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Abstract: In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal–ferroelectric–
metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a
simulation approach. The DNA sensing principle is founded on the dielectric modulation concept.
The computational method employed to evaluate the proposed nanobiosensor relies on the coupled
solutions of a rigorous quantum simulation with the Landau–Khalatnikov equation, considering
ballistic transport conditions. The investigation analyzes the effects of DNA molecules on nanodevice
behavior, encompassing potential distribution, ferroelectric-induced gate voltage amplification,
transfer characteristics, subthreshold swing, and current ratio. It has been observed that the feature of
ferroelectric-induced gate voltage amplification using the integrated MFM structure can significantly
enhance the biosensor’s sensitivity to DNA molecules, whether in terms of threshold voltage shift or
drain current variation. Additionally, we propose the current ratio as a sensing metric due to its ability
to consider all DNA-induced modulations of electrical parameters, specifically the increase in on-state
current and the decrease in off-state current and subthreshold swing. The obtained results indicate
that the proposed negative-capacitance GNRFET-based DNA nanosensor could be considered an
intriguing option for advanced point-of-care testing.

Keywords: deoxyribonucleic acid (DNA); field-effect transistor (FET); biosensors; quantum simula-
tion; graphene nanoribbon (GNR); ferroelectric (FE); negative capacitance (NC); sensitivity

1. Introduction

Nanobiosensors based on field-effect transistors have garnered substantial interest due
to their exceptional features, including label-free detection, miniaturization, compatibility
with CMOS technology, and heightened sensitivity [1–3]. Notably, dielectric-modulated
field-effect transistors (DMFETs) [4] have emerged as high-performance biosensors capable
of detecting a diverse array of bio-measurands, ranging from avian influenza [5–7] to biotin–
streptavidin binding [4], deoxyribonucleic acid (DNA) [8–10], human immunodeficiency
virus (HIV) [11], and SARS-CoV-2 [12]. A key advantage of DMFET lies in its ability to
detect both neutral and charged biomolecules [9], overcoming limitations observed in its
ion-sensitive field-effect transistor (ISFET) counterpart [13]. Moreover, DMFETs exhibit
scalability, versatility, and potential for improvement in terms of sensitivity, selectivity, and
electrical performance [14–16]. Furthermore, DMFETs provide direct measurand detection
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while circumventing overlapping mechanisms, such as interactions between the measurand
and channel that directly affect both electrostatics and transport [17]. Consequently, a
multitude of experimental and computational studies have been undertaken to explore
DMFETs’ potential, with a focus on optimizing performance [18–20], investigating new
measurands [4–12], exploring innovative designs [21,22], proposing new computational
approaches [23,24], and more. Furthermore, computational reports have highlighted the
use of emerging 2D nanomaterials, such as Transition Metal Dichalcogenides (TMDs) [25],
to enhance sensitivity and performance, thereby paving the way for the fabrication of
innovative nanobiosensors. On the other hand, carbon-based materials, including graphene,
graphene nanoribbons (GNRs), and carbon nanotubes, have found application as channels
in DMFETs [10,26,27]. This choice was attributed to their heightened sensitivity to the
electrostatic environment and their capacity to operate in the band-to-band tunneling
regime [27–29] while providing ultra-high sensitivity in terms of drain current change.
With the advent of the negative capacitance (NC) concept in FETs [30–32], several studies
have put forth different DMFETs, leveraging a ferroelectric-based gating system to augment
the biosensing capabilities of DMFETs [33–39]. However, as far as we are aware, there is no
existing research that explores the performance outlook of a nanoscale FE n-i-n GNRFET as
a label-free DNA sensor while proposing a new enhanced hybrid sensitivity.

In light of the recent advancements in DMFET technology, we introduce a novel label-
free DNA nanosensor based on a top-gated metal–ferroelectric–metal graphene nanoribbon
field-effect transistor (TG-MFM GNRFET). Our proposal is founded on a rigorous compu-
tational approach, combining quantum simulation [40–42] with the Landau–Khalatnikov
theory [30]. This study comprehensively investigates the influence of DNA-induced di-
electric changes on potential distribution, ferroelectric-induced gate voltage amplification,
and transfer characteristics. The obtained results underscore the improved sensitivity and
exceptional biosensing performance of the proposed label-free DNA sensor.

