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Abstract: Integrons, which are genetic components commonly found in bacteria, possess the remark-
able capacity to capture gene cassettes, incorporate them into their structure, and thereby contribute
to an increase in genomic complexity and phenotypic diversity. This adaptive mechanism allows
integrons to play a significant role in acquiring, expressing, and spreading antibiotic resistance genes
in the modern age. To assess the current challenges posed by integrons, it is necessary to have a
thorough understanding of their characteristics. This review aims to elucidate the structure and
evolutionary history of integrons, highlighting how the use of antibiotics has led to the preferential
selection of integrons in various environments. Additionally, it explores their current involvement
in antibiotic resistance and their dissemination across diverse settings, while considering potential
transmission factors and routes. This review delves into the arrangement of gene cassettes within
integrons, their ability to rearrange, the mechanisms governing their expression, and the process of
excision. Furthermore, this study examines the presence of clinically relevant integrons in a wide
range of environmental sources, shedding light on how anthropogenic influences contribute to their
propagation into the environment.

Keywords: integrons; gene cassettes; environment; antimicrobial resistance

1. Introduction

Integrons are genetic elements predominantly found in Gram-negative bacteria, capa-
ble of acquiring and expressing open reading frames (ORFs) embedded in gene cassettes,
thereby converting them into functional genes [1]. They were first identified in Gram-
negative bacteria for their ability to assemble and express diverse antibiotic resistance
gene cassettes acquired from the environment [2]. The first case of bacteria exhibiting
resistance to multiple antibiotics was identified in Japan in the 1950s [3,4]. However, until
the 1970s, it was unclear whether these phenotypes associated with plasmids, particularly
with transposable segments within plasmids [5,6]. By the late 1980s, these elements were
identified and characterized as genetic structures responsible for capturing and express-
ing resistance genes, now known as integrons [7]. It is now well established that these
mobile gene cassettes are major carriers of antimicrobial resistance genes (ARGs) in most
Gram-negative bacteria, and, to some extent, in Gram-positive bacteria, too [8,9]. Their
prevalence and evolution have been extensively studied in epidemiological research, par-
ticularly in clinical and agricultural environments, underscoring their significance. In the
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late 1990s, chromosomal integrons were discovered in bacteria with no apparent role in
resistance. This finding coincided with the identification of super integrons in the genome
of Vibrio Cholera and similar fragments in environmental bacterial populations [9,10]. The
evolutionary history of chromosomal integrons suggests that this adaptive genetic system
has helped Gram-negative bacteria to adapt to environment changes [11,12]. Furthermore,
the evolutionary relationships and mechanisms of chromosomal integrons play a critical
role in the emergence of multiple antibiotic resistance [13,14].

In the present era, antimicrobial resistance (AMR) has become a critical global health
concern, and the transfer of resistance genes and pathogens among humans, animals, and
the environment has reached alarming levels. This interconnected spread underscores the
urgent need for comprehensive strategies to manage and mitigate resistance across multiple
sectors [15]. Despite the existence of natural and anthropogenic barriers that limit gene and
bacterial flow, pathogens and other bacteria continue to acquire resistance genes from other
species and environmental sources. This exchange significantly hampers efforts to prevent
and treat bacterial infections [16]. The increased prevalence of ARGs and resistant bacteria
in the environment is largely driven by selective pressures imposed by human activities.
This selective pressure arises from the overuse of antimicrobial agents (AMA) in hospitals,
industry, poultry farming, and agriculture, as well as practices like the use of antibiotics to
prevent diseases and promote growth in farm animals and aquaculture. The emergence of
antimicrobial resistance (AMR) is a complex evolutionary process, with integrons playing a
pivotal role. Integrons act as key facilitators in bacterial evolution and the dissemination
of resistance genes. This review discusses the structure and evolution of integrons, their
role in AMR, and the distribution of resistance gene cassettes across various environments,
shedding light on their critical contribution to the global AMR crisis.

2. Integrons Structure, Function and Evolution
2.1. The Mechanism of Integron Functionality: Acquisition, Incorporation, and Expression of
Gene Cassettes

The primary characteristics of integrons include the following three core features:
(i) acquiring gene cassettes from external sources, (ii) incorporating these genes into their
structure, and (iii) subsequently expressing them as part of their genetic framework [2,17].
A critical component of integrons is the Intl gene, which encodes an enzyme known as
integrase (Figure 1) [18]. Integrase belongs to the tyrosine recombinase family [19], and
it catalyzes site-specific recombination between the attl and attC sites to integrate these
circular gene cassettes into a cassette array [19].

