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Abstract: The integration of intermittent renewable energy sources into the energy supply has driven
the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are con-
sidered promising due to their long lifespan, high safety, and flexible design. However, the graphite
felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites,
leading to low electrochemical activity. Herein, we developed a bismuth nanoparticle uniformly
modified graphite felt (Bi-GF) electrode using a bismuth oxide-mediated hydrothermal pyrolysis
method. The Bi-GF electrode demonstrated significantly improved electrochemical performance,
with higher peak current densities and lower charge transfer resistance than those of the pristine
GF. VRFBs utilizing Bi-GF electrodes achieved a charge-discharge capacity exceeding 700 mAh at
200 mA/cm2, with a voltage efficiency above 84%, an energy efficiency of 83.05%, and an electrolyte
utilization rate exceeding 70%. This work provides new insights into the design and development of
efficient electrodes, which is of great significance for improving the efficiency and reducing the cost
of VRFBs.

Keywords: bismuth nanoparticles; electrode modification; vanadium redox flow batteries;
catalytic activity

1. Introduction

The rapid integration of intermittent renewable energy sources, such as wind and solar
power, into energy supply has necessitated the development of large-scale energy storage
technologies [1–3]. Vanadium redox flow batteries (VRFBs), which utilize vanadium ions
in both the positive and negative electrodes as active materials, have garnered significant
attention due to their long lifespan, high safety, and flexible structural design [4,5]. How-
ever, the relatively low power and energy density of VRFBs lead to higher system costs
($135–210 per kWh) [6–8], which hinders their widespread adoption.

The electrode is the core crucial component of VRFBs, as it determines the reaction rate
of the vanadium ions in essence [9,10]. Graphite felt (GF) currently serves as the primary
electrode material due to its porous structure, excellent chemical stability, and good electri-
cal conductivity [11,12]. However, the scarcity of active sites leads to low electrochemical
activity, which is the predominant challenge faced by GF, limiting the overall performance
of VRFBs [13,14]. Surface functionalization of GF with oxygen- or nitrogen-containing
functional groups has been proven to introduce more active sites that facilitate the redox of
vanadium species. Nevertheless, these functional groups usually facilitate the hydrogen
evolution reaction (HER) [15], leading to irreversible changes in the valence state of vana-
dium ions, which results in rapid deterioration of the electrolyte [16]. Suárez, D.J. group
reported that modifying GFs with bismuth nanoparticles (Bi NPs) facilitates the formation
of the intermediate product BiHx, which is capable of enhancing the redox reversibility of
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V3+ to V2+ and thus suppresses the competing HER. However, the methods for introducing
Bi NPs onto GF are primarily electrochemical deposition and thermal reduction, which can
hardly achieve a uniform distribution of bismuth nanoparticles on the three-dimensional
scale of the carbon felt [17,18]. Therefore, developing a new strategy that can uniformly
and firmly decorate Bi NPs on the surface of GF is crucial for improving the performance
of VRFBs.

In this work, we employed a solvothermal strategy to deposit bismuth oxide on the
surface of carbon felt uniformly and subsequently achieved a uniform distribution of
bismuth nanoparticles on the surface of the carbon felt electrode (Bi-GF) through in situ
carbothermal reduction. Compared with the GF electrode, the Bi-GF electrode shows
higher peak current densities and lower charge transfer resistance on both the positive and
negative sides. Bi-GF electrode exhibits superior electrochemical catalytic performance,
with a charge-discharge capacity exceeding 700 mAh at a current density of 200 mA/cm2,
which is higher than that of 200 mAh for the heat-treated GF. Furthermore, the voltage
efficiency (VE) of the Bi-GF electrode was greater than 84%, with an EE of 83.05% and an
electrolyte utilization rate (EU) exceeding 70% at a current density of 200 mA/cm2. This
research offers novel perspectives on the creation and enhancement of effective electrodes,
which hold substantial implications for enhancing the efficiency and reducing the cost
of VRFBs.