The remaining portion of this paper is structured as follows: Section 2 will outline the
biosensing principle and DNA nanosensor structure. Section 3 will detail the computational
approach employed in this work. Section 4 will present and discuss the results obtained.
Finally, Section 5 will provide the concluding remarks for the paper.

2. Biosensor Structure and Biosensing Principle

Figure 1a presents a three-dimensional (3D) perspective of the proposed TG-MFM
GNRFET-based label-free DNA nanosensor. The nanosensor features an open cavity de-
signed for DNA introduction and sensing. DNA detection relies on the DNA hybridization
process, where single-stranded DNA (ssDNA) probes are initially introduced in the biosens-
ing area and attached using self-assembled monolayer techniques [8–10]. These probes
serve as selectors for specific DNA sequences through DNA hybridization. Utilizing the
dielectric modulation concept [8–10], the introduction of ssDNA probes, the hybridization
process, and the increase in hybridized DNA density are distinguishable through dielectric
constant values, establishing a connection between biological and electrical mechanisms.
It is worth noting that the range of the DNA-induced increment in the dielectric constant
of the biosensing area is assumed to be 1–7, aligning with the experimentally observed
range [9], while aiming to assess the proposed DNA nanosensor with low DNA concentra-
tions reflecting small increments in the dielectric constant. In Figure 1a, non-hybridized
ssDNA probes are shown to be attached to the thin insulator on the GNR channel, while
others are shown to be hybridized. These neutral DNA-induced increments in dielectric
constant, as shown in Figure 1b, induce electrostatic modulations in the FET, resulting
in a shift in drain current (and its derivatives), which can be considered a metric [8–10].
Therefore, monitoring the FET drain current using appropriate readout circuits [7] allows
for the extraction of relevant bio-information. It is noteworthy that our proposed FET-based
biosensor features a compound gate made of an MFM design [43] to enhance the sensi-
tivity of the DM FET-based DNA nanosensor through the ferroelectric-induced potential
amplification concept [44–48]. Figure 1c illustrates a cross-sectional view of the proposed



Nanomaterials 2024, 14, 2038 3 of 14

design, showcasing a top-gated armchair-edge GNR (AGNR) on an insulator FET with
an open biosensing cavity and an MFM-based gate with hafnium zirconium oxide (HZO)
ferroelectric. The substrate is made of SiO2, and the doping profile of the AGNR is typically
considered n-i-n, with the intrinsic AGNR region located beneath the MFM gate. Note that
n-i-n denotes a channel doping profile consisting of an n-type doped region, an intrinsic
region, and another n-type doped region. The source (drain) contact is assumed to be
ohmic. Parameters such as LS(D), LG, tOX-SUB, tOPEN-CAV, and tFE denote the length of the
source (drain) reservoir, gate length, thickness of the insulator substrate, height of the open
cavity, and ferroelectric thickness, respectively.
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Figure 1. (a) Three-dimensional structure of the label-free DNA sensor based on TG-MFM GNRFET.
(b) DNA detection based on the dielectric modulation concept. (c) Lengthwise cut view of the
proposed nanoscale biosensor.



Nanomaterials 2024, 14, 2038 4 of 14

Conceptually, an equivalent circuit for the proposed sensor can be established con-
sidering the FE-based gate and the baseline nano-FET to be two spatially separated nano-
components perfectly connected by a wire, simplifying the computational treatment [45–47].
Equivalently, the FE capacitance is connected in series with the baseline GNRFET.

3. Quantum Simulation Approach

Figure 2a illustrates the essential computational procedures required to simulate the
TG-MFM GNRFET-based label DNA sensor. The flowchart comprises two primary compu-
tational blocks. The first block focuses on quantum mechanically simulating the baseline
(without ferroelectric) top-gated GNRFET. This involves solving the Poisson equation,
wherein DNA information is incorporated through the cavity dielectric constant, and em-
ploying the mode space NEGF self-consistently until convergence [49–51], as depicted in
the quantum simulation block. The output of this convergence enables the extraction of
drain current and gate charge as a function of the internal metal gate voltage.
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The second block is dedicated to solving the Landau–Khalatnikov equation, utilizing
the extracted gate charge to determine the voltage across the ferroelectric layer and
allowing for the estimation of the external gate voltage [52,53]. Consequently, the drain
current as a function of the external gate voltage becomes accessible [54,55], as illustrated
in the last block of the computational flowchart in Figure 2a. It is worth noting that the
simulations were carried out using a source code specifically developed in MATLAB
2023b software.

