical Tom proteins into the lipid bilayer [33]. The MIM complex, in
corporation with the SAM complex, assists in the translocation of α-helical, signal-anchored,
and tail-anchored proteins of the outer membrane [34]. The MIA complex facilitates the
import of IMS proteins containing a mitochondrial IMS sorting signal presenting cysteine-
based Cx3C or Cx9C motifs [30,35]. The TIM22 complex facilitates the insertion and
assembly of multi-pass transmembrane proteins, particularly carrier proteins [26,36]. The
OXA complex facilitates co-translational insertion of proteins into the inner membrane,
particularly those involved in the respiratory chain [37–39]. The TIM23 complex is involved
in the translocation of ~60% of the mitochondrial proteome, which comprises all of the
matrix proteins, many IM proteins, and a few IMS proteins [40–47].

Due to the TIM23 complex’s central role in mitochondrial protein import and bio-
genesis, very few cases of TIM23 complex disease-causing mutations were discovered
in the past. However, in recent years, accumulating studies suggest that mutations in
components of the TIM23 complex, in particular the Tim50 protein, are the cause of several
developmental and neurological impairments. This mini-review discusses the features of
these disease-causing mutations.

2. The Yeast TIM23 and Human TIMM23 Complexes

The TIM23 complex (also known as the presequence translocase) is the key player in
the translocation of presequence-containing mitochondrial proteins [40–47]. Such proteins
correspond to all of the matrix proteins, many IM proteins, and a few IMS proteins,
representing in total ~60% of the mitochondrial proteome [40–47]. Current knowledge of
the TIM23 complex is mainly based on studies conducted in yeast (Figure 1). The yeast
TIM23 complex consists of the three membrane-associated core subunits: Tim23, Tim17, and
Tim50 [1,48]. Association of these core TIM23 complex members with the Tim21 and Mgr2
subunits leads to the formation of the TIM23SORT complex [41,49–56], which is implicated
in the lateral insertion of a group of IM proteins [5] as well as the import and sorting
of a few IMS proteins [57,58]. Alternatively, association of the TIM23CORE complex with
the PAM complex (comprising Tim44, Tim14/Pam18, Tim16/Pam16, mHsp70, and Mge1)
leads to the formation of the TIM23MOTOR complex [41,49–56], which is implicated in the
import of matrix proteins as well as some IM proteins [59]. Notably, Pam17 is a yeast-
specific subunit which fine-tunes the assembly of the PAM complex with the TIM23CORE

complex, and in doing so, helps mediate normal mitochondrial protein import [60]. The
subunits of the different TIM23 complexes form highly dynamic entities, with the constant
conformational changes that these proteins undergo being essential for normal complex
function [41,45,61,62].
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Figure 1. Panels (A,B) present schematic representations of the yeast and human TIM23 complexes, 
respectively. Core subunits are in yellow, subunits involved in lateral sorting of components are in 
pink, while PAM complex subunits are in sea-green. Notably, a human counterpart of yeast Pam17 
is missing. A substrate protein of the complex is depicted in purple. In panel (C), all subunits of the 
TIM23 complex affected by documented mutations are presented. The structures for the indicated 
wild-type human subunits were predicted individually using AlphaFold. The predicted structures 
were visualized in PYMOL. The labelled residues are the wild-type residues which are affected by 
point mutations. The affected wild-type residues have been presented as spheres in red.

For many years, canonical models of import suggested that a Tim23 dimer forms a 
channel that serves as a path for protein import, while Tim17 acts as a regulatory element 
for channel opening and closure, maintaining membrane potential across the inner mem-
brane. Recent cryo-electron microscopy and biochemical studies have, however, sug-
gested that Tim17 monomers act as the main import path, with Tim23 likely serving as a 
regulatory element involved in structural maintenance [63–65]. It was further suggested 
that along with Tim17, Mgr2 plays a role in shielding precursor proteins from the lipid 
environment during translocation [64]. This role of Mgr2 supports the view that Tim23SORT 
might be the first complex in the inner membrane to interact with the incoming precursor 
protein [30,66,67]. Indeed, a TOM–TIM23–precursor super-complex is not detected in the 
absence of Mgr2 [64]. Furthermore, Mgr2 was also suggested to be involved in the for-
mation of the translocation path with Tim17 [63], although the involvement of Mgr2 in 
forming the translocation path is not crucial, as even in the absence of Mgr2 (a part of the 
TIM23SORT complex), Tim17 can act as a channel for the Tim23MOTOR pathway [63]. Indeed, 
precursor proteins reportedly progress to the Tim17 channel in the absence of Mgr2 [64]. 
Still, what triggers the formation/disruption of the Tim17-Mgr2 translocation path is cur-
rently unknown.