The recombination between the attI sites of integrons and the attC sites of gene cas-
settes is initiated by the integron-encoded integrase enzyme [20]. A critical component of
integrons is the associated promoter (Pc), which drives the expression of gene cassettes
following their insertion [1,18]. The basic structure of a gene cassette includes an open
reading frame (ORF) flanked by a recombination site, known as the 59-base element (attC),
which facilitates its integration into the integron [21]. Future research should prioritize the
exploration and characterization of novel integrons in diverse environmental niches, as
their unique structure holds potential beyond antimicrobial resistance (AMR). In addition
to their role in AMR, integrons exhibit a distinct architecture that could be leveraged for
innovative applications. Modifying and engineering integrase enzymes to enhance their
specificity and efficiency may pave the way for advanced biotechnological applications,
including the development of customized gene constructs.
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Figure 1. Integrons structure, acquisition and functions. Gene cassettes are sequentially inserted
into an array by recombination between attI and the cassette associated-recombination sites, attC; Pc,
an integron-carried promoter; and intI, a gene for the integron integrase. A single ORF (arrow) is
expressed by the Pc promoter on gene cassettes (various genes are depcited with various colors). Pc
is located between intI and attI in certain integrons. Cassettes have two ORFs, no ORF, or an ORF
pointing in the opposite direction. IntI is transcribed in the same direction as the gene cassettes in
certain genera.

2.2. Class 1 Integrons’ Gene Cassette Acquisition and Expression System

Gene cassettes typically consist of an attC recombination site and an open reading
frame (ORF), requiring an external promoter for their expression. Extensive research has
focused on the expression system of class 1 integron cassettes, which is driven by one of
two promoters, as follows: Pc1, located within the intI1 gene, or Pc2, situated in the attI
sites [22]. These promoters have been categorized based on their strength [23]. Integrons
carrying weak promoters often exhibit higher cassette excision rates, as weaker promoter
activity may destabilize the maintenance of gene cassettes within the integron [24,25].
Moreover, the position of a gene cassette relative to the integron’s promoter plays a critical
role in its expression levels. Gene cassettes located closer to the integron integrase promoter
maintain stable expression, whereas those situated farther away exhibit progressively
reduced expression rates (Figure 2) [26,27].

The clinical class 1 integrons rarely contain more than six cassettes, and this may be the
reason why the cassettes at a distance from the Pc1 promoter are often not expressed [28,29].
However, some gene cassettes carry their own promoters, enabling independent expression
regardless of their position within the integron array. For example, the chloramphenicol
resistance gene cassette (cmlA) contains its own promoter [30], as do quinolone resistance
genes from the qnrVC family [31], allowing them to maintain expression irrespective of
their distance from the integron-associated promoters [32]. It is, therefore, unsurprising
that certain cassettes possess independent promoters, ensuring their functionality and
evolutionary persistence [33]. Metagenomic analyses have also identified numerous gene
cassettes lacking an ORF, suggesting that these ORF-less cassettes may have evolved as
mobile promoter cassettes, potentially serving regulatory or auxiliary functions within
integrons [30]. Gene cassettes may originate as mobile promoter cassettes [34]. While some
gene cassettes have their own promoters, they may also lead to rearrangement within
the cassette array to express the desired gene in response to specific stress, utilizing a
single promoter.
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Figure 2. Acquisition of gene cassettes into the integron’s platform. New gene cassettes are acquired
through the recombination of the attl site of integrons and the attC site of the circular gene. The
new incoming gene is inserted at the proximal position of the integrase gene next to the embedded
promoter. The repeated acquisition leads to the expansion of the cassette array, but the cassettes can
be excised in the reverse of acquisition either by att1-attl or attC-attc recombination.

2.3. Phylogenetic Analysis of the IntI Gene and Its Evolution

Integrons are genetic elements that encode the IntI gene [32], which belongs to the ty-
rosine recombinase family and includes an additional 16-amino-acid motif that significantly
enhances its activity [35]. Approximately 15% of bacterial genomes contain integrons,
as indicated by the presence of the Intl gene [25,36]. Integrons are found in a variety of
environmental sediments, including those in hot springs, rivers, seas, soils, plant surfaces,
rhizospheres, and Antarctic soils [18,35]. Although the percentage cutoff criteria to discrim-
inate between different classes has not yet been established, hundreds of distinct integron
families have been found in the last few decades, which are distinguished based on the
homology of the Intl gene sequence [25]. We collected sequences of the integrase gene from
the NCBI data bank and ran them through Mega6 Software (version 6.06) to obtain their
phylogenetic analysis. The results revealed that Xanthomonas is the main clade, and the rest
of the integrase genes are extended from this clade, which confirms that Xanthomonas is the
parental strain carrying the integron integrase gene (Figure 3).
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3. The Role of Integrons and Gene Cassettes in Shaping Antimicrobial Resistance:
Clinical Relevance and Bacterial Associations
3.1. The Role of Integrons in Shaping the Landscape of AMR

Integrons play a pivotal role in the dissemination of antibiotic resistance, particularly
in Gram-negative bacteria. Resistance integrons are often associated with conjugative
transposons and plasmids, enabling their transfer between cells and even across species [13].
Integrons are categorized into five classes, all linked to antibiotic resistance. Classes 1, 2,
and 3 are commonly identified in clinical settings, while class 4 is associated with the SXT
element found in Vibrio cholerae [37]. Class 5, in contrast, has been discovered in the pRSV1
plasmid of Aliivibrio salmonicida. These integrons harbor a diverse array of gene cassettes,
with approximately 130 different resistance genes having been identified, reflecting broad
phylogenetic diversity [16]. The cassettes within mobile integrons are typically short, with
the longest recorded arrays containing up to eight cassettes [38]. It has been suggested that
these arrays are regulated by a single promoter, which may lead to the reduced expression
of cassettes positioned further downstream [36].
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3.2. Clinically Relevant Integrons and Their Gene Cassettes

