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ABSTRACT

The year 1984 was a watershed in stereology. It saw the introduction of highly efficient and unbiased design-
based methods for counting the number of arbitrary objects in 3-dimensional (3D) space using 2D sectional
images. The only requirement is that the objects be unambiguously identifiable on parallel sections or
successive focal planes. The move away from the ‘assumption-based’ and ‘model-based’ methods applied
previously has been a major scientific advance. It has led to the resolution of several problems in different
biomedical areas. The basic principle which makes possible 3D counting from sections is the disector. Here,
we review the disector principle and consider its impact on the counting and sizing of biological particles.
From now on, there can be no excuse for applying the biased counting methods of yesteryear. Their
continued use, despite the availability of unbiased alternatives, should be seen as paying homage to History

rather than advancing Science.
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INTRODUCTION

During the past decade, stereology has developed to
the extent that it is now the technique of first choice
whenever 3D structural quantities need to be ex-
trapolated from planar measurements performed on
2D slice images. Before 1984, stereological methods
for estimating particle number and size relied on
assumptions about particle shape, size and orientation
(e.g. Weibel, 1979). Unfortunately, these ‘model-
based’ and ‘assumption-dependent’ approaches are
in general not unbiased. In fact, they are only valid in
special cases, i.e. those in which the model or
assumptions faithfully mimic reality.

The dangers of using model or assumption-based
approaches are twofold: (1) the ideal and reality
seldom coincide and (2) the resulting bias is usually
unknown because the underlying assumptions go
untested. Consequently, the impact of bias on the

accuracy of estimation and the validity of biological
conclusions is also unknown. The dangers are
expressed succinctly in the pun-phrase of the title of
this review: ‘If you ass-u-me...you can make an ass
out of u and me!’ (Harris, 1991).

Assumption-free methods offer an important ad-
ditional benefit: they are highly efficient. In other
words, they offer greater precision per unit cost
(Gundersen & Jensen, 1987; Gundersen et al.
19884, b; Cruz-Orive & Weibel, 1990; Mayhew,
19914a, 1992). Both validity and efficiency are de-
termined by design-based random sampling, i.e. by
generating random encounters between the specimen
and test probes. An extremely efficient way of drawing
random samples from specimens is systematic sam-
pling (Gundersen & Jensen, 1987). This can be applied
at all levels of the sampling process, e.g. cut an organ
into uniform random slices, select tissue blocks from
the slices in a systematic manner, cut parallel sections
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Fig. 1. An illustration of a systematic random (SR) sampling
scheme. At stage A an organ is cut into uniform random slices so
that all positions along the organ have an equal chance of being cut.
A systematic subset of these slices (hatched) is taken for further
sampling at stage B in which the subset is shown covered by a
randomly positioned square lattice. An SR sample of tissue plugs is
taken from circular holes drilled in the lattice and those overlying
tissue slices (black circles) provide samples which are block-
embedded for microtome sectioning. At stage C sections are cut
from blocks. A sampled section (hatched) is placed on a glass
microslide from which an SR sample of fields containing tissue
(black circles) is obtained using the x and y axes of a microscope
stage (stage D). Finally, at stage E a regular array of test points
(represented by the inner corner point of each L) is superimposed
on sections to obtain an SR sample of chance encounters with tissue
components visible on those sections. Only by random sampling at
each stage is a good (unbiased) sample obtained. If, at any stage, the
chain is broken by nonrandom sampling, this will lead to a bad
(biased) sample.

from tissue blocks at a set distance and, finally, place
a regular pattern of test probes on those sections

(Fig. 1).

This review focuses attention on unbiased and
efficient counting of arbitrary particles using sys-
tematic sections. In this context, a ‘particle’ might be
a corpuscle (e.g. a nucleus or cell), an associated
feature (e.g. the pore or mouth of a gland or an
incompletely interiorised endosome), a space (e.g. a
void, cavity or perforation) or a structural element
(e.g. a trabecula or capillary unit). Moreover, these
features may be discrete or connected in complicated
ways (e.g. capillary units forming a capillary bed).

To count and size particles, the test probes required
are volumes, points and lines. The test volume probes
might comprise systematic sets of pairs of section
planes separated by a known distance. The test points
and test lines might form a regular array (a test grid or
lattice) on a transparent overlay or an eyepiece
graticule. Such grids are superimposed on random
section planes or on microscopical fields randomly
sampled within those sections. For stereological
estimation of particle number, section planes must be
used and these must be randomly located. Estimating
size may require that section planes are also randomly
oriented.

BRIEF HISTORICAL PERSPECTIVE

There have been many different approaches to
estimating particle number. They include maceration,
biochemistry and sectional morphometry. Maceration
has been used to isolate and count renal glomeruli and
pancreatic islets of Langerhans. In the case of
glomeruli, acid maceration is time-consuming and
may damage some of the particles (for a review, see
Bendtsen & Nyengaard, 1989). Biochemical estimates
of DNA have several disadvantages including inability
to distinguish (1) nuclei belonging to different cellular
(or syncytial) compartments and (2) many diploid
from few polyploid nuclei. Cells and syncytia may
also have no nucleus or more than one nucleus so that
counting nuclei may not be a valid way of estimating
‘cell’ number. Combining DNA content with protein
content has been used to estimate cell size, expressed
as protein/DNA ratio. This approach does not have
general validity. It works only for homogeneous
tissues which are exclusively cellular and cannot be
applied to syncytia or to tissues which comprise
mixtures of cells and extracellular space/matrix. In
the latter case, a protein/DNA ratio will not dis-
tinguish hypertrophic from interstitial growth. De-
spite these deficiencies, DNA and protein contents
have been used to monitor the growth and de-
velopment of organs, e.g. placenta and skeletal muscle
(for some recent references, see Simpson et al. 1992;
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Wigmore et al. 1992; Mayhew & Simpson, 1994;
Mayhew et al. 1994 5).