Unlike their yeast counterparts, human mitochondria contain multiple isoforms of 
presequence translocases, most probably to accommodate the multi-cellular nature of 
their hosts under normal or changing developmental stages [50]. In general, the compo-
nents of the human TIM23 are similar to those of the yeast complex, albeit with the fol-
lowing differences:

Figure 1. Panels (A,B) present schematic representations of the yeast and human TIM23 complexes,
respectively. Core subunits are in yellow, subunits involved in lateral sorting of components are in
pink, while PAM complex subunits are in sea-green. Notably, a human counterpart of yeast Pam17 is
missing. A substrate protein of the complex is depicted in purple. In panel (C), all subunits of the
TIM23 complex affected by documented mutations are presented. The structures for the indicated
wild-type human subunits were predicted individually using AlphaFold. The predicted structures
were visualized in PYMOL. The labelled residues are the wild-type residues which are affected by
point mutations. The affected wild-type residues have been presented as spheres in red.

For many years, canonical models of import suggested that a Tim23 dimer forms a
channel that serves as a path for protein import, while Tim17 acts as a regulatory element for
channel opening and closure, maintaining membrane potential across the inner membrane.
Recent cryo-electron microscopy and biochemical studies have, however, suggested that
Tim17 monomers act as the main import path, with Tim23 likely serving as a regulatory ele-
ment involved in structural maintenance [63–65]. It was further suggested that along with
Tim17, Mgr2 plays a role in shielding precursor proteins from the lipid environment during
translocation [64]. This role of Mgr2 supports the view that Tim23SORT might be the first
complex in the inner membrane to interact with the incoming precursor protein [30,66,67].
Indeed, a TOM–TIM23–precursor super-complex is not detected in the absence of Mgr2 [64].
Furthermore, Mgr2 was also suggested to be involved in the formation of the translocation
path with Tim17 [63], although the involvement of Mgr2 in forming the translocation
path is not crucial, as even in the absence of Mgr2 (a part of the TIM23SORT complex),
Tim17 can act as a channel for the Tim23MOTOR pathway [63]. Indeed, precursor proteins
reportedly progress to the Tim17 channel in the absence of Mgr2 [64]. Still, what triggers
the formation/disruption of the Tim17-Mgr2 translocation path is currently unknown.

Unlike their yeast counterparts, human mitochondria contain multiple isoforms of
presequence translocases, most probably to accommodate the multi-cellular nature of
their hosts under normal or changing developmental stages [50]. In general, the com-
ponents of the human TIM23 are similar to those of the yeast complex, albeit with the
following differences:
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1. In humans, due to the presence of isoforms of Tim17 and DnaJC (the homolog of
yeast Tim14/Pam18), three TIMM23MOTOR complex formations are presently known,
namely, (i) translocase A consisting of Tim17a and DnaJC15, (ii) translocase B1 con-
sisting of Tim17b1 and DnaJC19, and (iii) translocase B2 consisting of Tim17b2 and
DnaJC19 [49,50]. Similar to the yeast complex, translocases B1 and B2 are expected to
play major roles in protein import via the presequence pathway [50]. Interestingly,
high expression of Tim17A mRNA has been reported in patients suffering from breast
cancer [68,69]. Such elevated expression is closely linked to the aggressive growth
of cancerous cells and adverse pathological and clinical outcomes [68,69]. There-
fore, Tim17A is thought to be a prognostic biomarker for human breast cancer and a
potential target for therapeutic developments.

