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Abstract: Deep learning has shown significant value in automating radiological diagnostics but can
be limited by a lack of generalizability to external datasets. Leveraging the geometric principles of
non-Euclidean space, certain geometric deep learning approaches may offer an alternative means of
improving model generalizability. This study investigates the potential advantages of hyperbolic
convolutional neural networks (HCNNs) over traditional convolutional neural networks (CNNs)
in neuroimaging tasks. We conducted a comparative analysis of HCNNs and CNNs across various
medical imaging modalities and diseases, with a focus on a compiled multi-modality neuroimaging
dataset. The models were assessed for their performance parity, robustness to adversarial attacks,
semantic organization of embedding spaces, and generalizability. Zero-shot evaluations were also
performed with ischemic stroke non-contrast CT images. HCNNs matched CNNs’ performance in
less complex settings and demonstrated superior semantic organization and robustness to adversarial
attacks. While HCNNs equaled CNNs in out-of-sample datasets identifying Alzheimer’s disease,
in zero-shot evaluations, HCNNs outperformed CNNs and radiologists. HCNNs deliver enhanced
robustness and organization in neuroimaging data. This likely underlies why, while HCNNs perform
similarly to CNNs with respect to in-sample tasks, they confer improved generalizability. Neverthe-
less, HCNNs encounter efficiency and performance challenges with larger, complex datasets. These
limitations underline the need for further optimization of HCNN architectures. HCNNs present
promising improvements in generalizability and resilience for medical imaging applications, particu-
larly in neuroimaging. Despite facing challenges with larger datasets, HCNNs enhance performance
under adversarial conditions and offer better semantic organization, suggesting valuable potential in
generalizable deep learning models in medical imaging and neuroimaging diagnostics.

Keywords: hyperbolic neural networks; Euclidean; convolutional neural networks; Lorentz;
neuroimaging; medical imaging; generalizability; adversarial robustness; hierarchical data structures

1. Background and Significance

Advances in computational power have facilitated the expansion of predictive deep
learning models in many fields [1–3]. While deep learning models are idealized as universal
approximators, not all tasks are not equally appropriate for all neural network architectures;
as a result, misalignment may result in subpar empirical task performance [4]. One notable
instance of this involves data structures with an inherent hierarchical structure [5]. Tree-like
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or hierarchical data structures have been shown to be represented with superior fidelity
with less distortion in hyperbolic space compared to Euclidian space [6]. Specifically, the
hyperbolic manifold allows for exponential scaling from the radial axis, which mirrors the
distance relationships found in hierarchical structures and, accordingly, prevents distortion
and information loss [7].

There has been a notable effort to utilize the superior data representation observed
in hyperbolic spaces with deep learning algorithms. Over the last few years, many have
attempted to operationalize constructs of hyperbolic space in a computationally efficient
manner with the goal of reconstructing the fundamental functionality of neural network
operations consistent with hyperbolic space [5]. Thus, hyperbolic neural networks (HNNs)
were developed as an alternative to standard Euclidean neural networks [8]. While most
papers explore densely connected HNNs, there have been efforts to use alternative neural
network architectures. For instance, Khrulkov et al. developed a hybrid HNN that was
applied to image datasets by utilizing a traditional Euclidean convolution structure and a
connected layer prior to mapping the resulting embeddings into hyperbolic space and con-
ducting a multi-class logistic regression [9]. Khrulkov et al. showed a superior performance
to analogous Euclidean models in certain datasets (Caltech-UCSD Birds, DukeMTMC-reID
dataset), as well as in few-shot classification [9]. They also showed that HNNs provided
the more intuitive organization of the classes in the embedding space, likely explaining
their improved out-of-sample and out-of-distribution performance [9].