In recent years, the misuse and overuse of antibiotics, coupled with poor management
practices, have significantly contributed to the rise in antibiotic resistance. Bacteria develop
resistance through the acquisition of resistance genes and genetic mutations. A key factor
in the emergence of antibiotic resistance is horizontal gene transfer (HGT), through which
bacteria obtain resistance genes via plasmids and transposons [39]. Integrons carry a variety
of genes cassettes encoding AMR, with over 130 gene cassettes having been identified,
exhibiting different codon patterns and attachment sites [40]. The integrons share common
features, ranging from short to long arrays of gene cassettes, and typically accumulate
ARGs [19]. These shared characteristics are not inherited from ancestral lineages, but rather
arise due to the strong selective pressure exerted by the use of antibiotics and other human
activities. Clinically relevant integrons and their gene cassettes play an important role in
the dissemination of AMR into the environment (Figure 4) [41].
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Figure 4. Mechanism of antimicrobial resistance (AMR) development and dissemination. Gene
cassettes are present in various environments and can integrate into plasmids within bacteria. The
acquisition of these gene cassettes enables bacteria to develop resistance to antimicrobial agents.
Environmental bacteria can interact with humans through air, food, water, and physical contact,
facilitating the transmission of resistant bacteria. Humans may encounter resistant bacteria, leading
to increased AMR in human-associated bacterial populations.

3.3. Clinically Relevant Bacteria and ARG Cassettes

E. coli is a noteworthy species within the Enterobacteriaceae family, known for carrying
integrons and ARGs, and is a common cause of gastrointestinal infections [42]. It contributes
to the spread of antibiotic resistance by acquiring multiple resistance genes through various
mechanisms, including plasmids, transposons, and integrons [43]. The E. coli strains
carrying resistance genes through integrons are listed in Table 1. Furthermore, Acinetobacter
baumannii is a significant source of nosocomial infections and contributes substantially to
hospital-acquired infections. Acinetobacter baumannii can carry resistance genes, such as
Beta-lactamse, metallo-beta-lactamase, Amp C, and class D beta lactamse (carbaphenems), along
with other associated insertion sequences [44].
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Moreover, Salmonella is another resistant pathogenic bacterium, and a key contributor
to food-borne illness, usually transmitted through food items such as meat, eggs, and milk.
Its capacity for multidrug resistance poses a serious public health threat. Salmonella species
harbor different classes of integrons, with class 1 integrons being the most prevalent, often
carrying multiple resistance genes [45,46]. In addition, Klebsiella species are associated
with pneumonia, urinary tract infections, and other bloodstream infections. These bacteria
exhibit multidrug resistance, and the integrons in Klebsiella carry various resistance genes,
as listed in Table 1. Furthermore, other species within the Enterobacteriacae family, including
Pseudomonas aeroginusa spp., Enterococus faecalis spp., Enterobacter spp., and Staphylococcus
spp., are involved in hospital-acquired infections and exhibit resistance to multiple antibi-
otics. These bacteria carry a different class of integrons and various ARGs, which have
been previously identified (Figure 5) [19].
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Table 1. Gene cassettes associated with antibiotic resistance and the host.

Gene Cassettes Associated
with Antibiotic Resistance Gene Cassettes Integron

Classes (CL), Host References

Erythromycin. aadA1, aadA2, aadA5, aadB, and dfrA1 were identified,
along with dfrA5, dfrA7, dfrA12, dfr14, dfrA17, dfrB2,

and combinations like dfrA1-gcuC, dfrA1-aadA1,
dfr17-aadA5, dfr12-gcuF-aadA2, dfrA1-sat1-aadA1,

dfrA1-sat2-aadA1, estX-sat2-aadA1, and
blaOXA-101-aac(6’)-Ib.

CLI, II, III Escherichia coli [47,48]
Trimethoprim,

aminoglycosides,
beta-lactamase,

and extended spectrum.

Beta-lactamase enzymes with
extended spectrum activity,
aminoglycoside antibiotics,

and trimethoprim.

blaCARB-2, aadA1, aadA2, aadB, dfrA1, and dfrA7
were identified, along with combinations like

dfrA1-gcuF, dfrA1-aadA1, dfr17-aadA5,
dfr12-gcuF-aadA2, and sat1.

CLI, II Acinetobacter baumannii [19]
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Table 1. Cont.

Gene Cassettes Associated
with Antibiotic Resistance Gene Cassettes Integron

Classes (CL), Host References

Aminoglycoside antibiotics,
trimethoprim, and
extended-spectrum

beta-lactamases (ESBLs).

aadA, aadA1a, aadA2, aadA5, aadB, dfrA1, dfrA7,
dfrA12, dfrA17, and combinations like dfrA1-gcuF,
dfrA1-aadA1a, dfr17-aadA5, dfr12-gcuF-aadA2, and

blaCARB-2 were identified.