Figure 2b shows a comparison of the drain current from our simulator and some
results reported in the literature [41,50,51] considering the same physical, electrical, and
geometrical GNRFET parameters. As shown, we can clearly see the good agreement.
Examining the same figure, we can observe the polarization–electric field characteristics
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derived from both the one-dimensional steady-state Landau–Khalatnikov equation and
experimental results [48] for the ferroelectric HZO. The comparison reveals a close agree-
ment, highlighting the accuracy, predictive capability, and generalizability of the Landau–
Khalatnikov theory. Note that the experimentally calibrated Landau coefficients are taken
to be α = −2.5 × 109 Vm/C, β = 6 × 1010 Vm5/C3, and γ = 1.5 × 1011 Vm9/C5 [48]. In
Appendix A, we provide the main equations used in the quantum simulation. For
additional information and details concerning the NEGF simulation and the Landau–
Khalatnikov modeling, we direct readers to some computational works [53–58].

4. Results and Discussion

Figure 3 depicts the 2D potential distribution extracted from converged solutions of
the NEGF–Poisson simulation for both the baseline and proposed biosensors under two
sensing scenarios: the fresh biosensor (empty open cavity with εDNA = 1) and the active
biosensor (cavity filled with DNA molecules with εDNA = 5). A low drain-to-source voltage,
VDS = 0.3 V, has been assumed to ensure low noise, low energy consumption, and low
drain-induced barrier lowering. In the case of the baseline TG GNRFET-based DNA sensor
(top figures), a subtle impact of DNA molecules on the electrostatic potential is observed,
with slight modulations in drain current expected. Conversely, for the proposed DNA
nanosensor (bottom figures), the influence of DNA molecules on the electrostatic potential
is more pronounced, evident in an increased potential profile beneath the gate. Upon
inspecting Figure 3a,c, illustrating the electrostatic potential of both designs with an empty
open cavity, no remarkable change in the recorded electrostatic potential is noted despite
the different methods of electrostatic gating (with and without FE). However, when the
open sensing cavity is filled with DNA molecules (Figure 3b,d), the MFM device exhibits
heightened sensitivity, in terms of electrostatic potential, to the DNA-induced increment
in dielectric constant. This behavior suggests that FE-induced voltage amplification is
significant when the MFM structure controls GNRFETs with high dielectric constant
dielectrics, thus making ultra-high sensitivity achievable. It is worth noting that the
FE-induced gate voltage amplification is maintained even with a large VDS, with some
quantitative changes.

Figure 4 presents a commonly used plot that illustrates the FE-induced gate voltage
amplification by depicting the internal metal gate voltage as a function of the external gate
voltage. In Figure 4a, it is evident that, in the case of an empty open biosensing cavity, a
slight FE-induced gate voltage amplification is recorded, even with variations in ferroelec-
tric thickness to enhance the FE-induced gate voltage amplification. In other words, there
are no significant differences in terms of IDS-VGS behavior between the baseline and MFM
devices when the open biosensing cavity is empty (i.e., the reference condition). Figure 4b
demonstrates that the FE-induced gate voltage amplification becomes significant when
the open biosensing cavity is filled with DNA molecules, aligning with the electrostatic
potential behaviors observed in Figure 3. Additionally, the plot indicates an increase in FE-
induced gate voltage amplification with rising ferroelectric thickness. The results suggest
that the detection of DNA molecules and relevant bio-events using the dielectric modulated
GNRFET paradigm becomes more efficient with the MFM gating system, owing to the
FE-induced gate voltage amplification that enhances biosensor sensitivity to the presence
of DNA molecules. To quantitatively evaluate this significant finding, we subsequently
assess the transfer characteristic and sensitivity of the proposed biosensor.