2. Materials and Methods
2.1. Materials and Chemicals

Graphite felt (G280A, AvCarb, Wiesbaden, Germany) was purchased from the SGL
Carbon Company (DE). Bismuth sulfate (Bi2(SO4)3, 99.9%) and vanadyl sulfate (VOSO4,
99.9%) were obtained from Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai,
China). Nitric acid (HNO3, 68%) and concentrated sulfuric acid (H2SO4, 98%) were pur-
chased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Argon (Ar, 99.99%)
was purchased from Tianyuan Gas Co., Ltd. (Qingdao, China), and deionized water was
prepared in the laboratory.

2.2. Preparation of Bi-GF

Graphite felt in the size of 2.7 cm × 2.7 cm was washed with deionized water several
times and followed by dried at 80 ◦C. Pristine graphite felt (P-GF) was calcined at 500 ◦C for
5 h to obtain the thermally treated graphite felt serving as a comparative sample. Bi2(SO4)3
(1.07 g) was dissolved in 30 mL of 2 M diluted HNO3 and ultrasonically stirred for 1 h.
Then, the GF was immersed in the mixed solution, hydrothermally treated at 180 ◦C for
5 h, and finally washed with deionized water to obtain an intermediate Bi2Ox-GF. After
drying at 80 ◦C, Bi2Ox-GF was calcined at 200 ◦C for 1 h at a heating rate of 5 ◦C/min with
Ar flowing, and then the temperature was raised to 700 ◦C at a heating rate of 5 ◦C/min,
which reduced the Bi2Ox nanoparticles to elemental Bi. Finally, the obtained product Bi-GF
was washed with deionized water and then dried at 80 ◦C.

2.3. Physicochemical Characterization

A field emission scanning electron microscope (SEM, JEM-7500F, JEOL, Musashino,
Tokyo) was employed to examine the surface morphology of the materials. The mass
loading of Bi was determined by weighing GF and Bi-GF and calculating the difference in
mass per unit area. A transmission electron microscope (TEM, Tecnai G2F20, FEI, Hillsboro,
OR, USA) was used to study the internal structure and size distribution of nanoparticles.
Energy dispersive X-ray spectroscopy (EDS) was used for chemical characterization and
elemental analysis of the materials. An X-ray diffractometer (XRD, χPert Pro, Panaco, The
Netherlands) was used to analyze the composition and structure of the materials and the
crystalline phase. The scattering intensity is a function of the incident angle, scattering angle,
polarization, and wavelength or energy. A Raman spectrometer (Raman, HR Evolution,
HORIBA Scientific, Edison, NJ, USA) was employed to probe the graphitization degree of
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the materials. A surfaspector (SDC-350Z, Sindin, Dongguan, China) was used to analyze
the contact angle. X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, ThermoFisher,
Waltham, MA, USA) was used to investigate the chemical composition and valence states.
Nitrogen adsorption-desorption isotherms (Autosorb-iQ2, Quantachrome, Boynton Beach,
FL, USA) were used for the specific surface area and porosity analysis.

2.4. Electrochemical Measurements

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were
performed with a typical three-electrode system using a CHI 760E electrochemical work-
station (Shanghai Chenhua Instrument Co., Ltd, Shanghai, China) at room temperature.
The three-electrode system was fabricated with a GF or Bi-GF working electrode (area of
2.7 cm × 2.7 cm), a platinum plate counter electrode (area of 1 × 1 cm), and a saturated
calomel reference electrode. The electrolyte used for the positive electrode was a 20 mL
solution containing 0.1 M VO2+ and 3 M H2SO4, prepared by dissolving 2 mmol VOSO4 in
20 mL 3 M H2SO4. The electrolyte used for the negative electrode was a 20 mL solution
containing 0.1 M V3+ and 3 M H2SO4, obtained by dissolving 1 mmol V2(SO4)3 in 20 mL
3 M H2SO4. Cyclic voltammetry (CV) was carried out at different scan rates (from 2 mV/s
to 20 mV/s), and the voltage ranges of CV tests for positive reaction and negative reaction
were 0.35 to 1.45 V (vs. Hg/Hg2Cl2) and −1.1 to 0 V (vs. Hg/Hg2Cl2), respectively. EIS
was conducted in the frequency range of 10−1–105 Hz, and the polarization potentials were
set as the open-circuit potentials, which were 0.75 V (vs. Hg/Hg2Cl2) and −0.38 V (vs.
Hg/Hg2Cl2) for positive and negative reactions, respectively. The electrochemically active
surface area (EASA) was estimated by measuring the double-layer capacitance (Cdl) of the
system using CV. The equations are as follows (Equations (1) and (2)) [19,20]:

ic = vCdl (1)

where ic is the charging current and v is the scan rate.