CLI, II Salmonella spp. [49,50]

Extended-spectrum
beta-lactamases (ESBLs),

trimethoprim, and
aminoglycoside antibiotics.

blaCARB-2, blaGES-1, aadA, aadA1, aadB, dfrA1,
dfrA7, and gene combinations like dfrA1-gcuF,

dfrA1-aadA1a, dfr17-aadA5, and dfr12-gcuF-aadA2.
CLI, II, III Klebsiella spp. [51,52]

Aminoglycosides
and trimethoprim.

aadA2, aadB, and combinations like dfr17-aadA5 and
dfr12-gcuF-aadA2. CLI Pseudomonas aeruginosa [29,53]

Trimethoprim,
chloramphenicol, and

aminoglycosides antibiotics.

aadA1, aadA2, and combinations like dfr17-aadA5,
dfr12-gcuF-aadA2, and aacA4-cmlA1 CLI Staphylococcus aureus [53]

Trimethoprim
and aminoglycosides.

aadA1a and gene combinations such as
dfr12-gcuF-aadA2 and dfrA1-sat1-aadA1. CLI Enterococcus faecalis [54]

Trimethoprim
and aminoglycosides.

aadA1a, aadA2, and dfrA7, as well as gene
combinations such as dfrA1-aadA1a, dfr17-aadA5,

and dfr12-gcuF-aadA.
CLI Enterobacter spp. [55]

4. Environmental Dissemination of Antibiotic Resistance: The Central Role of Integrons
Across Ecosystems
4.1. The Role of Integrons in the Dissemination of Antibiotic Resistance in the Environment

Integrons are present in a variety of environments, from clinical setup to forest soils,
aquatic ecosystems, marine sediments, and livestock and agriculture areas. It is believed
that these integrons primarily originate from environmental bacteria, and their dissemi-
nation and functional role is being influenced by the use of AMA. In response to AMA
exposure, bacteria rapidly acquire resistance mechanisms, which contributes to the de-
velopment of AMR. Different environmental bacteria carry unique gene cassette arrays
that are specific to their habitat and conditions [56,57]. These environments may host
novel gene cassette arrays, many of which are associated with AMR and are responsive to
environmental stressors (Figure 6) [50,58,59].
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detergents; agricultural applications of pesticides, biocides, manure containing antibiotic resistance
genes (ARGs), and chemical fertilizers; and livestock farming practices contribute to elevated AMR
levels. Wastewater treatment plants and industrial effluents further amplify AMR dissemination,
impacting environmental and agricultural ecosystems.

4.2. Integron Integrase Gene as an Effective Proxy for Pollution

Antibiotic resistance poses a significant threat to public and environmental health.
The environment is increasingly recognized for its role in spreading resistance, as well
as its potential to help mitigate this issue [60]. The widespread and excessive use of
medically important antibiotics across agricultural, veterinary, and healthcare fields is
a significant contributor to the global rise in AMR [53]. Increasingly, researchers and
stakeholders are concerned that the environment functions as a reservoir for AMR, playing
a critical role in spreading ARGs. Multiple factors drive the spread of antibiotic-resistant
bacteria and their ARGs, which include the direct use of antimicrobial drugs in healthcare,
agriculture, and livestock, as well as the release of antibiotic residues from various domestic
sources into the environment [15]. Pesticides, heavy metals, medications, personal care
items, and microbes linked to agriculture and human waste streams are all found in areas
of pollution surrounding any human activity, and their spatial change and fold change
determination is challenging [61]. To measure this potential spread and abundance of
these antimicrobial resistance agents in the environment, integron integrase genes could
be a possible proxy [61]. Integrons are common in bacteria, with about 15% of all of the
sequenced bacterial genomes harboring these elements [62]. Integrons have the capacity to
capture exogenous genes and express them, and the gene cassettes incorporated mostly
confer resistance to AMA [57]. This function makes class 1 a promising proxy for measuring
anthropogenic inputs and ARG abundance in the environment [63]. The integron integrase
Intl gene is linked to the genes conferring resistance to antibiotics, disinfectants, and
heavy metals, its presence in a wide range of environments, and pathogenic and non-
pathogenic bacteria [61,64]. Furthermore, integrons the ability to transfer resistance genes
among bacteria rapidly, through horizontal gene transfer and can be found in a wide
range of xenogenetic elements [65]. Thus, the anthropogenic inputs and the resulting
environmental pollution can be monitored through the integrons and can be helpful in
mitigating this pollution.