The stereological approach is better. First, identify
particles by appropriate criteria (where necessary,
using techniques which aid identification, such as
immunochemistry or enzyme histochemistry) and then
count them. Often, we are forced to undertake such
counts using histological or other sections. In the past,
counting in 3D from sectional images of particles was
based entirely on assumptions. For example, cells and
their nuclei have been modelled as spheres, synapses
as circular discs and mitochondria as circular
cylinders.

Although often confounded by inadequacies of
sampling as well, these model-based methods were, at
least before 1980 (Cruz-Orive, 1980), the best available
at the time. They recognised that the probability of
particles being cut by single sections depends on
several factors, including section thickness, section
angle, particle size and particle shape. These are
important considerations because a 2D set of cell
profiles does not provide a generally valid indication
of the number of 3D cells which, on sectioning, gave
rise to them. Thus large cells (e.g. megakaryocytes,
macroneurons) have more chance of being cut than
small cells (e.g. lymphocytes, microneurons). Simi-
larly, uninucleate cells generate sectional images which
comprise more cell profiles than nuclear profiles
because cells are bigger than their nuclei. Further-
more, fusiform cells (¢.g. smooth muscle cells) have
more chance of being cut by transverse than by
longitudinal sections. Finally, an irregular particle
(e.g. the nucleus of a polymorphonuclear leucocyte)
can be cut in several places by the same section plane.
Without some additional information (such as know-
ing that each polymorph has one nucleus), this
phenomenon may make it difficult to decide whether
or not the several profiles appearing on the section
plane belong to just one particle.

Using single sections (areal probes) introduces
errors governed by size, shape and spatial orientation
(see Fig. 2). In fact, single sections sample particles
not only on the basis of how many there are but also
with a probability determined by particle size (height)
in the direction normal to the section plane. Therefore,
single sections provide a biased selection of particle
profiles, i.e. they preferentially select particles of
greater height. Fortunately, we can avoid these
problems and obtain unbiased estimates of particle
number by sampling them with volume probes
(Gundersen, 1986; Cruz-Orive, 1987 a).

A significant technical advance, i.e. independence
of particle shape, size distribution or orientation, was
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Fig. 2. The effects of orientation, size and shape on the probability
of sectioning. (A) A set of 4 sections is cut through 2 spherical cells,

" each cell harbouring a single spherical nucleus. Although there is 1

large cell and 1 small cell, note that the larger cell produces more
profiles (these will appear as circles) when sectioned. In this
example, there would be 7 cell profiles but only 2 nuclear profiles.
So our estimate of cell number would depend also on whether we
adopted the nucleus or the cell as the counting unit. (B) A rod-
shaped particle has a greater probability of being sectioned when its
long axis is orthogonal to the section plane and a lower probability
when it is parallel to that plane. These observations illustrate the
point that isolated sections cannot, in general, provide valid data on
particle number. Because number is zero-dimensional, a 3D probe
is required to count particles in 3D space.

made by Cruz-Orive (1980). He suggested using a
volume probe which consisted of a stack of serial
sections cut with a random start position but at an
arbitrary orientation. This pioneering approach has
been succeeded by more efficient alternatives based on
the disector (Sterio, 1984; Gundersen, 1986) which
relies on pairs of parallel sections.

ASSUMPTION-FREE COUNTING—THE DISECTOR
The basic principle

With the disector (Fig. 3), particles are counted with
an unbiased 3D counting rule using pairs of parallel
planes separated by a known distance, d. The only
requirement about particle shape is that it must be
possible to identify all particle profiles on sections
which belong to the same parent particle. Particles
which fail to meet this basic condition (Cruz-Orive,
1980; Gundersen, 1986) cannot be counted by
stereology.

Each disector pair should be randomly located
within the specimen. The rule is to count only those
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Fig. 3. The disector principle. The diagram shows a block of tissue containing 5 identified particles (a—) and cut serially into parallel sections.
A pair of adjacent sections (a physical disector) is drawn from the stack and their upper faces are shown. Note that these are separated by
a distance equal to the thickness (t) of one section. The uppermost (‘ reference’) section bears an unbiased counting frame of area A, whilst
the lower (‘look-up’) section does not. The volume of the disector is equal to A x t. Note that only particles a—d appear on the reference
section. However, particles a, ¢ and d are not eligible for counting for the following reasons: particle a because it touches the forbidden line
of the counting frame, particle ¢ because it also appears on the look-up section and particle d for both reasons. Only particle b is counted:
although it is non-convex and appears as 2 profiles on the reference section, it does not touch the forbidden lines (or their extensions) or
appear on the look-up section. It is a condition of unbiased counting that we must know that both profiles belong to the same parent particle.

In this example, Q" =1 and N, = 1/(A x t).

particles which appear in an unbiased counting frame
on one plane (the reference plane) but not on its
partner (the look-up plane). Several unbiased counting
rules are available for deciding whether or not particle
profiles can be regarded as being included in the
counting frame on the reference plane (Gundersen,
1977; Miles, 1978; Jensen & Sundberg, 1986). The
number of particles meeting the counting criteria, by
convention given the symbol Q~, is contained within
the volume of the disector. This volume is equal to the
area of the counting frame, A, multiplied by the
distance between the planes (Fig. 3). Therefore, the
numerical density of particles in the reference volume
(N/V) is estimated by

estN/V = ZQ /(ZA x d).