2. The role played by Mgr2 in yeast mitochondrial protein import [64] is suggested to be
carried out by ROMO1 (homolog of yeast Mgr2). However, this role has only been
demonstrated for one protein, i.e., YME1L [70].

3. Interestingly, no homolog of Pam17 has yet been identified in humans. As discussed
above, Pam17 plays a supportive role within the PAM complex. Although not essen-
tial, Pam17 is crucial for optimizing the activity of the import motor. Therefore, it
would be worthwhile to identify those human subunits that fulfill the same function.

4. In yeast, Tim50 contains an extra, so-called presequence-binding domain (PBD) at
its C-terminus (residues 395 to 476) thought to contribute to four major functions:
(i) interaction with Tom22IMS [22]; (ii) interaction with the presequence [71]; (iii) in-
teraction with the conserved core domain of Tim50 (residues 164 to 361) [72]; and
(iv) interaction with Tim21IMS [73]. This suggests that Tim50 plays a highly dynamic
and intricate role, especially the PBD, in IM and matrix protein import. However, in
humans, Timm50 lacks the PBD. It is thus not surprising that human Timm50 was
unable to complement its yeast homolog [74].

3. Genetic Variants in the TIM23 Complex

Given the central role played by mitochondrial import machineries in the maintenance
of the mitochondrial proteome, it is expected that mutations that cause significant functional
impairment in the import system will be lethal. Indeed, a small number of rare diseases
have been identified in which mitochondrial import machineries are affected [75–78].

Notably, in the last decade, several mutations have been reported in genes encod-
ing several subunits of the TIM23 complex (Table 1). Such rare mutations have been
reported to cause various developmental and neurological conditions, including epileptic
encephalopathy, infantile spasms, brain atrophy, developmental delay, and basal ganglia
lesions. However, a direct mechanistic link between neurological symptoms and TIM23
complex-related mutations has yet to be established.

Table 1 summarizes all currently known genetic disease-causing mutations in genes
encoding subunits of the TIM23 complex (Table 1). Supplementary Table S1 indicates
the detection method of the mutations and provides an exhaustive list of all symptoms
associated with each mutation.

Table 1. Rare genetic diseases of the Timm23 complex.

Protein Pathogenic/Likely Pathogenic
Mutation * Symptoms ClinVar Accession

No.
First Deposited

in ClinVar Reference

TIM23 core components

Tim23 NA

Tim17A NA

Tim17B NA
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Table 1. Cont.

Protein Pathogenic/Likely Pathogenic
Mutation * Symptoms ClinVar Accession

No.
First Deposited

in ClinVar Reference

Tim50

NM_001001563.5(TIMM50):c.26C>A
(p.Ser9Ter)

Mitochondrial encephalopathy,
Reduced TIMM50 mRNA levels,
OXPHOS malfunction, Failure to

thrive, Lactic acidosis

RCV000677434.1,
RCV001328000.2 24 August 2018 [75]

NM_001001563.5(TIMM50):c.260G>C
(p.Gly87Ala)

Mitochondrial encephalopathy,
Reduced TIMM50 mRNA levels,
OXPHOS malfunction, Failure to

thrive, Lactic acidosis

RCV000677433.1,
RCV001328001.1 24 August 2018 [75]

NM_001001563.5(TIMM50):c.341G>A
(p.Arg114Gln)

Encephalopathy, Decreased
complex I, II, IV and V levels,
Abnormality of visual evoked

potentials, Strabismus, Scoliosis

RCV001812628.1,
RCV003120700.4 19 January 2022 [79]

NM_001001563.5(TIMM50):c.340C>T
(p.Arg114Trp)

Epileptic encephalopathy,
Decreased complex V activity,

Elevated CSF lactate levels,
Myoclonic jerks, Cachectic

RCV000509033.3,
RCV001367110.6 9 October 2017 [74]

NM_001001563.5(TIMM50):c.446C>T
(p.Thr149Met)

Epileptic spasms, Hypsarrhythmia,
Bilateral optic atrophy, Abnormal

EEG, Developmental delay
RCV000509024.3 9 October 2017 [74,80]