4.3. AMR Dissemination in Wastewater

In the context of the ongoing global antimicrobial resistance crisis, it is essential to
understand the interplay between clinical settings and environmental factors and to iden-
tify the primary drivers of AMR gene dissemination [19]. Studies have demonstrated that
effluents from wastewater treatment plants (WWTPs) play a significant role in the spread
of AMR with in sediment communities, both phenotypically and genotypically, and are a
major driver of AMR into the aquatic ecosystem [19]. The highest diversity of ARGs has
been found in WWTPs, which are significant entry points for pathogens and ARGs into
downstream aquatic environments. WWTPs are also significant repositories of antibiotic
resistance [66]. There are studies linking the environment and human resistome, and
shared gene cassettes have been observed. This hypothesis is supported by the isolation
of genetic resistance determinants from both human and environmental bacteria, demon-
strating that the same AMR genes and associated elements were present in both [67,68].
This evidence reinforces the idea that environmental AMR is connected to clinical AMR;
however, WWTP effluent increases the prevalence of AMR genes and phenotypes in the
riverine system [67,69]. The enrichment of resistance to sulfonamides, aminoglycosides,
and disinfectants is often linked to integrons, and has been observed from influent to
effluent. This finding aligns with other studies that have reported a relative increase in
ARGs following wastewater treatment, including those conferring resistance to macrolides,
beta-lactams, aminoglycosides, sulfonamides, and vancomycin [70]. Some studies suggest
that ARGs can be removed and their abundance can be decreased up to 90%; however,
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some resistance genes are still unable to be removed, such as tet34 (tetracycline resistance),
bla1 (beta-lactam resistance), vatC (MLSB resistance), vanTC (vancomycin resistance), bacA
(bacitracin resistance), mexE, ttgA, and mtrC (multidrug resistance) genes [71].

Effluents from WWTPs significantly drive large-scale shifts in the AMR phenotypes
and genotypes of bacterial communities in sediments by introducing human-associated
bacteria, thereby altering the resistomes of aquatic environments. The presence of class 1
integrons in both human and environmental bacteria indicates that bacteria from different
environments may share mobile gene cassettes. Consequently, the emergence of AMR in
riverine ecosystems poses a clinical concern, as it may facilitate the development of novel
AMR gene cassettes in clinically relevant bacteria [72,73]. Additionally, the compositions
of class 1 integrons in urban water systems and WWTPs appear to be similar in both
quality and quantity [74], indicating that the composition of WWTP effluents mirrors
that of urban wastewater [75]. During the treatment process, it is believed that 90% of
integrons are removed, however, the normalized copy numbers of class 1 and class 2
integrons remain unchanged. Sludge treatment reduces the overall bacterial population,
but does not significantly impact those that harbor integrons [76,77]. It has been observed
that treatment reduces the diversity of gene cassette arrays; however, the most frequently
detected gene cassettes confer resistance to quaternary ammonium compounds (QACs)
and aminoglycosides. This highlights the need for new regulations to limit the use of QACs
and improve waste water treatment practices.

4.4. Hospital Waste Water Effluent Impact on the Dissemination of Class 1 Integrons and AMR

The hospital environment plays a significant role in the spread of AMR due to the
significant use of antibiotics and the discharge of treated and untreated effluents into
surrounding ecosystems. Hospital effluent contains a large copy number of integrons,
which are associated with antibiotic resistance, with approximately half of these integrons
being class 1 integrons. The abundance of integrons was found to be influenced by working
and non-working days, indicating a notable difference in their prevalence based on the
day of operation. Additionally, the proportion of class 1 integrons containing at least one
resistance gene was higher compared to that of other samples [78,79]. This clearly indicates
that hospital settings play a significant role in the spread of antibiotic resistance, with most
gene cassettes found in hospital effluent being linked to antibiotic resistance [80,81]. Gene
cassettes conferring resistance to aminoglycosides, such as aadA and aadB, located on class
1 integrons, are prevalent in hospital effluent. The excessive use of specific antibiotics,
including, amikacin, gentamicin, and tobramycin, in hospitals has contributed to the
emergence of resistance, and this trend was confirmed by the French Public Health institute
in 2010 [19]. However, the use of aminoglycosides is 11 times higher than that of other
antibiotics, and their resistance is more prevalent in the hospital settings [82,83]. Hospitals
are major consumers of QACs [84], and class 1 integrons play a significant role in the
dissemination of QAC resistance across various environments [85]. The frequent use of
disinfectants, surfactants, and other classes of antimicrobial agents may be the primary
cause of AMR. It is essential to explore alternative strategies to reduce the use of these
detergents and prevent their discharge into municipal drainage systems.