EASA =
Cdl
CS

(2)

where Cdl is the double-layer capacitance and Cs is the specific capacitance.

2.5. VRFB Performance Test

The VRFB system consists of two polytetrafluoroethylene backplates and floating
frames, two electrodes, an ion exchange membrane (Nafion 212 membrane), two graphite
bipolar plates, two copper current collectors, and peristaltic pumps. The electrolyte used
for the positive and negative electrodes was a 20 mL solution containing 1.7 M VO2+ and
3 M H2SO4, 20 mL solution containing 1.7 M V3+ and 3 M H2SO4, respectively. Firstly,
the positive and negative electrolytes were both solutions containing 1.7 M VO2+ and
3 M H2SO4 (purchased from Wuhan Zhisheng New Energy Co., Ltd., Wuhan, China).
To obtain the negative electrolyte, a pre-electrolysis process is required to convert VO2+

to V3+ via constant-current charging at 0.45 A for 50 min. Then, the VO2
+ electrolyte

on the positive side was replaced with an equal amount of fresh VO2+ electrolyte. Both
compartments received a continuous flow of electrolytes at a rate of 60 mL/min. The
single-cell performance test was performed at various current densities ranging from 200
to 450 mA/cm2 and a potential window between 1.65 and 0.8 V. Voltage loss refers to the
change in voltage across an electrical component. It is defined as the difference between
the open-circuit voltage and the initial charging voltage [21]. In the process of operation,
reversible redox reactions occur at the interface between the electrodes and the electrolyte.
The reaction equations are shown as follows (Equations (3)–(8)) [22,23]:

On the positive side:

charge : VO2+ + H2O → VO+
2 + 2H+ + e− (3)
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discharge : VO2
+ + 2H+ + e− → VO2+ + H2O (4)

On the negative side:
charge : V3+ + e− → V2+ (5)

discharge : V2+ → V3+ + e− (6)

The overall battery reaction is as follows:

charge : VO2+ + V3+ + H2O → VO+
2 + V2+ + 2H+ (7)

discharge : VO+
2 + V2+ + 2H+ → VO2+ + V3+ + H2O (8)

3. Results
3.1. Structural and Compositional Analyses

The synthetic strategy for Bi-GF is illustrated in Figure 1a. P-GF exhibits a smooth
surface with no substances attached (Figure S1). After the hydrothermal process, many
irregular nanoparticles were decorated on the surface of GF (Figure S2). The XRD pattern
(Figure S3) reveals that these irregular nanoparticles are bismuth oxides (Bi2O3 and Bi2O2.3).
The bismuth oxides were then reduced to Bi NPs that were decorated uniformly and firmly
on the surface of GF via an in situ carbothermal reduction process [24] (Figure 1b,c). By
calculating the difference in mass per unit area of GF and Bi-GF, it was revealed that the
mass loading of Bi was 0.66 mg/cm2. As illustrated in Figure 1b, the high-resolution
TEM image shows the lattice fringe spacings of 0.257 nm and 0.342 nm correspond to the
(0 −1 1) and (1 0 1) lattice planes of elemental Bi (Figure 1d). The elemental mapping
further confirms that the Bi nanoparticles are uniformly distributed on the surface of GF,
as illustrated in Figure 1e. As depicted in Figure 1f, the XRD pattern of Bi-GF shows two
types of diffraction peaks corresponding to the elemental Bi and C, respectively. These
results above demonstrate the uniform distribution of Bi NPs. in Bi-GF. Figure 1g shows the
Raman spectrum of Bi-GF. Two significant peaks at 1356 cm−1 and 1596 cm−1 are attributed
to the D and G peaks, respectively [25]. The ID/IG intensity ratio of Bi-GF was calculated
to be 1.37, higher than that of 1.26 for GF, suggesting that Bi-GF possesses abundant defects
on the surface during the Bi NPs decoration process [26]. As shown in Figure S4, the pore
diameter distributions of Bi-GF and GF range from 4 to 25 nm and are mostly concentrated
at 6 nm. The Brunauer–Emmet–Teller (BET) specific surface area of Bi-GF is 5.862 m2/g,
which is almost ten times that of GF (0.624 m2/g) (Table S1).