Given the issues with numerical stability during training, most of the literature authors
have attempted to make HNNs more numerically stable [10–12]. Guo et al. proposed a
clipping mechanism that would bound the embedding space to coerce numerical stabiliza-
tion during training [12]. These clipped HNNs were found to outperform standard HNNs
in various benchmarks, including CIFAR10, CIFAR100, and ImageNet, and demonstrated
better adversarial robustness and out-of-distribution detection [12]. Unlike unclipped
HNNs, clipped HNNs achieved performance on par with ENNs in data settings without
natural tree structures. The use of the Lorentz model of hyperbolics spaces, which has
different mathematical constructions for the computational operation of the neural network
compared to the Poincaré ball model, has also been proven to reduce numerical instabil-
ity [11,13]. Finally, there have also been efforts to translate common Euclidian convolutional
neural network operations into hyperbolic space, where the fully hyperbolic convolutional
neural networks (HCNNs) could be contained in hyperbolic space in an end-to-end fash-
ion [14]. This prevents the need for mapping between Euclidean and hyperbolic spaces, to
limit the numerical instability.

Nevertheless, the literature remains uncertain in terms of fully exploring the value of
HNNs. The original seminal paper in hyperbolic imaging embeddings suggests that most
imaging datasets have some degree of implicit hierarchical structure [9]. Other studies
found poor performance in settings without any natural hierarchical structures compared
to Euclidean counterparts, until Guo et al. suggested that clipped HNNs could achieve
similar performance in certain settings [12]. In summary, there is a clear need for further
robust evaluation of HCNNs in various domains to weigh up the possible benefits and
limitations of these evolving models.

One field of application in which the successful application of computer vision al-
gorithms has been keenly appreciated is medical imaging [15]. To our knowledge, only
one study has been performed utilizing HNNs for the classification of medical imaging
data. Utilizing Khrulkov et al.’s hybrid paradigm, Yu et al. introduced a hyperbolic pro-
totype network capable of jointly learning image embeddings and class prototypes in a
shared hyperbolic space, guided by an error construction mechanism derived from a prior
known class hierarchy [16]. Their approach preserved the semantic class relationships of
dermatoscope images in the hyperbolic embedding space and found superior performance
in classification compared to analogous Euclidean approaches, though with lower space
curvature hyperparameters [16]. Other related works in generalizability for medical imag-
ing include Bayesian approaches, which have leveraged hierarchical segmentation tasks
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with informed priors [17], as well as methods that have leveraged exploitability techniques
such as Class Activation Mapping to optimize model generalizability [17,18].

Given the success of present-day convolutional neural networks in imaging recognition
tasks, there has been increased interest in developing models that offer both a wide range of
capabilities across a variety of tasks or classes and durability in a variety of clinical settings
where models may encounter rare patient morphologies or imperfect images [19–22]. In
the Materials and Methods section, we introduce the data sources, model architecture, and
proposed experimental design. In the Results section, we report our experimental results,
and in the Discussion section, we highlight the novel results of our work and how they
relate to the prior literature in geometric deep learning and medical computer vision. Our
contributions are as follows:

• We explore the value of HCNNs by evaluating the classification performance of clipped
HCNNs relative to their Euclidean counterparts;

• Agnostic to any prior data hierarchy, we conduct an evaluation of in-sample perfor-
mance across three medical imaging datasets of varying complexity to evaluate model
performance with increasing task complexity;

• We evaluate the models by their organization of embedding spaces;
• We explore generalizability in the form of durability against adversarial attacks and

out-of-sample and zero-shot performance.

2. Materials and Methods
2.1. Data Sources

We developed a core neuroimaging dataset to evaluate the HCNN and CNN models:
the Multi-Modality Neuroimaging (MMN) Dataset, composed of 72,634 images of 42 total
classes. The images were acquired from previously open-source databases, which included
various neurological diseases, including ischemic stroke [23], hemorrhagic stroke [24],
metastasis [25], tumor [26], schizophrenia (COBRE, MCICShare) [27], and Alzheimer’s
disease (AD) [28], across computed tomography (CT) and magnetic resonance imaging
(MRI) modalities. Images that were not from a peer-reviewed source were independently
confirmed to be correctly classified by a qualified radiologist.

Certain classes in the neuroimaging dataset were manually composed either due to
overlapping classes or, occasionally, to better capture disease signals. Specifically, the
“normal” categories were composed of multiple appropriate non-diseased classes in the
datasets above. For instance, patients in the schizophrenia databases defined as “normal”
patients were moved into the respective normal classes once we excluded the possibility
of them joining another diseased class in the database. Schizophrenia-positive scans were
restricted to four of the median axial scans for each patients to better capture morphological
abnormalities commonly conferred by patients with schizophrenia [29].