Nanomaterials 2024, 14, 2038 6 of 14

Nanomaterials 2025, 15, x FOR PEER REVIEW 6 of 16 
 

 

Figure 3 depicts the 2D potential distribution extracted from converged solutions of 
the NEGF–Poisson simulation for both the baseline and proposed biosensors under two 
sensing scenarios: the fresh biosensor (empty open cavity with εDNA = 1) and the active 
biosensor (cavity filled with DNA molecules with εDNA = 5). A low drain-to-source voltage, 
VDS = 0.3 V, has been assumed to ensure low noise, low energy consumption, and low 
drain-induced barrier lowering. In the case of the baseline TG GNRFET-based DNA sen-
sor (top figures), a subtle impact of DNA molecules on the electrostatic potential is ob-
served, with slight modulations in drain current expected. Conversely, for the proposed 
DNA nanosensor (bottom figures), the influence of DNA molecules on the electrostatic 
potential is more pronounced, evident in an increased potential profile beneath the gate. 
Upon inspecting Figure 3a,c, illustrating the electrostatic potential of both designs with an 
empty open cavity, no remarkable change in the recorded electrostatic potential is noted 
despite the different methods of electrostatic gating (with and without FE). However, 
when the open sensing cavity is filled with DNA molecules (Figure 3b,d), the MFM device 
exhibits heightened sensitivity, in terms of electrostatic potential, to the DNA-induced in-
crement in dielectric constant. This behavior suggests that FE-induced voltage amplifica-
tion is significant when the MFM structure controls GNRFETs with high dielectric con-
stant dielectrics, thus making ultra-high sensitivity achievable. It is worth noting that the 
FE-induced gate voltage amplification is maintained even with a large VDS, with some 
quantitative changes. 

0 4010 30
0

5

10

GATE eΦ [eV]

x-direction [nm]

Y-
di

re
ct

io
n 

[n
m

]

-0.90

-0.75

-0.59

-0.44

-0.29

-0.14

0.016

0.15

SiO2

AIR

x0

Y

(a)

0 4010 30
0

5

10

(b) eΦ [eV]

x-direction [nm]

Y-
di

re
ct

io
n 

[n
m

]

-0.90

-0.75

-0.59

-0.44

-0.29

-0.14

0.016

0.15

GATE

DNA

SiO2

x

Y

0

0 4010 30
0

5

10

(c)

x-direction [nm]

Y-
di

re
ct

io
n 

[n
m

]

-0.90

-0.75

-0.59

-0.44

-0.29

-0.14

0.016

0.15

FE
MFM Gate

AIR

SiO2

x

Y

0

eΦ [eV]

 

0 4010 30
0

5

10

(d)

x-direction [nm]

Y-
di

re
ct

io
n 

[n
m

]

-0.90

-0.75

-0.59

-0.44

-0.29

-0.14

0.016

0.15

FE
MFM Gate

DNA

SiO2

x

Y

0

eΦ [eV]

 

Figure 3. Two-dimensional electron potential distribution at VDS = 0.3 V and VGS = 0.1 V for baseline 
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Figure 3. Two-dimensional electron potential distribution at VDS = 0.3 V and VGS = 0.1 V for baseline
TG GNRFET-based biosensor (top figures) and TG-MFM GNRFET-based biosensor (bottom figures).
(a,c) Empty open cavity. (b,d) Cavity filled with DNA molecules.