If the specimen has been sampled systematically by
multiple disectors, N/V is calculated after summing A
and Q- over all disectors. An efficient way of
estimating XA for a set of disectors is via

estTA = XP x a

where 2P is the total number of test points which lie
within the set of counting frames and a is a constant,
i.e. the area associated with one test point.

Notice that the disector alone yields numerical
density rather than number (N) itself. In consequence,
estimates are sensitive to preparation artefacts such as

fixation distortion (shrinkage or swelling). The
disector is not affected by the sectioning artefacts of
image over-projection and truncation provided that it
is based on physical rather than optical sectioning (see
below). However, its use does demand an accurate
estimate of the plane separation, d. Fortunately,
modifications of the use of the disector can circumvent
the distortion artefacts and the need to know d (see
below).

The orientation of the planes is not critical for
achieving unbiased estimates of particle number with
the disector but it may influence efficiency. It follows
that convenient directions can be selected arbitrarily
so as to improve efficiency. Moreover, the same pair
of planes may be used in both forward (reference to
look-up) and reverse (look-up to reference) directions
and the average of these two counts can be taken.
Clearly, different particles are selected in the two
directions.

Practical implementation

A very efficient way of generating disectors is to track
through successive focal planes in a thick slice of
tissue. This is referred to as the optical disector. If this
is not practicable, it is possible to cut physical sections
(physical disectors) with some suitable cutting aid.
With very densely packed particles (e.g. granule cell
neurons in the cerebellum), the optical is preferable to
the physical disector. Indeed, optical sectioning will
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Fig. 4. An illustration, in 2D, of the physical and optical disector
principles. (A) Four profiles are seen contained in a defined plane.
The lines a and b, each of length 1, are equivalent to the ‘reference’
and ‘look-up’ of a physical disector and are separated by a distance
(d) which is smaller than profile height in the direction orthogonal
to the lines. Two profiles are transected by line a but not line b and
so are counted. We can imagine that both profiles have an
associated point (e.g. the tangent to its uppermost pole) which is
contained within the space lying between lines a and b. The 2
profiles counted lie in an area equivalent to 1xd. (B) We may
imagine a line sweeping across the plane from its lower to upper
edges. In so doing, we will count 4 such associated points. This is
analogous to the optical disector in which a series of focal planes
sweeps through a volume and encounters associated points of 3D
particles.
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probably supercede physical sectioning for histo-
logical studies. However, only physical disectors can
be used with conventional transmission electron
microscopy (TEM). The principles behind the two
varieties of disector are illustrated simply in Figure 4.

Optical disectors. Parallel planes of focus will
encounter particles for the first time only once and,
therefore, all particles will have exactly the same
probability of being selected and counted. This is the
basis of the optical disector and, essentially, there are
two main ways of generating optical sections. In both,
the distance d (measured along the z-axis of the
microscope) must be measured accurately, e.g. with a
microcator (see Braendgaard et al. 1990, wherein the
device measures to the nearest 0.5 um). Vertical
translations may be monitored conveniently by fitting
an acoustic depth alarm to the fine focus control
(Laroye & Taylor, 1992).

The first approach is thin-focus microscopy. For
transmitted light microscopy, thick sections can be cut
and focused at different focal planes (Gundersen,
1986). A particle is counted when it (or some part of
it, such as its equator or its upper pole) first comes
into focus within the counting frame. The use of high
numerical aperture, oil-immersion objectives serves to
ensure that movements in the z-direction represent
true movements of the focal plane through the thick
section. With glycol methacrylate as an embedding
medium, optical sectioning in thick sections (25 pym or
thicker) can be performed with minimal shrinkage
distortion.

The second approach is confocal microscopy. If
particles exhibit fluorescence or reflectance, they can

be optically sectioned with a confocal microscope.
Counting can then proceed with an unbiased 3D
counting ‘brick’ (Howard et al. 1985).

Unlike the physical disector, the optical disector
may produce biased estimates of numerical density if
the 3D sampling probe extends to the bottom surface
of the thick section. The bias is related to the ‘lost
cap’ phenomenon (Gundersen, 1986) and can be
avoided by restricting the sampling volume to the
middle part of the section. For example, to a volume
probe of height 15 pm at the centre of a 25 pm thick
section. The same phenomenon may introduce bias
into section thickness estimates, particularly if the
section surfaces are highly irregular. For this reason,
plastic sections are preferable to paraffin or frozen
sections. The final sections should not be less than
25 pum thickness and objective lenses should be of high
numerical aperture to ensure that the depth of focus is
as small as possible. For a more comprehensive
discussion of these problems, see Gundersen (1986)
and West et al. (1991).

Physical disectors. Physical (mechanical) sections
may be cut by knife, razor-blade or microtome. In this
case, for reasons of efficiency, the sections should be
separated by a distance d which is roughly a third to
a quarter of particle size. Of course, d must never be
greater than the size of the smallest particle in the
direction normal to the section plane.

If d corresponds to section thickness t (or to some
multiple of it), various options are available for
determining section thickness and, thereby, section
separation. They include Small’s ‘fold’ method,
microinterferometry, micrometry and section re-
sectioning (see Goldstein & Hartmann-Goldstein,
1974; Weibel, 1979; Gundersen et al. 1983;
Braendgaard & Gundersen, 1986; Bedi 1987; de
Groot, 1988 ; Evans & Howard, 1989; Simpson et al.
1992).

Modifications of the disector

The need to estimate section separation can be avoided
by adopting a suitable sampling design. Two
possibilities exist: the first is comparable to that
described originally for counting nerve fibre profiles in
2D on transected nerve trunks (and referred to in that
context as the ratio technique; for references, see
Mayhew, 1988) and the second is the fractionator
(Gundersen, 1986).