NM_001001563.5(TIMM50):c.664G>A
(p.Ala222Thr) 3-methylglutaconic aciduria type 9 RCV000578358.5 8 February 2018 [81]

NM_001001563.5(TIMM50):c.715C>T
(p.Arg239Trp) 3-methylglutaconic aciduria type 9 RCV000578437.5,

RCV002529040.2 8 February 2018 [82]

NM_001001563.5(TIMM50):c.805G>A
(p.Gly269Ser)

Encephalopathy, Failure to thrive,
Spastic tetraparesia with dystonia,
Piramidalism, Elevated CSF lactate

levels

RCV000190713.5,
RCV001812182.1

14 September
2015 [79]

TIM23 lateral-sorting components

Tim21 NA

Mgr2 NA

TIM23 motor components/PAM complex

Tim44 NA

Tim14
(Isoform 1)

NM_145261.4(DNAJC19):c.51del
(p.Phe17fs)

Dilated cardiomyopathy with
ataxia, Lipidosis,

3-methylglutaconic aciduria type 5
RCV001231277.9 16 July 2020 [83–85]

NM_145261.4(DNAJC19):c.63del
(p.Arg20_Tyr21insTer)

Dilated cardiomyopathy with
ataxia, 3-methylglutaconic aciduria

type 5
RCV001780991.5 29 November

2021 [84,85]

NM_145261.4(DNAJC19):c.63C>G
(p.Tyr21Ter)

Dilated cardiomyopathy with
ataxia, Failure to thrive, Optic
atrophy, 3-methylglutaconic

aciduria type 5, 3-methylglutaconic
aciduria type 3

RCV001206673.7,
RCV001824933.1 16 July 2020 [84,85]

NM_145261.4(DNAJC19):c.62dup
(p.Tyr21Ter)

Dilated cardiomyopathy with
ataxia, 3-methylglutaconic aciduria

type 5
RCV001729987.3 16 October 2021 [84–86]

NM_145261.4(DNAJC19):c.158G>A
(p.Gly53Glu)

Dilated cardiomyopathy with
ataxia, 3-methylglutaconic aciduria

type 5
RCV001283818.1 26 January 2021 [76]

NM_145261.4(DNAJC19):c.300del
(p.Ala101fs)

Dilated cardiomyopathy with
ataxia, Noncompaction

cardiomyopathy,
3-methylglutaconic aciduria type 5

RCV000106304.5 24 March 2014 [87]

Tim14
(Isoform 2) NA
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Table 1. Cont.

Protein Pathogenic/Likely Pathogenic
Mutation * Symptoms ClinVar Accession

No.
First Deposited

in ClinVar Reference

Pam16

NM_016069.11(PAM16):c.221A>C
(p.Gln74Pro)

Autosomal recessive
spondylometaphyseal dysplasia,
Megarbane type, Macrocephaly,

Developmental delay, Hypotonia,
Narrow spinal cord

RCV000788051.3 22 July 2019 [77]

NM_016069.11(PAM16):c.226A>G
(p.Asn76Asp)

Autosomal recessive
spondylometaphyseal dysplasia,
Megarbane type, Developmental

delay, Prominent abdomen, Square
iliac bones, Respiratory

insufficiency

RCV000167551.4 29 March 2015 [88]

mHsp70

NM_004134.7(HSPA9):c.376C>T
(p.Arg126Trp)

EVEN-plus syndrome (EVPLS)
[Epiphyseal and vertebral

dysplasia, microtia, and flat nose,
plus associated malformations]

RCV000210028.3 14 March 2016 [78]

NM_004134.7(HSPA9):c.383A>G
(p.Tyr128Cys)

EVEN-plus syndrome (EVPLS)
[Epiphyseal and vertebral

dysplasia, microtia, and flat nose,
plus associated malformations],

Premature termination predicted
to abolish half the protein

RCV000209966.4 14 March 2016 [78]

NM_004134.7(HSPA9):c.409_410del
(p.Asp136_Ile137insTer)

Autosomal dominant sideroblastic
anemia, 50% of HSPA9 mRNA and

80% of HSPA9 protein
RCV000209839.4 12 March 2016 [89,90]