We also constructed two additional datasets of other medical imaging types to conduct
further analyses in larger and smaller class settings: the Miniature Multi-Disease Dataset
(MMD) and the Multi-Disease Dataset (MD). The MD is composed of 89,496 images of
78 total classes. These images were acquired from previously published open-source
databases, which include Chest X-Rays [30], Fundoscopy [31], Gastrointestinal Scopes [32],
Musculoskeletal X-Rays [33], Neuroimaging, and Dermatoscopy [34–36]. Finally, the MMD
was restricted to a smaller subset of the MMD with a total of 19,880 unique images across
16 total classes. We included the largest publicly available structural imaging datasets
that were available for the respective diseases that conferred axial images and provided a
“normal” class of data. The identity and balance of the classes and their respective image
counts can be observed in Table 1.
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Table 1. Dataset characteristics.

Miniature Multi-Disease
Dataset: Classes Images

Multi-Modality
Neuroimaging

Dataset: Classes
Images Multi-Disease

Dataset: Classes Images

Derm: Actinic Keratosis 867 AD Moderate MRI T1 896 Derm: Actinic Keratosis 867
Derm: Basal Cell
Carcinoma 3323 AD Severe MRI 64 Pulm: Bacterial

Pneumonia 2780

Derm: Benign Keratosis 2624 AD Mild MRI T1 2240 Derm: Basal Cell
Carcinoma 3323

Derm: Dermatofibroma 239 Hemorrhagic Stroke
Epidural CT Bone 167 Derm: Benign Keratosis 2624

Derm: Melanoma 4522
Hemorrhagic Stroke
Intraparenchymal
CT Bone

52 Derm: Dermatofibroma 239

Derm: Melanocytic Nevi 12,875 Hemorrhagic Stroke
Intraventricular CT Bone 13

Neuro: Epidural
Hemorrhagic Stroke
CT Bone

167

Derm: Squamous Cell
Carcinoma 628 Hemorrhagic Stroke

Subarachnoid CT Bone 9
Neuro: Intraparenchymal
Hemorrhagic Stroke
CT Bone

52

Derm: Vascular Lesion 253 Hemorrhagic Stroke
Subdural CT Bone 52

Neuro: Subdural
Hemorrhagic Stroke
CT Bone

52

Gastro: Dyed Lifted
Polyps 1000

Hemorrhagic Stroke
Epidural
CT Brain

167
Neuro: Epidural
Hemorrhagic Stroke
CT Brain

167

Gastro: Dyed Resection
Margins 1000

Hemorrhagic Stroke
Intraparenchymal CT
Brain

52
Neuro: Intraparenchymal
Hemorrhagic Stroke
CT Brain

52

Gasto: Esophagitis 1000 Hemorrhagic Stroke
Intraventricular CT Brain 13

Neuro: Subdural
Hemorrhagic Stroke
CT Brain

52

Optho: Normal Fundus 2873 Hemorrhagic Stroke
Subarachnoid CT Brain 9 Neuro: Ischemic

Stroke DWI 1012

Gastro: Normal Cecum 1000 Hemorrhagic Stroke
Subdural CT Brain 52 Neuro: Ischemic

Stroke Flair 1002

Gastro: Normal Pylorus 1000 Ischemic Stroke MRI DWI 1012 Derm: Melanoma 4522
Gasto: Normal Z-Line 1000 Ischemic Stroke MRI Flair 1002 Neuro: Metastasis Flair 4248
Gastro: Polyps 1000 Metastasis MRI Flair 4248 Neuro: Metastasis T1 4248

Metastasis MRI T1C 4248 Neuro: Metastasis T1C+ 4248
Metastasis MRI T1 4248 Pulm: Normal CXR 1583
Normal CT Bone 1495 Derm: Melanocytic Nevi 12,875
Normal CT Brain 1494 Neuro: Normal CT Bone 1495
Normal MRI DWI 1406 Neuro: Normal CT Brain 1494
Normal MRI Flair 14,949 Neuro: Normal DWI 1406
Normal MRI T1 17,925 Neuro: Normal_Flair 4949
Normal MRI T1C+ 13,941 Neuro: Normal T1 7925
Normal MRI T2 18 Neuro: Normal T1C+ 3941
Schizophrenia MRI DWI 471 Neuro: Normal T2 18