The XPS survey spectrum of Bi-GF is shown in Figure 2a, which reveals the presence
of C, Bi, and O elements. The C 1s XPS spectrum (Figure 2b) displays the peaks located
at 283.6 eV, which correspond to the C-Bi bonds [27]. Figure 2c shows the Bi 4f XPS
spectrum, in which the peaks at 159.7 eV and 165.1 eV are assigned to metallic Bi0 [28],
and the peaks at 160.98 eV and 166.08 eV coincide with the C-Bi bonds [29]. The existence
of C-Bi bonds can be attributed to the reaction of bismuth oxides and GF during the
carbothermic process, which confirms that the Bi NPs are firmly connected to the GF
surface. The contact angle measurements were performed to analyze the hydrophilicity of
the electrodes. Figure S5 shows that the contact angle of Bi-GF is 137.5◦, which is lower
than that of P-GF (141.3◦), suggesting that Bi-GF possesses better hydrophilicity, benefiting
electrolyte accessibility [30].
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3.2. Electrocatalytic Activities of Bi-GF

To investigate the electrochemical performance, the CV curves of GF and Bi-GF as
positive electrodes were obtained. As shown in Figure 3a, the oxidation peak current (Ipa)
and reduction peak current (Ipc) of Bi-GF are higher than those of GF, suggesting that Bi-GF
possesses excellent redox catalytic activity for the VO2+/VO2

+ redox couple. Moreover, in
comparison with the 20-cycle CV curves of the GF electrode (Figure S6), the CV curves of the
Bi-GF (Figure S7) electrode display less fluctuation and enhanced stability. Subsequently,
Figure 3b demonstrates the CV curves of the negative electrode. The Bi-GF electrode
exhibits an oxidation peak current density of 0.28 mA/cm2 and a reduction peak current
density of −0.39 mA/cm2, larger than those of GF, suggesting that Bi-GF has superior
catalytic performance for the V3+/V2+ redox reaction. Similarly, the Bi-GF electrode exhibits
more stable 20-cycle CV curves (Figures S8 and S9), which reveals the stability of Bi-GF
for the V3+/V2+ electrocatalytic process. In addition, as depicted in Figures S10 and S11,
the redox peak currents improve with the enhancement of the scanning rate, but also lead
to an increase in the peak potential difference owing to the increase in electrochemical
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polarization [31]. Figure S12 reveals an approximately linear correlation between the peak
current of the Bi-GF electrode and the square root of the scan rate, suggesting that the
VO2+/VO2

+ reaction on the Bi-GF electrode is diffusion-controlled [32]. Moreover, the
−Ipc/Ipa values at different scan rates are shown in Figure S13. The −Ipc/Ipa ratio of Bi-GF
is close to 1.0, suggesting excellent redox reversibility [33]. Notably, compared to GF, the
Bi-GF exhibited a significant increase in BET-specific surface area. To determine whether
the performance enhancement of Bi-GF is due to an increase in the BET-specific surface
area or the introduction of Bi NPs, we conducted an analysis of the electrochemically active
surface area (EASA). It is found that the EASAs of Bi-GF (0.249 cm2) and GF (0.234 cm2)
are nearly identical (Table S2), which may be due to the inability of the electrolyte to access
the nanoscale pores [34]. Therefore, the improved performance of Bi-GF is attributed to the
catalytic effect of Bi NPs rather than a simple increase in the BET-specific surface area.
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Figure 3. CV curves of (a) positive electrode of Bi-GF and GF at 5 mV/s scanning rate; (b) negative
electrode of Bi-GF and GF at 2 mV/s scanning rate; Nyquist plots of Bi-GF and GF (c) as positive
electrodes; and (d) as negative electrodes.