4.5. Fertilization and Increase in Environmental AMR and Integrons

Manure has been identified as a hot spot for bacterial communities that harbor
antimicrobial-resistance genes associated with mobile genetic elements (MGEs) [19]. When
manure is applied to soil, it introduces AMA, their metabolites, and bacteria carrying
ARGs into the environment [86]. Additionally, soil naturally serves as a reservoir for ARGs,
containing a diverse array of both known and unknown antimicrobial determinants [87,88].
The addition of AMA can exert selective pressure, potentially reducing the resilience of the
soil bacterial community when manure is applied, due to the presence of certain AMA [19].
A wide host range of AMA and ARGs may increase the likelihood that commensal bacteria
and human pathogens will acquire AMR through MGEs. This is similar to how plasmids
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enable HGT between related species [89,90]. Various soil amendments have impacted the
abundance of soil ARGs and their subsequent dissemination in different environments,
as listed in Table 2. Aminoglycosides, aminoglycoside, beta-lactamase, fluoroquinolone,
quinolone, florfenicol, chloarmphenicol, MLSB, multidrug, sulfonamide, tetracycline, and
vancomycin resistance genes, and MGEs are among the main families of antibiotic abun-
dance that have been increased with the application of manure to a field, and, among them,
the aminoglycosides are the most abundant [91]. The application of manure increased
the abundance of ARGs by 116% in comparison to chemical fertilization, while the bio-
organic fertilizers reduced this abundance by 31% [91]. In the soil treated with biogas
slurry, the relative abundances of the majority of ARGs (ereA, ereF, mefA, sul1, sul2, tetG,
and tetO) declined with time, but they were still much greater in the 5-year-treated soil
than in the control soil; in addition, the Intl gene copy number was significantly higher
in the soil treated with slurry, and this abundance increased with the time period [92].
In another study, manure application introduced 23% of new ARGs to the soil, and this
number increased over time; moreover, the main classes of these ARGs included aminogly-
coside, beta-lactamase, fluoroquinolone, quinolone, florfenicol, chloarmphenicol, MLSB,
multidrug, sulfonamide, tetracycline, and vancomycin [93]. Another study suggested that
114 new ARGS were amplified from manure-treated soil, and, with up to 0.23 copies of the
16S rRNA gene and 81 distinct ARGs, the relative abundance and measurable amounts of
ARGs were significantly boosted by the application of manure [94]. This change in ARGS
and MGEs, specifically in integrons, was directly influenced by manure application, which
led to the increased abundance in the AMA [95]. In the soil environment, a community of
soil bacteria exists, and the ARGs are most likely transferred to these soil bacteria through
horizontal gene transfer. This process is further enhanced by the introduction of manure
to the soil [19]. Factors influencing the dissipation rate of ARGs include the transfer of
ARGs to host bacteria via horizontal and vertical transmission, the transport of extracellular
DNA containing ARGs, the attachment of ARGs to soil particles or organic matter, the
degradation of extracellular ARGs, and the decline of bacterial hosts [89].

Table 2. Various soil amendment impacts on antibiotic resistance under different environments.

Fertilizer Types Effects on AMR Genes Percent Increase Reference

Manure and bio-organic fertilizer
application

Aminoglycosides, beta-lactamases, chloramphenicol,
macrolide-lincosamide-streptograminB (MLSB),

multidrug, sulfonamide, tetracycline, vancomycin
resistance genes

116% [90]

Mineral fertilizer (NH4NO3),
cattle slurry, and cattle slurry

digestate amendment

Tetracycline, sulfonamides, macrolides, integrase gene
copy number increased

83%, 20%, 64%, 83%,
log copies/gm soil [96]

Composted manure

Aminoglycoside, bacitracin, chloramphenicol,
sulfonamide, tetracycline, and multidrug resistance

was present in higher abundances than the other
resistance genes

24% increase in total abundance [97]

Cattle slurry digestate TetA, blaCTX-M, blaOXA2, qnrS, intI1, and intI2 104–105 copies/gm soil and
(1.2 × 109 copies/gm soil) [98,99]

Swine manure ARGs (ermB, qnrS, acc(6′)-Ib, tetM, tetO, and tetQ)
tetQ and tetW, and ermB and ermF 3.01 × 108 to 7.18 × 1014 copies/g [100]

Manure applications CL1, QACs, sulfonamide, tetracycline, and multidrug 109 copies/gm and
16–48% increase [18]

Organic fertilizers and livestock
and poultry manure

ARGs, including sul2, TetB-01, TetG-01, and TetM-01,
TetK, and ermC 12–96% [101]

Organic fertilizers IntI1, sul1, and tetM, blaTEM, and blaOXA-48, qnrS1 20–100-fold increase change [102]

The addition of AMA to soil leads to their absorption by plants via passive uptake
and water transport [103,104]. However, limited information is available regarding the
interactions between AMA concentration in manure and soil, the chemical characteristics
of AMA, crop characteristics, the different plant growth stages, and plant physiology in
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relation to AMA uptake. It has been observed that both treated and lake waters contain
ARGs [19]. This suggests a possibility that fresh fruit may become contaminated with
antibiotic-resistant bacteria (ARB) and ARG, due to the use of irrigation water from these
sources for plant cultivation. Irrigation water is a significant source of bacterial contamina-
tion and plays an essential role in the contamination of vegetables during the pre-harvest
phase [105,106]. As research on pathogens and food-borne illnesses progresses, more stud-
ies are identifying antibiotic-resistant bacteria on fruits and vegetables [107,108]. However,
limited information is available regarding the correlation between the quantity and distri-
bution of the relevant bacteria and ARGs on plant products, irrigation water, and manure
containing ARGs and ARB. AMA are used less frequently in plant production compared
to human and animal health systems, both from quantitative and qualitative perspectives.
The primary method of AMA use in plant production involves spraying, which can lead to
the contamination of soil and water resources [109]. The agriculture system plays a major
role in the spread of integrons and AMR. Further studies are required in order to establish
the connection between AMR and agriculture and to explore its role in the undiscovered
reservoirs of gene cassettes in these environments.