NM_004134.7(HSPA9):c.882_883del
(p.Gly295_Val296insTer)

EVEN-plus syndrome (EVPLS)
[Epiphyseal and vertebral

dysplasia, microtia, and flat nose,
plus associated malformations],
Predicted to result in premature

protein termination,
Developmental delay

RCV000209995.6,
RCV001781629.4,
RCV003387515.2

12 March 2016 [78]

NM_004134.7(HSPA9):c.1373_1378del
(p.Ile458_Asn459del)

Autosomal dominant sideroblastic
anemia, 50% of HSPA9 mRNA and

80% of HSPA9 protein
RCV000209862.4 12 March 2016 [89]

Mge 1
(Isoform 1) NA

Mge 1
(Isoform 2)_ NA

* Only “Reviewed” UniProt entries (found in Swiss-Prot) were considered for each subunit. Also, only mutations
that are reported to occur inside the gene and are reported as pathogenic were considered. Mutations of uncertain
clinical significance were ignored.

Amongst the various subunits of the TIM23 complex, it is notable that no pathogenic
mutations have been reported in genes encoding two core components (i.e., Timm23, and
Timm17A/B). Remarkably, mutations have also not been reported in the genes of either of
the lateral-sorting components (i.e., Timm21 and ROMO1; Table 1) or the motor components
Tim44 and Mge1. This indicates either that mutations affecting these components are lethal
or that they await discovery. Subunits implicated in genetic diseases include Timm50, Tim14
(DNAJC), Pam16 (Magmas), and mHsp70 (mortalin). The implications of the mutations in
the genes encoding these proteins are discussed here.

3.1. Genetic Diseases Associated with Tim50

The highest number of mutations (eight mutations) has been reported to affect Tim50
(Timm50; Table 1) [74,75,79–82]. This is surprising, as in yeast, this subunit was shown to be
essential for growth under all conditions and is thought to serve as the receptor subunit that
receives precursor proteins as they emerge from the TOM complex [40–47]. Clinical reports
indicate that the human Timm50 mutant characteristically exhibits several clinical features,
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including 3-methylglutaconic aciduria type 9 (i.e., high levels of 3-MGA in blood and urine)
and failure to thrive in most cases [75,91]. Additionally, encephalopathy, the abnormality of
visual evoked potentials, and an abnormal electroretinogram were reported in at least 60%
of individuals with such mutations. Specifically, optic atrophy and elevated blood lactate
levels were reported for R114W [75], T149M [74], and G269S [79]. A report by Shahrour
et al. [74] indicated increased aggression in the patients (R114W and T149M), while Tort
et al. [79] indicated strabismus, scoliosis, and piramidalism in R114Q patients. Interestingly,
though normal Timm50 mRNA levels were detected in the case of two mutations (R114Q
and G269S), lower Timm50 protein levels were still reported [79].

A structural examination of the mutated residues in the AlphaFold-derived complete
Timm50 structure suggests that the R239W mutation is likely to be the most pathogenic,
followed by R114W and T149M, while A222T, G269S, and R114Q are more likely to disrupt
the structural integrity of the protein (Figure 1C; Supplementary Table S2). Overall, the
corresponding mutations mostly lead to the structural destabilization or altered flexibility
of Timm50, consequently suppressing its conformational changes that are important for
TIM23 complex function.

Impaired protein import was reported in case of the G87A mutation [75]. An analysis
of patient-derived fibroblasts demonstrated that Timm50 gene mutations lead to severe de-
ficiency in the level of Timm50 protein [75,91,92]. Notably, this decrease was accompanied
by a decrease in the level of two other core subunits, Tim23 and Tim17. However, unex-
pectedly, proteomics analysis in two recent studies indicated that the steady-state levels
of most TIM23-dependent proteins were not affected by point mutations (Thr149Met and
Arg113Cys), despite a drastic decrease in TIM23CORE complex levels [91,92]. The proteins
most affected were subunits of intricate complexes, such as the OXPHOS and ribosomal
machineries [91,92]. Thus, both these studies indicate the surprising possibility that even a
small fraction of functional TIM23 complex is able to maintain the steady-state levels of
mitochondrial proteins. It is therefore conceivable that profound functional defects become
evident only under import overload, such as during stress or under certain developmental
conditions. The fact that mutations affecting Timm50 do not cause a global import defect
explains why patients that carry these mutations survived.