The ‘ratio technique’. Pakkenberg & Gundersen
(1988) neatly avoided the section thickness and
distortion problems by the following design. Estimates
of the reference volume (V[r], made using the Cavalieri
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principle) and particle numerical density (N[p]/V[r],
made using physical disectors) were based on sections
drawn from the same section set. By design, section
thickness and tissue distortion were common to both
estimates and cancelled out in the final calculation.
First a Cavalieri estimate of volume was obtained:

est V[r] = ZP[r] xaxd

where ZP[r] is the sum of test points, each with an
areal equivalent a, falling on a uniform random
sample of sections.

Secondly, a disector estimate of particle numerical
density was calculated:

est N[pl/V[r] = ZQ[p]l/ZP[r] xa’ xd

where ZP’[r] is the sum of test points falling on the
reference space of the disector frames and a’ is the
areal equivalent of one of those points.

Next, the two estimators were combined:

est N[p]= (ZP[r] x a x d) x CQ [pl/ZP’[r] x a’ x d)
=(a/a’) x (ZP[r]/ZP’[1]) x ZQ7[p]

in order to obtain an unbiased estimate of particle
number. This is similar to a fractionator equation (see
below) but with estimated rather than known samp-
ling fractions (see also Geiser et al. 1990).

The fractionator. This sampling approach circum-
vents technical sources of bias to provide direct
estimates of number. It is not necessary to know
specimen magnification, the area of the counting
frame, section separation or the reference volume
(whether fresh, fixed or fixed and embedded). What is
required is random sampling in 3D space using known
sampling fractions.

The volume in which structural features are con-
tained can be cut systematically into random sections
of arbitrary size, shape and number. However, the
section planes should not intersect inside the objects if
they are being employed to make disector pairs
(Pakkenberg & Gundersen, 1988). The fraction, 1/f, of
sections sampled in this way will contain n x f particles
where n indicates the number counted in the sample.
Often, the sample will comprise several disector pairs
(when n is equal to Q") but, in certain circumstances,
it is possible to use a point-like inclusion within a
particle (e.g. the nucleolus inside a nucleus) for
counting in sets of single sections (Braendgaard &
Gundersen, 1986; Nairn et al. 1989; Mayhew, 19915;
Mwamengele et al. 1993).

The fractionator principle will usually be applied in
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Fig. 5. The fractionator principle. In (A) an organ is cut into an
exhaustive set of slices from which a known fraction, }, is drawn
with a random start. In (B) the sampled slices are cut into strips
from which an SR sample (fraction ) is selected. In (C) the selected
strips are arranged in an artificial ‘spindle’ pattern from which an
SR sample (fraction ) is taken. In (D) these are block-embedded
and exhaustively serially sectioned so that a final SR sample
(fraction }) can be drawn. Usually these will comprise disector pairs
(reference shown hatched, look-up identified with a black square).
Particles in the disector pairs are counted and their number is
multiplied by the sequence 4x2x10x3 to estimate the total
number in the entire organ. (Reproduced with permission from
Mayhew, 1992).

several sampling stages with systematic sampling at
each stage (Fig. 5). The number of particles is then
estimated as

estN=nxflxf2xf3... x fk

where fk is the sampling period (the reciprocal of the
sampling fraction) at the lowest sampling stage. The
number of stages, and the fraction selected at each,
can be altered to suit best the requirements of a
particular experiment. A reasonable workload is to
design sampling so that n is approximately 100.

The specimen in which the particles are embedded
may be divided quite arbitrarily at any stage except
the last one. At the last stage, parallel sections are
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advisable for technical reasons. Efficiency may be
improved by cutting so that pieces contain roughly
equal numbers of particles. For an organ in which the
3D spatial distribution of particles is rather uniform,
this will be achievable by cutting into pieces of
roughly equal size. However, it is generally preferable
to arrange the specimen pieces produced at a given
sampling stage into a series with a ‘dome’ or ‘spindle’
distribution. With this arrangement, the pieces at the
ends of the series will be the smallest and those at the
centre will be the biggest (see Ogbuihi & Cruz-Orive,
1990; Mayhew, 1992).

The dome distribution may arise naturally, at least
at the first sampling stage. Thus a convex specimen
cut into slices might generate a dome pattern if the
slices are maintained in their natural order after
slicing. Additional improvements in efficiency can be
made by excising and discarding those regions of the
specimen which do not contain the particles to be
counted. For instance, the white matter and deep
nuclei of the cerebellum do not contain Purkinje
neurons and, if the size of the cerebellum permits, the
cortex can be partly separated from subcortical tissue
and discarded. This practice will not affect in any way
the unbiasedness of the method.

Cruz-Orive (1990) has provided an improved
method for predicting the variance of a fractionator
estimate of number. At the initial stage of systematic
sampling, the specimen is divided into two sub-
samples. Subsequently, the empirical variance of the
pooled estimate of number is estimated using the pair
of observations made on these two subsamples.

The double disector. It is sometimes desirable to
count small objects inside, or otherwise associated
with, larger objects. One way of achieving this aim,
the ‘double disector’, has been employed to estimate
numbers of synapses per neuron (Braendgaard &
Gundersen, 1986; Gundersen et al. 19884) and
numbers of cells per renal glomerulus (Marcussen,
1992 a). In the former example, the numerical densities
of synapses and neurons were determined in the same
set of ultrathin sections. By estimating neuron number
from semithin sections, the absolute number of
synapses was calculated.