Schizophrenia MRI T1 1314 Derm: Squamous Cell
Carcinoma 628

Glioma MRI T1C+ 152 Neuro: Schizophrenia
DWI 471

Meningioma MRI T1C+ 233 Neuro: Schizophrenia T1 1314
Neurocitoma MRI T1C+ 76 Neuro: Glioma T1 152
Other Lesions MRI T1C+ 9 Neuro: Meningioma T1 233
Schwannoma MRI T1C+ 36 Neuro: Neurocitoma T1 76
Glioma MRI T1 65 Neuro: Schwannoma T1 36
Meningioma MRI T1 141 Neuro: Glioma T1C+ 65
Neurocitoma MRI T1 39 Neuro: Meningioma T1C+ 141
Other Lesions MRI T1 27 Neuro: Neurocitoma

T1C+ 39

Schwannoma MRI T1 31 Neuro: Schwannoma
T1C+ 31

Glioma MRI T2 9 Neuro: Glioma T2 67
Meningioma MRI T2 67 Neuro: Meningioma T2 145
Neurocitoma MRI T2 145 Neuro: Schwannoma T2 33
Other Lesions MRI T2 14 Derm: Vascular Lesion 253
Schwannoma MRI T2 33 Pulm: Viral Pneumonia 1493
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Table 1. Cont.

Miniature Multi-Disease
Dataset: Classes Images

Multi-Modality
Neuroimaging

Dataset: Classes
Images Multi-Disease

Dataset: Classes Images

Optho: Branch Retinal
Vein Occlusion 19

Optho: Cataract 287
Optho: Diabetic
Retinopathy 53

Optho: Drusen 148
Optho: Dry Age-Related
Macular Degeneration 202

Gastro: Dyed Lifted
Polyps 1000

Gastro: Dyed
Resection Margins 1000

Optho: Epiretinal
Membrane 140

Gasto: Esophagitis 1000
Optho: Glaucoma 213
MSK: Hand Normal 877
MSK: Hand Fractured 379
MSK: Hand Shoulder
Normal 180

MSK: Hand
Shoulder Fractured 53

MSK: Hip Normal 169
MSK: Hip Fractured 13
Optho: Hypertensive
Retinopathy 123

Optho: Macular Epiretinal
Membrane 140

Optho: Maculopathy 23
Optho: Mild
Nonproliferative
Retinopathy

464

Optho: Moderate
Non-Proliferative
Retinopathy

798

Optho: Myelinated
Nerve Fibers 68

Optho: Normal Fundus 2873
Gastro: Normal Cecum 1000
Gastro: Normal Pylorus 1000
Gasto: Normal Z-Line 1000
Optho: Pathological
Myopia 231

Gastro: Polyps 1000
Optho: Refractive
Media Opacity 54

Optho: Severe
Nonproliferative
Retinopathy

144

Gastro: Ulcerative Colitis 1000
Optho: Vitreous
Degeneration 58

Optho: Wet Age-Related
Macular Degeneration 41

Out-of-sample data were acquired from the T-1 MRI sequences of the OASIS-1 cross-
sectional cohort imaging study [37]. We derived one mid-brain axial slice from each patient
in the study and defined an AD-positive case as an individual with a Mini-Mental State Ex-
amination (MMSE) score of below 25 and negative otherwise. In total, this dataset entailed
a total of 436 subjects, where 40 subjects were AD-positive and 396 were AD-negative. The
zero-shot dataset was acquired from the Mass General Brigham (MGB) Research Patient
Data Registry (RPDR) with MGB Institutional Review Board approval. We retrospectively
selected individuals from January 2004 to December 2022 who received a non-contrast
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computed tomography (NCCT) brain scan upon presenting to the emergency department.
We further restricted ourselves to those diagnosed with acute ischemic strokes via magnetic
resonance imaging (MRI) brain scans within 7 days of their original presentation to the
emergency department. We included the full axial scans of the 151 patients for a total of
23,371 images. We also documented the radiologist reports and their ability to correctly
able to diagnose the ischemic stroke on NCCT. We labelled the axial images as positive if
they included regions implicated by the positive MRI reads for that patient where all other
images were deemed negative for that patient.