Figure 5 shows the IDS-VGS propriety for both nanosensors. The complete set of
physical, dimensional, and electrical parameters employed in the simulations are indi-
cated as inset in both figures. It is important to highlight that the indicated parameters
are considered nominal, and we will explicitly emphasize any changes made to these
parameters for the purpose of parametric analysis. Note that parameters (α, β, γ) represent
the Landau parameters used in the voltage amplification assessment and were taken to
be α = −2.5 × 109 Vm/C, β = 6 × 1010 Vm5/C3, and γ = 1.5 × 1011 Vm9/C5. Figure 5a
illustrates the impact of DNA-induced dielectric constant modulation on the IDS-VGS trans-
fer characteristic of the baseline GNRFET-based label-free DNA nanosensor. As depicted,
the increase in the DNA dielectric constant within the sensing cavity slightly raises the
on-state current and improves the subthreshold swing. However, there is no discernible
change in the threshold voltage or subthreshold drain current that would classify them as
sensing metrics. In the case of the proposed TG-MFM GNRFET-based biosensor, as shown
in Figure 5b, significant alterations in the transfer characteristic are observed, whether
in terms of the threshold voltage considering a fixed drain current [59] (e.g., the range
between IDS = 1 fA–1 pA) or subthreshold drain current considering a fixed gate voltage
(e.g., VGS = 0.1 V). The recorded increase in drain current sensitivity is attributed to the FE-
induced gate voltage amplification, which is notable in the presence of DNA (i.e., εCAV > 1)
and very slight in the case of an empty sensing cavity. Examining Figure 5b, we can also
observe that the on-state current increases (and the off-state current decreases) with an
increasing DNA dielectric constant, making the subthreshold current slope steeper.
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Figure 6a illustrates the behavior of subthreshold swing versus DNA dielectric constant
for the proposed biosensor considering different ferroelectric thicknesses. By definition,
the subthreshold swing can be seen as the required gate voltage to change the drain
current by about one order of magnitude [60–62]. It is evident that the subthreshold
swing decreases with an increase in the DNA dielectric constant, as observed in Figure 5b.
Notably, an increase in ferroelectric thickness enables the attainment of steeper subthreshold
swing values, making subthermionic subthreshold swing achievable. This outcome is
anticipated due to the FE-induced gate voltage amplification, which accelerates the device
switching [63–65]. To comprehensively capture the collective effects of DNA dielectric
constant increment on transfer characteristics (i.e., ION increasing, IOFF decreasing, SS
lowering), we employ the ION/IOFF current ratio as a sensing metric while considering
the power supply voltage (VDD) equal to the drain-to-source voltage [66–68]. Our choice
of this metric is grounded in its sensitivity to changes in on-current, off-current, and
subthreshold swing. In our case, all recorded trends (i.e., ION increasing, IOFF decreasing,
SS lowering) contribute to an increase in the current ratio, rendering it an innovative sensing
metric. Figure 6b demonstrates that the current ratio increases with an increase in DNA
dielectric constant, aligning with the recorded trends of ION increasing, IOFF decreasing,
and SS decreasing under εDNA increment. It is noteworthy that biosensors with a thicker
ferroelectric layer exhibit higher sensitivity compared to those endowed with thin FE
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material, thereby rendering DNA events (e.g., ssDNA density, DNA hybridization, dsDNA
concentration, etc.) more distinguishable, as clearly shown in the same figure.
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As a potential direction for further investigation, bio-inspired optimizers could be ap-
plied in conjunction with the quantum simulation approach and the Landau–Khalatnikov
theory to identify the optimal parameters—including MFM-based gate design, FET trans-
ducer configuration, biosensing cavity, and DNA sizes—that enhance biosensing perfor-
mance [69–71]. In this context, the optimization phase could also explore the junctionless
paradigm, different ferroelectric materials, various channel nanomaterials, and diverse gate
geometries [72,73].
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5. Conclusions

In this paper, we successfully proposed ferroelectric-induced gate voltage amplifica-
tion to enhance the performance and sensitivity of a top-gated GNRFET-based label-free
DNA nanosensor, employing a rigorous computational approach. This approach integrates
quantum mechanical simulation with the Landau–Khalatnikov equation. The dielectric
modulation concept, involving DNA-induced dielectric increment, is intricately embedded
in the Poisson solver, meticulously considering the relevant nodes in the open biosensing
area. Our proposed nanosensor features a compound gate based on a metal–ferroelectric–
metal structure, aiming to magnify the effects of DNA-induced dielectric constant increment
on the electrostatics and transport of the nanobiosensor. The simulation results unequivo-
cally demonstrate a significant improvement in both electrical and sensing performance.
Furthermore, by accounting for the impact of DNA-induced dielectric increment on the
device’s figure of merits (i.e., ION, IOFF, SS), we introduce the ION/IOFF current ratio as a
biosensing metric. This metric is chosen because the DNA-induced dielectric increment
boosts this ratio by reducing the subthreshold swing, decreasing the leakage current, and
increasing the on-state current, thus implicitly consolidating three sensing metrics into one
comprehensive measure. The obtained results explicitly showcase the high performance of
our proposed sensor, encompassing label-free DNA sensing, CMOS compatibility, compact
size, low-energy consumption, and improved sensitivity.
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Appendix A

In this appendix, we detail the key equations employed in the self-consistent NEGF–
Poisson coupling integrated with the Landau–Khalatnikov theory. As described in Section 3,
the initial step involves the quantum simulation of the baseline GNRFET-based biosensor
(i.e., without the MFM structure). This process necessitates the computation of the retarded
Green’s function, G, which can be represented as [26]