Double disectors have been employed to count the
numbers of coated vesicles and their precursors
(coated pits) per nucleus during endocytosis of !*°I-
transferrin by broken A431 cells (Smythe et al. 1989).
More recently, Lucocq (1992) has used double
disectors to count immunogold particles per cell at the
ultrastructural level. He combined these stereological
data with biochemical estimates of antigens per cell in
order to determine labelling efficiency, an important

experimental variable in modern immuno-electron
microscopy.

SOME APPLICATIONS

To date, modifications of the disector have been used
to count a variety of different sorts of particle. For
convenience, the ‘particles’ may be classified as falling
into 3 main groups: (1) discrete particles such as cells,
nuclei, synapses, intracellular vesicles, (2) associated
features of particles such as gland/pore openings,
mouths of forming endosomes, bases of microvilli,
synaptic membrane densities, and (3) connected sets
such as capillary networks, Golgi stacks and inter-
connected pores.

Many of the applications involve counting neurons
and synapses (Gundersen, 1985; Braendgaard &
Gundersen, 1986; Pakkenberg & Gundersen, 1988;
Mayhew, 1992; West, 1993a), reflecting the keen
interest of neurobiologists in one of the two principal
areas in which number offers useful information,
i.e. intercellular communication and connectivity
(Mayhew et al. 1979). Combined with immuno-
chemical staining, it is now possible to count defined
subsets of neurons (e.g. Janson & Moller, 1993; Aika
et al. 1994). Studies also reflect the other main area,
i.e. that of genesis, growth and transformation, in
which number helps us to understand mechanisms of
particle formation, to distinguish between hyper-
plastic, hypertrophic and interstitial growth, and
to explore mechanisms of cell/tissue differentiation.
The following application summary is meant to be
illustrative rather than comprehensive.

Optical disectors

There are now many reports of the use of the optical
disector in thin-focus microscopy to count neurons,
glial and other cells in mammalian and avian central
and peripheral nervous systems. These include studies
of sex and age differences, patterns of development,
the effects of alcoholism, senile dementia of Alzheimer
type, growth factors and other forms of experimental
manipulation and possible novel therapeutic inter-
ventions for Parkinson’s disease. Particles counted
include neurons, glial, ependymal and endothelial
cells in the spinal cord (Bjugn, 1991, 1993; Bjugn &
Gundersen, 1993), neurons in lumbar dorsal root
ganglia (Tandrup, 1993; Tandrup & Braendgaard,
1994), cerebral cortex (Pakkenberg et al. 1989;
Braendgaard et al. 1990; Tandrup & Braendgaard,
1992; Jensen & Pakkenberg, 1993; Regeur et al.
1994), neurons and glial cells in substantia nigra
(Janson & Mogller, 1993), neurons in the lumbar
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lateral motor column (Nurcombe et al. 1991) and in
the hippocampus and its subregions (West &
Gundersen, 1990; West et al. 1991; Holm & West,
1993; West, 19935).

Optical disectors have also been used to count and
size mesophyll cells in leaves of barley plants
(Kubinova, 1989) and to count osteocyte lacunae by
confocal microscopy (Howard et al. 1985) and total
number of cells per renal glomerulus by thin-focus
microscopy (Bertram et al. 1992).

Physical disectors

Apart from examples embedded in review articles
(Braendgaard & Gundersen, 1986; Gundersen et al.
19884), physical disectors have been applied to
various particle types.

In the case of discrete particles, they have been used
to count and size neurons in the cerebral cortex of
control and undernourished rats (Meller et al. 1990;
Korbo et al. 1990; Bedi 1994), rat brainstem
(Guntinas-Lichius et al. 1993), dentate gyrus (West et
al. 1988; Bedi, 1991), superior colliculus (Fukui &
Bedi, 1991) and CA1 region of rat hippocampus (Aika
et al. 1994). Pakkenberg and colleagues have counted
neurons and glial cells in the brains of diseased
subjects including schizophrenics and Parkinson’s
disease sufferers (Pakkenberg & Gundersen, 1988,
1989; Pakkenberg, 1990; Pakkenberg et al. 1991).
They have demonstrated reduced numbers of neurons,
astrocytes and oligodendroglial cells in the
mediodorsal thalamic nucleus and nucleus accumbens
in schizophrenics but no differences in the ventral
pallidum or basolateral nucleus of the amygdala.
Total neuron number in Parkinson’s patients was
66 % less than in control subjects.

Nuclei in malignant and benign melanocytic skin
tumours have been counted in physical disectors
(Serensen, 1991) and used to estimate the variance of
the distribution of nuclear volumes. Mendis-
Handagama (1992) employed disectors to estimate
numbers of Leydig cells in rat testes and to quantify
the biases introduced by model-based methods. The
authors emphasised that biased (model and
shrinkage-dependent) estimates of number were simi-
lar to unbiased estimates in control but not ex-
perimentally induced atrophic testes. However, the
real lesson to be learned is that biased methods do not
in general give unbiased estimates. Numbers of
parathyroid cells have been determined in hyper-
calcaemic rats and in onset and age-matched controls
(Wernerson et al. 1989). Total numbers of secretory

cells increased in controls by 100% from 3 to 7 wk.
The reduced cell number and size in hypercalcaemic
rats reflected growth arrest rather than atrophy.
Bertram et al. (1992) used TEM physical disectors to
count different cell types in glomeruli of normal rat
kidney as a baseline for comparative studies on
various renal disorders.