2.2. Processing and Models

All training data underwent uniform pre-processing transformations prior to their
use in the model, including normalization, rotation, and horizontal flip. Furthermore, to
homogenize the diverse presentation of brain imaging data, we conducted skull-stripping
when appropriate. For all the models in this study, we utilized a Res-Net-18 (RN18) back-
bone, where we defined the baseline Euclidean CNN as an RN18 model. The HCNN
models were constructed as hybrid models with an identical convolutional structure to
the CNN. However, the HCNN model acquired the embeddings from the convolutional
encoder and translated them into the Lorentz space with an exponent mapping procedure,
where the remaining operations of the RN18-based decoder resided. For the Lorentz mod-
els, a Riemannian SGD optimizer, a learnable Lorentz decoder curvature parameter (k),
and a clipped feature constraint (1.0) were employed. More details on our hybrid HCNN
construct, including trainable curvature, feature-clipping [12], and Euclidean reparameteri-
zations [13], which were documented by the Bdeir et al. [38] code base, were utilized in our
study. Please refer to the Supplementary Material for our code implementation.

2.3. Evaluation

To examine the performance of each model in the respective dataset, we reproduced
the cross-entropy loss, Top-1 accuracy, and Top-5 accuracy. We also derived the embedding
space for each model, leveraging the n-dimension space, where n represented the number of
classes in the respective model prior to the SoftMax and output layers. Utilizing the average
position within this embedding space for each class, we constructed a low-dimensional
representation using T-SNE algorithms with the Euclidean and Lorentz models, respectively.
We also utilized hierarchical clustering procedures with the average class embedding
positions for each model, allowing us to derive a dendrogram of the inter-class relationships
learned by the respective models.

To examine the interpretability of the embedding space, we compared the geodesic
distance matrices of the average class embeddings from the respective Euclidean and
Euclidean–Lorentz models to a ground truth hierarchical distance matrix. We derived the
ground truth distance matrix based on the sets of categorical variables as descriptors of
the imaging category and disease type (refer to Table S1). We first normalized all distance
matrices and computed the absolute pairwise difference between the model distance
matrix and the ground truth distance matrix. We also derived Spearman’s rank correlation
coefficient between the respective model and ground truth distances matrices based on the
ranked distance of the pairwise classes.

To evaluate the out-of-sample accuracy, we utilized a single median axial slice in each
OASIS-1 subject and considered a positive diagnosis as one that ascribed an AD-related
class to the scan and a negative diagnosis as a normal T1 MRI predicted class. Next, we
evaluated the zero-shot accuracy by defining a true-positive diagnosis read as having an
axial NCCT image predicted as an ischemic or hemorrhagic stroke class by the model
where the ground truth was positive. At a patient level, we defined accuracy as a patient
having at least one true positive. We defined a true negative as a normal CT class. Then,
we identified the overall image-based accuracy as the number of true positives and true
negatives over the overall number of images. Finally, we conducted a series of Projected
Gradient Descent (PGD) adversarial attacks to assess the comparative durability of each
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model against distortions in data. For each model, we conducted three separate attacks
with increasing epsilon values (0.03, 0.06, 0.12), and we present the resultant top accuracy
from the converged models. Note that all 95% confidence intervals are derived from a
respective bootstrapping procedure (n = 1000).

3. Results

The performance of the Euclidean model was generally matched by the Euclidean–
Lorentz model in the MMN and the MMDs with minimal differences in Top-1 accuracy
and identical Top-5 accuracy (Table 2). More broadly, however, the Euclidean model
generally began to outperform the Euclidean–Lorentz model as the number of images and
the class size of the dataset increased; this is most prominent in the MD dataset (Figure 1).
Interpreting the low-dimensional T-SNE representation of the average embedding class,
as well as the respective dendrogram, the Euclidean–Lorentz model appears to have a
more reasonable distribution of embedding space based on prior understanding of the
inter-relationships between the imaging classes in the MMN (Figures 2 and 3). Clustering
results for other imaging datasets can be found in the Figures S1–S3.