4.6. Integrons in Marine and Freshwater Environments

Freshwater and marine environments impacted by human activities play a significant
role in the spread of AMR, as highlighted by the One Health framework. These ecosystems
can facilitate the spread of antibiotic-resistant bacteria, and act as reservoirs of resistance
genes. Human-altered waters, in particular, may harbor ARGs, further contributing to
the dissemination of AMR [110]. Many studies have focused on clinical sites, while fewer
have investigated environmental sites. Some studies have examined the presence of Intl1
sequences in soil [111,112], poultry litters [112], heavy-metal-contaminated mine sites,
deep-sea sediments and polluted deep-sea environments [113], submarine gas-hydrate-
bearing cores [114], and different terrestrial, deep-sea environments [115,116]. Research
from freshwater reservoirs has identified approximately 322 distinct Intl1 sequences groups,
suggesting significant variation among Intl1 genes and indicating that environmental
factors influence the composition and evolution of these genes. This variation highlights
how Intl1 sequences adapt to specific environmental conditions [111,117].

The CL1 integron is used as a proxy for the pollution and dissemination of AMR in
various environments, including the fresh and marine water bodies [15]. The study on fresh
water bodies revealed an abundance of CL1 concentration that ranged from 4.22 × 10−6 to
4.08 × 10−4 gene copies/16S rRNA gene copy, and from 2.06 × 10−5 to 1.38 × 10−2 gene
copies/bacterial cell; in addition, its abundance was higher in riverine water in comparison
to spring and glaciers, which confirms that the anthropogenic impacts are higher in riverine
systems and the CL1 abundance increases with this input [118]. The abundance of class 1
integrons is affected by seasonal changes, and their abundance increased in the winter sea-
son compared with that observed in the summer. This change may be linked to the influx of
water flow [119]. A total of 24 different class 1 integrons associated with ARGs are detected,
which are predicted to encode resistance to a wide range of antimicrobial classes, including
aminoglycosides, beta-lactams, chloramphenicol, rifampicin, trimethoprim, and quaternary
ammonium compounds [118,120]. Aminoglycosides and beta-lactamase resistance genes
were the most frequently detected among the ARGs, which aligns with expectations, as
this group is known for its diversity and prevalence in aquatic environments, as shown by
metagenomic studies [121].

Marine habitats are exposed to various contaminants originating from both land and
sea sources. Land-based contaminants primarily stem from industrial activities, urban
wastewater, and agricultural practices, while sea-based pollutants are mainly attributed
to crude oil spills from offshore drilling and shipping operations. Among these, salin-
ity stands out as the key environmental factor shaping the composition of microbial
communities [122,123]. In the marine environment, particularly along the shore, ARGs
are common. ARGs have been shown to be highly abundant in the Red Sea, a significant
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maritime transportation route. In particular, ARGs qnrS, aacC2, ermC, and blaTEM-1 are
common [124]. The majority of maricultural sand samples include antibiotics and related
ARGs, with sulfanilamide resistance genes being particularly common, according to a study
of 11 typical maricultural regions along the Chinese coastline [125,126]. Another study on
antibiotic resistance in fish raised in mariculture cage-culture systems revealed that sul1,
tetB, and ermB genes were the most prevalent, and the identified ARGs were associated
with opportunistic pathogens [127,128]. Likewise, a global metagenomic analysis of ARGs
in various aquatic environments indicated that coastal seawater samples exhibited a higher
relative abundance of ARGs compared to samples from the deep ocean and Antarctic
regions [121]. The gene cassettes found in these sites are predominantly transcribed into
hypothetical proteins with general functions, accounting for approximately 22% of the
sequences [129,130]. Only a few of these sequences display known patterns or domains,
although other studies have identified antibiotic-resistant gene cassettes as well [131,132].
Despite substantial efforts in sequencing large numbers of gene cassettes, rarefaction curves
often reach saturation, indicating that a wide range of genetic diversity exists outside of
clinical environments [113,115].

This approach highlights the significant large-scale sequencing of gene cassettes from
nonclinical environments. Some of the gene cassettes in these environments exhibit ho-
mologies with those found in previously studied contaminated environments [132,133].
Interestingly, shared gene cassettes between freshwater environments and marine environ-
ments were identified, suggesting that their distributions occur more on a global scale due
to anthropogenic input. Comparative studies of gene cassettes in relation to nearby envi-
ronments indicate a co-assorting group of genes. It is suggested that the diversity of gene
cassettes is affected by environmental pressure and contamination. Anthropogenic inputs
are a major contributor to the dissemination of integrons and AMR in the environment.