Several groups have examined tissue/organ growth
by testing for hyperplasia and other strategies.
Hyperplasia versus hypertrophy in smooth muscle
cells of mesenteric resistance vessels of spontaneously
hypertensive rats has been examined (Baandrup et al.
1985; Mulvany et al. 1985). It was found that
hyperplasia is the basis of the thickened tunica media
in such vessels. Mayhew and colleagues (Simpson et
al. 1992; Mayhew & Simpson, 1994; Mayhew et al.
1994b) counted nuclei in different tissue com-
partments of human placental villi during gestation
and found that whilst nuclei in all compartments
increased in the same (logarithmic) fashion, overall
growth strategies differed. In the trophoblast, growth
was purely hyperplastic and occurred by the con-
tinuous recruitment of new proliferative units. There
was no depletion of cytotrophoblast cells, thus
contradicting the impression of a decline given by
sectional images. The apparent decline can be
explained by the relatively greater expansion of villus
surface area and thinning of trophoblastic epithelium.

Other discrete particles counted include type II
pneumocytes in control and ozone-exposed rats
(Dormans, 1989), immunogold particles in labelled
cells (Lucocq, 1992) and pores in aluminium and in
sandstone (Karlsson & Cruz-Orive, 1992; Zhao &
MacDonald, 1993). Mandarim-de-Lacerda & Costa
(1993) monitored myocyte packing density in different
parts of the myocardium. The highest packing was
found in the crista terminalis and atrioventricular
bundle followed by the interatrial and interventricular
septa. Austin et al. (1995) devised a method for
estimating numbers of ventricular myocyte nuclei in
fetal and postnatal hearts. Their findings suggest that
postnatal growth is not hyperplastic and that patterns
of growth are similar in left and right ventricles.
Marcussen and colleagues (Marcussen & Olsen, 1989;
Marcussen, 1990, 1991, 1992b; Marcussen &
Jacobsen, 1992) counted glomeruli in patients with
various types of renal pathology. Schmitz et al. (1990)
used physical disectors as a basis for estimating
glomerular volume in type 2 diabetes.

In the case of associated features, so far these have
been confined mainly to presynaptic membrane
densities and to invaginating coated vesicles during
endocytosis. However, disectors could be used to
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count microvillus bases and, thereby, offer an
unbiased way of tackling the problem of
distinguishing ambiguous profiles of microvilli at
apposed cell surfaces (Mayhew, 1985).

Synapses of various types (perforated and non-
perforated, symmetric and asymmetric) have been
counted in the rat superior colliculus after dark-
rearing (Fukui & Bedi, 1991) and in the neocortex
(Calverley & Jones, 1987, 1990; Calverley et al. 1988).
De Groot & Bierman (1986, 1987) found a significant
decrease in numbers of nonperforated synapses in the
stratum radiatum of hippocampal C3 area in female
rats between 3 and 24 months but no significant
decrease in perforated synapses. Siklos et al. (1990)
showed that numbers of synapses in the superior
cervical ganglion did not change after long-lasting
administration of the membrane hyperpolarising
agent, sodium bromide.

Studies on the chick lobus parolfactorius (Hunter &
Stewart, 1989) have shown that the numerical density
of all classes of synapses increases with age (16d
prehatch to 22 d posthatch) but the proportion of
symmetric synapses rises. There was hemisphere
asymmetry in asymmetric synapses posthatch, the left
hemisphere containing relatively more asymmetric
spine synapses per volume.

In cultured cells undergoing endocytosis, coated
pits (the precursors of coated vesicles) depend on the
addition of cytosol and ATP for their formation
(Smythe et al. 1989).

For connected sets of ‘particles’, physical disectors
have been used, most notably, to count capillaries
(Nyengaard et al. 1988; Nyengaard & Marcussen,
1993). The term capillary unit is first given a rigorous
topological definition and then used to count capillary
units in renal glomeruli during normal development,
nephrectomy and experimental diabetes (Nyengaard
et al. 1988, 1993; Nyengaard & Bendtsen, 1992;
Nyengaard, 1993q, b; Nyengaard & Rasch, 1993).
Results suggest that capillary branching, forming a
complex net of serial and parallel connections, is the
structural basis for normal growth of glomerular
capillaries from 5 d to 8 months postnatally. Lucocq
et al. (1989) counted Golgi clusters and vesicles in
dividing (metaphase) HeLa cells and during telophase
Golgi reassembly. They found thousands of free
vesicles in metaphase which shifted to clusters during
telophase, suggesting an economical mechanism for
replication of the Golgi apparatus during cell division.

The above estimates are based on the fact that for
arbitrary networks, the disector provides an unbiased
estimate of the so-called Euler-number (Gundersen et
al. 1993), which has been used in a series of studies of

bone trabecular connectivity by R. W. Boyce (Youngs
et al. 1994; Boyce et al. 1995).

Fractionators

Applications of the fractionator to count particles in
optical and physical sections are increasingly com-
mon. Again, most are based on neurons and glial cells
in different regions of the nervous system
(Braendgaard & Gundersen, 1986; Pakkenberg &
Gundersen, 1988; West et al. 1991). In the case of
cerebellar Purkinje cells, these have been examined
with regard to age, sex, nutritional status, lateral
symmetry and phylogeny (Nairn et al. 1989; Mayhew
et al. 1990; Andersen et al. 1992; Bedi et al. 1992;
Korbo et al. 1993). For adult terrestrial mammals at
least, it seems that cerebellar weight correlates very
well with the Purkinje complement and offers a simple
way of predicting number (Mayhew, 1991b;
Mwamengele et al. 1993).