3.2. Genetic Diseases Associated with mHsp70

mHsp70 (mortalin) is involved in numerous cellular processes including two major
mitochondrial functions. mHsp70 serves as the heart of the PAM complex, mediating
import across the inner membrane. It also mediates the disaggregation and refolding of
newly imported and stress-denatured proteins with the aid of the non-membranal J-protein
Tid1 [93–95]. Like other hsp70 proteins, mHsp70 is also expected to participate in mediating
the degradation of misfolded proteins.

In the case of mortalin, five mutations have been reported to date (Table 1). Indi-
viduals carrying these mutations are characterized by anemia, iron overload, congenital
malformations, and developmental issues. Characteristically, EVEN-plus syndrome is only
observed in patients carrying mHsp70-specific mutations and not other TIM23-related
mutations (Table 1). D136_I137insTer and I458_N459del reportedly led to a 50% and
80% decrease in mHsp70 mRNA and protein levels, respectively [89,90]. Arg126Trp and
Tyr128Cys led to “bifid” distal femurs, arched eyebrows, and synophrys, while Tyr128Cys
and Gly295_Val296insTer were observed to result in Atrioseptal Defect (ASD) and lateral
vertebral clefts [78]. The symptoms listed above reflect the diverse impacts of mHsp70 gene
mutations on both the hematological and developmental systems. However, reports on
detailed clinical symptoms for other mHsp70 mutations are rather limited.

Structurally, mutations affecting residues 126, 128, 137, and 296 are expected to
affect the stability and functionality of the mHsp70 ATPase domain (residues 1–360),
thereby disrupting ATP binding and hydrolysis. As R126W and Y128C are the only known
mHsp70 missense mutations, we analyzed their pathogenicity and effect on protein stability
(Supplementary Table S2). The former is predicted to be more pathogenic, and the latter is
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predicted to destabilize the mHsp70 structure more. Specifically, R126W may lead to steric
clashes due to the introduction of the bulky tryptophan side chain, while Y128C will affect
protein stability through the loss of hydrogen bonds and hydrophobic interactions. Inter-
estingly, Y128C was predicted to be the least pathogenic (Supplementary Table S2) among
the known TIM23 complex missense mutations. Lastly, the p.Ile458_Asn459del mutation
in the mHsp70 gene results in the deletion of two adjacent residues, isoleucine-458 and
asparagine-459. As these residues are located in the C-terminal domain, which is involved
in substrate binding, such deletion likely affects the chaperone activity of the protein. As
mHsp70 plays a key role in both mitochondrial import and functions within mitochondria,
it is currently unknown which lost function is responsible for disease manifestation.

3.3. Genetic Diseases Associated with Tim14 and Tim16

Tim14 (Pam18/DNAJC15/19), together with Tim16 (Pam16/Magmas), is believed to
regulate the ATPase activity of mHsp70, thereby regulating its role in protein import. In
the case of Tim14, five mutations have been reported in the encoding gene (Table 1), with
3-methylglutaconic aciduria type 5 and dilated cardiomyopathy being clinically diagnosed
in all cases. Most of the mutations also cause decreases in steady-state Tim14 protein
levels, growth failure, and hypotonia [84,85,87,96]. In particular, Tyr21Ter [84–86] and
Ala101fs [87] have a detailed clinical description, with both leading to ataxia, short stature,
optic atrophy, and gastrointestinal dysmotility. However, detailed clinical descriptions of
other Tim14 mutations are limited. Overall, it may be concluded that Tim14 mutations lead
to a range of neurological, developmental, metabolic, and systemic symptoms. Structurally,
Conserved Domain Architecture Retrieval Tool (CDART) analysis indicates that a conserved
DnaJ domain is located at the C-terminal of the protein (residues 66–116) [84]. Therefore,
mutation affecting residue 101, found in the J domain, should affect protein functionality,
possibly by disrupting its interaction with mortalin. Additionally, the Positioning of
Proteins in Membranes (PPM) [97] webserver predicts that residues 4–23 comprise the
Tim14 transmembrane domain (Figure 1C). Therefore, mutations affecting residues 17
and 21 would be expected to disrupt the membrane association of the Tim14 protein.
Remarkably, Gly53Glu is the only missense mutation among all the Tim14 mutations
and has the highest pathogenicity prediction (Supplementary Table S2) among all the
known TIM23 complex mutations. This prediction, along with the multi-faceted symptoms,
further supports the significance of the Tim14 protein and highlights the need for further
experimental evaluation.