Figure 3c,d shows the Nyquist plots of GF and Bi-GF as positive and negative elec-
trodes, with all spectra fitted using the same equivalent circuit, as shown in the inset,
where Rs, Rct, Zw, and CPE denote the bulk solution resistance, charge transfer resistance,
Warburg impedance related to the diffusion process, and electric double-layer capacitance,
respectively. In Nyquist plots, the intercept on the real axis of the curve is typically approxi-
mated as the solution resistance (Rs), the semicircles observed in the high-frequency region
correspond to the battery’s charge transfer resistance (Rct), and the low-frequency region is
related to the diffusion process of the electrolyte [24,35]. In positive electrolytes, the Bi-GF’s
Rct is 19.2 mΩ, which is significantly less than that of 45.0 mΩ for GF (Table S3). In negative
electrolytes, the Rct of Bi-GF is 31.9 Ω, lower than that of 32.8 Ω for GF (Table S4). These
results suggest that the modified Bi NPs provide more active sites, resulting in effective
redox reactions of VO2+/VO2

+ and V3+/V2+.

3.3. Performance of Bi-GF Electrode in VRFBs

The charge-discharge curves of the VFRBs using Bi-GF and GF as both positive and
negative electrodes are presented in Figure 4a. Compared to the GF electrode, VRFBs utiliz-
ing Bi-GF as the working electrode demonstrate remarkable electrochemical performance,
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achieving a charge and discharge capacity exceeding 750 mAh, which is a significant im-
provement over the 200 mAh capacity observed with the GF electrode. Furthermore, Bi-GF
exhibits a more stable charge-discharge voltage plateau and lower overpotential, as shown
in Figure 4b. The initial potential difference between charging and discharging for Bi-GF
is approximately 0.2 V, which is substantially lower than the 0.5 V recorded for the GF
electrode. This reduced potential difference enhances electrolyte utilization and contributes
to the stable operation of the VFRBs [36]. As depicted in Figure 4c, the charge-discharge
voltage loss of the Bi-GF electrode is significantly lower than that of the GF electrode across
different current densities, ranging from 200 to 350 mA/cm2. The voltage losses for Bi-GF
remain below 100 mV, suggesting that a greater proportion of the current is effectively
engaged in the electrochemical processes of the battery.
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Figure 4. (a) Charge-discharge capacity curves of the Bi-GF electrode and GF electrode at a current
density of 200 mA/cm2; (b) average voltage; (c) voltage loss.

Figure 5a presents the charge-discharge capacity of the Bi-GF electrode across various
current densities. It is evident that the Bi-GF electrode maintains stable charge-discharge
performance at high current densities ranging from 200 to 350 mA/cm2, demonstrating low
overpotential and high charge-discharge capacities. Notably, the Bi-GF electrode continues
to function effectively even at an ultra-high current density of 450 mA/cm2. The voltage
efficiency (VE), energy efficiency (EE), and overall utilization efficiency (EU) of vanadium
flow redox batteries (VRFBs) at different current densities were also evaluated. As shown
in Figure 5b, the VE of the batteries assembled with the Bi-GF electrode consistently
outperforms that of the GF electrode across all tested current densities. Specifically, at a
current density of 200 mA/cm2, the VE of the Bi-GF electrode exceeds 84% (84.88%), which
is approximately 17% higher than the VE of the GF electrode (67.71%). The overall EE of
the Bi-GF electrode-assembled battery is also superior to that of the GF electrode. Even
at a current density of 350 mA/cm2, the Bi-GF electrode maintains a stable EE of 65.45%,
surpassing the 59.74% recorded for the GF electrode, as illustrated in Figure 5c. Additionally,
as depicted in Figure 5d, the Bi-GF electrode exhibits an enhanced EU compared to the
GF electrode across varying current densities. These findings suggest that the Bi-GF
electrode effectively inhibits the HER and provides a greater number of active sites, thereby
significantly improving the performance of VRFBs.