Two studies on lung have adopted the fractionator
principle: the one to count macrophages in, and
particles retained in and cleared from, the intra-
pulmonary conducting airways of hamsters (Geiser et
al. 1989, 1990, 1994) and the other to count the total
number of lymphatic valves in human infants
(Ogbuihi & Cruz-Orive, 1990). Leydig cells in rat
testes have been counted (Mendis-Handagama, 1992)
as have renal glomeruli in normal rats and human
diabetic patients (Bendtsen & Nyengaard, 1992;
Bertram et al. 1992). Wigmore et al. (1992) used a
combination of the disector and fractionator sampling
to show that nuclear number increases during de-
velopment of lumbrical muscle IV in the rat (E17 to 3
months postpartum). The proportion of fibre nuclei
increased as cells fused to form secondary fibres. At
the same time, the proportion of nuclei of myogenic
precursor cells declined whilst that of connective
tissue nuclei did not alter markedly.

SAMPLING FOR PARTICLE SIZING

Once a method is available for counting particles in an
unbiased manner, that method will also permit
unbiased selection of particles for other purposes.
Thus a direct consequence of the disector is the
availability of a procedure for selecting particles for
size estimation. Size may be defined in various ways
(e.g. volume, surface area, height) and most estimators
of mean size can be obtained by dividing total (or
relative) volume, surface or height by total (or relative)
number. In most instances, however, volume is the
most informative definition of size and so this section
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Fig. 6. Volume estimation from point-sampled intercept (PSI)
lengths. A set of particle profiles appears on a single section on
which is superposed a frame with a surrounding guard area. The
frame contains a set of randomly oriented test lines bearing test
points of which 6 (open circles) fall on the profiles and lie inside the
frame. The lengths of PSIs which cross the profiles and pass through
the points are estimated using a graduated scale. The PSI shown
falls in class 7 of the scale. If line directions are isotropic in 3D, the
PSIs through all 6 points provide an unbiased estimate of the
volume-weighted mean volume of the particles. By first selecting
particles with disector pairs, the same procedure will generate a
number-weighted mean volume. (Reproduced by permission from
Mayhew, 1992).

briefly reviews three volume estimation procedures for
estimating the sizes of individual particles.

The selector

This device (Cruz-Orive, 1987a) may be regarded as
combining the disector (for selecting arbitrary features
with identical probabilities, i.e. a uniform random
sample) and point-sampled intercept (PSI) length
measurement (for estimating feature volume, Fig. 6).
Because features are selected with identical probabili-
ties (based merely on their presence), the resulting
estimates are direct estimates of number-weighted
rather than volume-weighted volumes. Moreover, this
is achieved without knowing the distance between the
two planes, i.e. the selector is a disector of unknown
thickness.

First, stacks of serial sections are cut. These may be
isotropic uniform random (IUR) sections generated in
3D using the orientator or isector (Mattfeldt et al.
1990; Nyengaard & Gundersen, 1992) or in 2D by
vertical sectioning (Baddeley et al. 1986). Next, a
disector pair from each set is drawn so as to select
features solely according to their presence. The
number-weighted mean volume of the chosen features
is obtained from their PSI lengths by superimposing

test points on all sections through the features.
Independently, intercepts are measured along test
lines which pass through the points. The test lines
must be IUR in 3D space, hence the need to cut IUR
sections or to cut vertical sections and apply sine-
weighted test lines (Baddeley et al. 1986; Cruz-Orive
& Hunziker, 1986; Gundersen et al. 19884, b). If the
features are convex, the intercepts will be connected
segments of length 1,. An unbiased estimate of
number-weighted volume, v, is obtained by
averaging the third power of PSI lengths over all
intercepts and multiplying by (n/3). Additional steps
must be taken if features are non-convex. A value of
vy is obtained for each sampled feature and then
averaged to give the number-weighted mean volume
for the sampled set (Cruz-Orive, 1987 a).

Sections from the selector set can be used to
calculate particle volume in the volume-weighted
distribution of volume (Gundersen & Jensen, 1985).
By combining this with number-weighted volume,
information about size variation (the coefficient of
variation of volume in the number distribution) can
be obtained. Moreover, this can be achieved without
needing to know or reconstruct the actual volume-
frequency distribution.

Ependymal cells in spinal medulla (Bjugn et al.
1989), cells in skin tumours (McMillan & Serensen,
1992), human erythrocytes (Mayhew et al. 19944) and
pores in sand-cast aluminium alloys (Karlsson &
Cruz-Orive, 1992) have been sized using the selector.

The nucleator

This is similar to the selector but is a more efficient
way of estimating number-weighted mean volume
when particles possess a single identifiable point-like
inclusion (Gundersen, 1988). At the cellular level, an
ideal inclusion is the nucleolus. The increased
efficiency arises by virtue of the fact that, in order to
estimate mean volume, only those sections which
contain the inclusion need to be sampled.

The nucleator relies on a generalisation of a special
case which we were all taught in school, i.e. the
method for calculating the volume of a sphere:

V = 4nr®/3

where r is the sphere radius. In this model-based case,
volume is determined by measuring from a central
point to the sphere boundary. In fact, the point may

‘be located anywhere inside or outside the sphere and,

provided that IUR lines in 3D space are used to define
directions from the point to the boundary, the method
is applicable to arbitrary particles (Gundersen, 1988).
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A

Fig. 7. Cell volume estimation with the nucleator. (A-E) represents
a set of serial sections through 3 cells, each containing a single
nucleus. The disector pair (A) (look-up), (C) (reference) is used to
sample nuclei solely according to their presence. On this basis, 2
nuclei (1,2) appear on (C) but not on (A) (see cell profiles 1’2’).
These nuclei are followed through the section stack (stippled). An
overlay of lines (isotropic in 3D) is superposed on these sections and
some points hit the selected nuclei (4 open circles). Distances from
the points to the cell boundary (see I* and 17) are used to estimate
number-weighted mean volume. (Reproduced with permission
from Mayhew, 1992).