In addition to its import function, Pam16 (Magmas) was found to modulate granulocyte–
macrophage colony-stimulating factor (GM-CSF) signaling [98] and may be important in
reactive oxygen species (ROS) homeostasis [99]. In the case of Pam16, both known muta-
tions (https://omim.org/entry/613320, accessed on 30 October 2024) in the encoding gene
(Table 1) lead to characteristic developmental skeletal abnormalities, such as platyspondyly
and reduced length of the long bones, as well as craniofacial dysmorphism [77,88]. These
studies underscore the critical role of Pam16 in bone development, offering valuable
insights into the genetic and clinical spectrum of skeletal dysplasias. Structurally, the
Gln74Pro mutation introduces a proline, which would certainly disrupt helix71–84. Given its
location and flexibility, this helix plausibly interacts with other import subunits and plays a
role in the function of the protein. As such, its disruption is expected to lead to functional
loss. Indeed, the mutation was predicted to be more pathogenic and less destabilizing
(Supplementary Table S2). On the other hand, the Asn76Asp mutation is expected to
disrupt hydrogen bonding and electrostatic interactions, thus affecting the stability of the
protein. Indeed, the DUET webserver predicts this mutation to be highly destabilizing,
with a −1.375 Kcal/mol change in energy (Supplementary Table S2).

Tim14 and Pam16 are thought to form a complex while fulfilling their roles. Yet,
surprisingly, reports indicate that Tim14 gene mutations are more likely to reduce Tim14
protein levels, while Pam16 gene mutations are not reported to decrease steady-state
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Pam16 levels [77,84–86,88], and the disease-causing mutations result in different clinical
developmental features.

4. Future Perspectives

The mitochondrial protein import system plays a key role in the biogenesis of mito-
chondrial proteins, and, thus, in mitochondrial functions. Initially, it was assumed that
due to its vital functional role, any mutations affecting any of the central components of
the different import systems would be lethal at the embryonic stage. Indeed, homozygous
knockout Tim23 mice are not viable. However, in recent years, a growing body of evidence
has shown that many rare genetic diseases result from mutations in genes encoding compo-
nents of the import system. These mutations can serve as a highly valuable tool for research
aimed at understanding the molecular mechanism of function of the mitochondrial import
system. Notably, among the different TIM23 subunits, the Timm50 protein emerges as the
hotspot for pathogenic mutations. Hence, research models featuring defective Timm50 can
serve as potential screening models for therapeutic efforts aimed at mitochondrial import-
associated disease. Such models can potentially be used to screen for small-molecule drugs
aimed at symptomatic treatment, or even to test disease-modifying treatments such as gene
therapy and mitochondrial augmentation.

5. Conclusions

Due to its vital role in the biogenesis of mitochondria, disease-associated mutations
in the TIM23 complex are rare and are completely absent in several of its core subunits.
Recent reports have indicated the presence of eight mutations in Timm50, some of which
have been deeply investigated. The mechanistic outcome of these studies was that Timm50
is essential for the sorting of some of its putative substrates (lateral sorting). However, for
some of the other components, only single cases were reported. Thus, our ability to extract
the mechanistic implications of such mutations is limited.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15121534/s1, Table S1. Rare genetic diseases of the Timm23
complex; Table S2. An estimation of the pathogenicity (AlphaMissense) and stability changes (DUET)
of the various missense mutations reported in the TIM23 complex subunits.
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