5. Conclusions and Future Perspective

Antimicrobial resistance is a critical global health concern, influenced by both environ-
mental and clinical factors. Among these, integrons, particularly class 1 integrons (CL1),
play a crucial role in the horizontal spread of ARGs across bacterial populations. These
MGEs are found in bacteria residing in diverse ecosystems that facilitate the spread of AMR,
including freshwater systems, agricultural fields, WWTP, hospital settings, and marine
environments. Anthropogenic activities, such as the overuse of antibiotics in healthcare,
agriculture, and livestock production, exert selective pressure on bacterial communities,
driving the acquisition and propagation of resistance genes. Major vectors for the spread
of AMR include the use of contaminated irrigation water, effluents from WWTPs, manure
application in agriculture, and wastewater treatment plant effluents from hospitals. The
global environmental reservoirs of resistant bacteria and their associated genetic deter-
minants, including integrons, can be transferred between ecosystems, exacerbating the
global burden of AMR. The presence of integrons in diverse environments underlines
the complexity and connectivity of the AMR problem. Integrons can be a good proxy for
monitoring pollution and the dissemination of resistance, and they may be a tool that could
track the circulation of ARGs between environmental and clinical settings. Marine and
freshwater ecosystems can, in this respect, be considered hotspots for AMR, where human
activities have left a mark, with plenty of evidence pointing toward the global spread
of resistance.

The evidence gathered from clinical settings, hospital discharge, and agricultural
runoff highlights the pressing need for thorough strategies to reduce the environmental
spread of AMR. These strategies should encompass improved wastewater treatment, re-
sponsible antibiotic usage in agriculture, and enhanced waste management practices to
prevent the release of resistance genes into the environment. Given the interconnected
nature of human, animal, and environmental health, a coordinated One Health approach is
essential to address the AMR crisis on a global level.
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Future Perspectives

Future research should address the development of integrated systems for monitoring
AMR both at clinical and at environmental levels. The use of such molecular tools as meta-
genomics, whole-genome sequencing, and real-time monitoring of integron abundance
can generate a lot of valuable data on the spread of AMR. In this regard, the study of
CL1 integrons as markers for environmental pollution and AMR dissemination may be a
good approach to explain how resistance genes move across various types of ecosystems.
Agriculture, especially with respect to manure and fertilizer use, needs to be more closely
considered with regard to the dissemination of AMR. Future studies may wish to consider
the dynamics of antibiotic resistance gene transfer in manure-amended soils and the
implications for crop contamination, among others. A lot of research is needed with respect
to the fate of ARGs in soil and their persistence in the environment after manure application.
Besides that, other fertilization practices, such as bioorganic and biogas slurry treatments,
should be further explored for potentially lower burdens of AMR in agroecosystems.

WWTPs are an important means of reducing the dissemination of AMR; however,
the treatments applied up until now are quite ineffective in the complete removal of
ARGs. Future developments must be created in order to increase the effectiveness of
WWTPs, in particular on integrons and cassette genes, to further reduce their impact.
The development of new disinfection techniques could significantly reduce the levels of
antibiotic-resistant bacteria and resistome in effluents, such as through advanced oxidation
processes or membrane filtration. The control of AMR requires a One Health approach, since
human, animal, and environmental health are intricately linked. This means that future
strategies need to be cross-sectoral, with surveillance and the implementation of AMR
control measures at the human–animal–environment interface. This calls for responsible
use of antibiotics both in healthcare and agriculture, better hygiene and sanitation practices
in hospitals, and enhanced biosecurity measures in livestock farming.

Increasing public awareness of the contribution and role that AMR, environmental
impact, and poor wastewater management play in spreading resistance is imperative.
Policymakers have to give more prominence to AMR in environmental health agendas,
ensuring that regulations concerning the use of antibiotics in agriculture and animal
husbandry are enforced and environmental contamination is monitored more rigorously.
Human campaigns on the avoidance of unnecessary antibiotic use, along with proper
pharmaceutical disposal practices, are complementary measures that are needed to ensure
that the effectiveness of such strategies against AMR in the long run will be matched. AMR
is a global problem, therefore, future work must involve international collaboration in
sharing data, research findings, and best practices in handling resistance across borders.
This will be important in building global surveillance networks that track AMR in real time,
especially in low- and middle-income countries where antibiotic use and environmental
pollution are rising. In the future, new gene cassettes of AMR are likely to be uncovered
from nonclinical settings, including soil, freshwater, and marine ecosystems. Extensive
sequencing would be required for identifying and characterizing the previously unknown
resistance mechanisms circulating in the environment, with the aim of developing new
diagnostic tools and therapeutic strategies against emerging forms of resistance.

6. Conclusions

The global spread of AMR has become a multidimensional problem requiring coor-
dination in efforts between the human health, animal health, and environmental sectors.
The understanding of integrons’ role in AMR dissemination, the enhancement of our moni-
toring system and technologies for wastewater treatment, and good agricultural practices
would be relevant steps toward mitigating the environmental spread of resistance. This
could be achieved through the implementation of a One Health approach, coupled with
research, innovatively and globally, to overcome the expanding crisis of AMR and secure
public health for future generations.
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