Maintaining long-term cyclic stability is crucial for the performance of VRFBs. To eval-
uate this, we conducted 100-cycle charge-discharge experiments at a current density of
200 mA/cm2 using different electrodes. As illustrated in Figure 6a–c, VRFBs employing Bi-
GF electrodes demonstrate a higher and more stable CE (~98%), VE (~79%), and EE (~79%)
compared to those using GF electrodes (CE ~ 96%, VE ~ 57%, EE ~ 55%) throughout the
100-cycle process. After 100 cycles, the discharge capacity of the Bi-GF electrode decreases
from 795.4 mAh to 422.95 mAh, whereas the GF electrode shows a dramatic decline from
202.33 mAh to nearly 0 mAh (Figure 6d). Furthermore, Figure 6e illustrates that the capacity
loss of the Bi-GF electrode is significantly slower than that of the GF electrode, maintaining
over 56% of its capacity after 100 cycles. Extending the assessment to a more rigorous 500-
cycle charging and discharging regimen, the Bi-GF electrodes exhibited negligible losses
in both VE and EE (Figure 6f), underscoring their outstanding stability. Additionally, the
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scanning electron microscopy (SEM) analysis presented in Figure S14 of the Bi-GF electrode
after 100 cycles revealed no appreciable morphological alterations compared to its pristine
condition (Figure 1b), thereby reinforcing the assurance of operational reliability for these
VRFBs. Finally, compared to other studies in terms of performance, VRFBs utilizing Bi-GF
as working electrodes demonstrate excellent EE (Table S5).
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4. Discussion

In summary, we successfully achieved uniform and firm modification of Bi NPs on
the surface of CF through a bismuth oxide-mediated hydrothermal pyrolysis method.
The uniform distribution of Bi NPs brings about a higher surface area, better wettability,
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and more active sites, which induces a much-reduced charge transfer resistance. As a
result, the as-prepared Bi-GF exhibits superior redox catalytic activity for both VO2+/VO2

+

and V3+/V2+ couples compared with pristine CF. VRFBs with Bi-GF electrodes achieve a
charge-discharge capacity exceeding 750 mAh at 200 mA/cm2 and maintain more than 96%
coulombic efficiency, 79% voltage efficiency, and 77% energy efficiency over the long-term
cycling test, significantly improving the performance of VRFBs.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano14242055/s1. Figure S1: SEM image of P-GF; Figure S2:
SEM image of Bi2Ox-GF; Figure S3: XRD pattern of the Bi2Ox-GF; Figure S4: Pore size distribution of
Bi-GF and GF electrodes; Table S1: BET-specific surface areas of different electrodes; Figure S5: Water
contact Angle test of (a) GF and (b) Bi-GF; Figure S6: CV curves of the positive electrode of GF at
5 mV/s scanning rate; Figure S7: CV curves of the positive electrode of Bi-GF at 5 mV/s scanning
rate; Figure S8: CV curves of the fnegative electrode of GF at 2 mV/s scanning rate; Figure S9:
CV curves of the negative electrode of Bi-GF at 2 mV/s scanning rate; Figure S10: CV curves of
the positive electrode of Bi-GF at different scanning rates; Figure S11: CV curves of the negative
electrode of Bi-GF at different scanning rates; Figure S12: Relationship between peak current density
of positive electrode and the square root of scan rate; Figure S13: Redox peak current ratio of different
electrodes at different scanning rates; Table S2: Impedance parameters of different electrodes; Table S3:
Impedance parameters of different electrodes at positive side; Table S4: Impedance parameters of
different electrodes at negative side; Figure S14: SEM of the Bi-GF electrode after 500 cycles of charge
and discharge at a current density of 200 mA/cm2; Table S5: Comparison of battery performance at a
current density of 200 mA/cm2. References [31,37–40] are cited in the Supplementary Materials.
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