For reasons of efficiency, it is sensible to confine the
point to within the particle itself.

Imagine a population of cells, each containing a
single nucleolus, for which an estimate of mean cell
volume is required (Fig. 7). As with the selector, we
begin by cutting a stack of sections but, in contrast to
the selector, this need only be as high as the linear
dimension of the largest nucleolus (measured at right
angles to the section plane). Having sampled nucleoli
with identical probabilities (by using a disector from
the section stack), test points are applied to every
section which contains profiles of those nucleoli. For
each point hitting a nucleolar profile, an isotropic
direction is chosen in order to draw a line from the
point to the boundary of the cell profile.

An unbiased estimate of number-weighted mean
volume for the cells is calculated by averaging, over all
intercepts, the third powers of intercept lengths and
multiplying this average by 4n/3 (Gundersen, 1988).
If lines are drawn across the cell profiles, passing
through the chosen points, then two possible
intercepts may be measured, each passing from the
point to the cell profile boundary. Estimates of cell
volume can be made using either or both of these
intercepts (Jack et al. 1990aq, b).
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It is helpful to note that if a single small nucleolus
of approximately constant size is adopted as the
inclusion, the number-weighted mean volume of cells
can be estimated from just one section or from several
independent sections (Gundersen, 1988). Various
illustrations of the use of the nucleator are available
(Gundersen et al. 19884, b; Bagger et al. 1989, 1993;
Jack et al. 1990a, b; Magller et al. 1990), including
some which illustrate how the distribution of volumes
(Andersen et al. 1992; Strange et al. 1991) and the
spatial distribution (Evans & Gundersen, 1989) of
individual cell bodies may be analysed.

The rotator

As with the nucleator, this principle (Cruz-Orive,
1987b; Vedel Jensen & Gundersen, 1993) relies on a
unique point-like reference (e.g. a nucleolus) being
associated with each particle. It, too, offers unbiased
number-weighted volume estimates when used on
vertical sections (the vertical rotator, Cruz-Orive,
1987b) or on sections which are IUR in 3D space (the
isotropic rotator, Vedel Jensen & Gundersen, 1993).
However, the method is likely to be more precise than
the nucleator.

Sampling requirements are the same as for the
nucleator. We begin by cutting a stack of sections as
high as the linear dimension of the largest nucleolus so
as to sample nucleoli with identical probabilities. A
lattice of parallel test lines, separated by a distance t,
is applied to every cell section which contains a
nucleolar profile. A convenient design is to set t as h/3
where h is the apparent cell height in the vertical
direction (vertical rotator) or in a chosen IUR
direction (isotropic rotator).

In the case of vertical sectioning (see Fig. 8), the
lattice is positioned so that a vertical axis (orthogonal
to the test lines) passes through the nucleolus. It is not
a precondition that one of the test lines should
intercept the nucleolus. For each test line crossing the
cell, linear intercepts from this axis to the cell
boundary are measured on both sides of the vertical
axis. Particle volume is estimated for each cell by
squaring the intercepts measured on both sides of
each test line, taking their mean, and then summing
over all test lines. This value, X1,%, multiplied by =.t, is
an unbiased estimate of the number-weighted volume
of that cell. Mean cell volume is obtained by averaging
over all selected cells (Vedel Jensen & Gundersen,
1993).

With the isotropic rotator, lattices are positioned so
that a chosen IUR direction passes through the
nucleolus. Moreover, volume estimation requires
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Fig. 8. The vertical rotator to estimate cell volume. Nucleoli within
cells are sampled, as with the nucleator, according to their presence.
A lattice of parallel test lines, distance t apart, is applied to every cell
section which contains a nucleolar profile. It is not a requirement
that one of these lines should intercept the nucleolus (black circle)
but the lattice must be positioned so that its vertical axis passes
through the nucleolus. For each test line crossing the cell (height h),
linear intercepts from this axis to the cell boundary are measured on
both sides of the vertical axis. Only one such intercept (1,,) is
indicated. The number-weighted cell volume is estimated for each
cell after squaring the intercepts measured on both sides of each
vertical axis, taking their mean, and then summing over all test
lines.

additional information about distances from each test
line to the nucleolar centre. In fact, volume is obtained
using the estimator 2.t.Xg,, where Zg; is a function of
the intercept lengths and the nucleolus-vertical axis
distances (for details, see Vedel Jensen & Gundersen,
1993).

Examples of applications to neuron populations are
offered in Vedel Jensen & Gundersen (1993). Janson
& Moller (1993) have used the rotator to estimate the
volumes of neurons and glial cells in rat substantia
nigra. They showed that, following partial midbrain
hemisection, chronic nicotine infusion had a selective
protective effect on loss of nigral dopamine neurons.

CONCLUDING REMARKS

The disector principle has revolutionised the scientific
basis of particle counting and sizing from sections.
Since Science advances in part by the development of
better techniques, the application of the earlier
assumption or model-dependent methods should be
discontinued unless firm evidence can be adduced, for
each and every application, that their use is fully

justified. We should no longer accept the excuse that
‘We used model-based methods because we needed to
compare our results with earlier findings’. This pays
homage to History not Science. It is also important to
appreciate that unbiasedness in general is a built-in
property of design-based methods. What works for a
potato or a carrot or a coin will also work for a
synapse or a polymorph nucleus or a myocyte or
whatever. Consequently, there is no need to waste
time by the wholly redundant exercise of ‘testing’
these methods on artificial models.
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