G(E) =
[
(E + iη+)I − H − ΣS − ΣD

]−1 (A1)

where E represents the energy, I denotes the identity matrix, and η+ is an infinitesimal
positive value. The Hamiltonian H is derived using the atomistic nearest-neighbor tight-
binding approximation. In the MS representation, the source (drain) self-energy ΣS(D) for
the qth mode can be calculated as follows [49]

ΣSq (Dq) =
α1(M) +

√
[α1(M)]

2 − 4(E − U1(M))
2b2

1q

2(E − U1(M))
(A2)

with
α1(M) = (E − U1(M))

2 + b2
1q − b2

2q (A3)

where t0 = 2.7 eV is the nearest neighbor tight-binding parameter and ∆ = 0.12 is a fitting
parameter accounting for edge bond relaxation. The hopping parameters between the carbon
lines are defined as b1q = t0 + 4∆t0sin2[qπ/(n + 1)]/(n + 1) and b2q = 2t0cos(πq/(n + 1)) [49].
U1(M) represents the electrostatic potential at the first (last) GNR lattice column, which is
assumed to be connected to the source (drain) contact. The local density of states DS(D) can
now be determined using the following expression:

DS(D) = GΓS(D)G
+ (A4)

where ΓS(D) = i(ΣS(D) − Σ+
S(D)

) represents the energy level broadening caused by the
source (drain) contact. Calculating the aforementioned NEGF quantities enables the es-
timation of the charge density in the armchair-edge GNR channel through the following
equation [49]:

Ne =
∫ +∞
−∞ dE sgn[E − EN ]{DS(E) f (sgn[E − EN ](E − EFS))

+DD(E) f (sgn[E − EN ](E − EFD) )}
(A5)
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Here, sgn denotes the sign function, and f (sgn[E − EN].(E − EFS(D))) is the source
(drain) Fermi function corresponding to the Fermi level EFS(D), with EN being the charge
neutrality level [49]. In the NEGF simulation approach, computing the charge density in
the self-consistent NEGF–Poisson coupling requires an approximation of the electrostatics,
which can be estimated by solving the Poisson equation expressed as [10]

∇2U =
−q
ε

ρ (A6)

where U denotes the electrostatic potential, ε represents the dielectric constant, and ρ
describes the distribution of net charge density. Considering the finite difference method
(FDM) and the dielectric modulation concept, the dielectric constant ε is assigned as follows:
εAIR = 1 in the region filled with air, εDNA > 1 in the region occupied by DNA molecules,
and εOX in the oxide region [10,26,27]. In the Poisson solver based on the FDM, the
Neumann boundary condition is applied to all external interfaces, including the source
and drain, except at the gate metal level, where the Dirichlet boundary condition is used.
After achieving self-consistency, the channel current can be calculated using the following
formula [49]:

I =
2q
h

∫
dE T(E)[ f (E − EFS)− f (E − EFD)] (A7)

In this expression, q signifies the electron charge, h stands for Planck’s constant,
T(E) = Tr(ΓSGΓDG+) is the transmission coefficient, and Tr indicates the trace operator. For
the numerical modeling of the FE FETs, it is necessary to use the Landau–Khalatnikov
equation given by [30]

ρ
dP
dt

+∇PU = 0 (A8)

where ρ indicates the resistivity, P represents the ferroelectric polarization, t is time, and U
denotes the free energy of the ferroelectric system, which can be expressed as follows:

U = αP2 + βP4 + γP6 − EP (A9)

where (α, β, γ) are the parameters of the ferroelectric material and E is the electric field
externally applied to the ferroelectric layer. Using Equations (A8) and (A9), we obtain

E = 2αP + 4βP3 + 6γP5 + ρ
dP
dt

(A10)

By taking Q = P and VFE = EtFE while considering the FE steady-state polarization (i.e.,
dP/dt = 0), we obtain the Q-V equation [30,47,53]

VFE = 2αtFEQG + 4βtFEQG
3 + 6γtFEQG

5 (A11)

where QG denotes the gate charge of the baseline dielectric modulated GNRFET-based
biosensor and VFE represents the voltage across the ferroelectric. The external gate voltage
applied to the metal–ferroelectric–metal structure, VGS, can be determined as [52]

VGS = VINT + VFE (A12)

where VINT represents the voltage of internal metal, which corresponds to the gate voltage
of the baseline GNRFET-based DNA sensor.
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