Table 2. Model characteristics and performance. The bold denotes the better performing model.

Dataset Class
Size

Sample
Size Model Type Trainable

Parameters

Cross
Entropy

Loss

Top 1
Accuracy

Top 1
Accuracy: 95%

Confidence
Intervals

Top 5
Accuracy

MMN 42 72,634 Euclidean ResNet 18 11,189,226 0.05 97.4 97.3–97.5 99.9

MMN 42 72,634 Euclidean–Lorentz
ResNet 18 11,189,227 0.12 96.2 96.1–96.4 99.9

MD 75 89,496 Euclidean ResNet 18 11,207,307 0.26 90.8 90.6–91.0 99.6

MD 75 89,496 Euclidean–Lorentz
ResNet 18 11,207,308 0.47 85.6 85.4–85.9 99.0

MMD 16 19,880 Euclidean ResNet 18 11,177,040 0.11 97.3 97.1–97.4 99.9

MMD 16 19,880 Euclidean–Lorentz
ResNet 18 11,177,041 0.11 97.0 96.8–97.1 99.9

When compared to the known ground truth distance matrix, the distinction between
the two models becomes more apparent. The mean absolute difference between the re-
spective Euclidean and Euclidean–Lorentz models compared to the ground truth distance
matrix for the MMN dataset was highest in the Euclidean model (0.290 ± 0.005). In con-
trast, the mean absolute difference in the Euclidean–Lorentz model was significantly lower
(0.158 ± 0.003), with a two-sample t-test p-value of <0.0001. Spearman’s rank correlation
findings show that the Euclidean model exhibited a weak correlation with the ground truth
ranking (correlation coefficient = 0.021, p = 0.3783), while the Euclidean–Lorentz model
showed a stronger correlation (correlation coefficient = 0.328, p < 0.0001). These results
indicate that the Euclidean–Lorentz model not only has a lower mean absolute difference
compared to the ground truth but also demonstrates a stronger correlation to the ground
truth class ranks.

Compared to the radiologist’s performance, which identified 82 of the 151 patients
(0.53), the Euclidean model performed worse, identifying only 62 stroke patients (0.41),
while the Euclidean–Lorentz model outperformed by identifying 94 (0.62). Across all
images, the Euclidean–Lorentz model achieved a higher overall accuracy (0.50) than the
Euclidean model (0.45) (Figure 4).

In the out-of-sample dataset, both models were able to correctly identify the modality
of the axial images with a 100% identification rate. The Euclidean–Lorentz model and the
Euclidean model achieved a Top-1 accuracy of 0.54 (95% CI: 0.44, 0.64) and 0.55 (95% CI:
0.45, 0.65), respectively, suggesting a statistically indistinguishable performance in this
out-of-sample dataset. Within the NCCT ischemic stroke dataset, the negative cases were
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technically a class already observed by the models, so we used this as an additional out-
of-sample experiment, where the models were tasked with correctly identifying negative
NCCT slices as normal CT images. The Euclidean model achieved an accuracy for the
negative axial NCCT images of 0.81 (95% CI: 0.81–0.82), which was statistically comparable
to the Euclidean–Lorentz model, which reached an accuracy of 0.82 (95% CI: 0.82–0.83).

Interestingly, the PGD adversarial attack analysis suggests that the Euclidean–Lorentz
model often outperforms its Euclidean counterpart in the larger MMN and MD datasets
with respect to the Top-1 and Top-5 accuracy metrics (Table 3). The performance becomes
more similar across the two models in the smaller MMD.
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rentz model showed a stronger correlation (correlation coefficient = 0.328, p < 0.0001). 
These results indicate that the Euclidean–Lorentz model not only has a lower mean abso-
lute difference compared to the ground truth but also demonstrates a stronger correlation 
to the ground truth class ranks. 

Compared to the radiologist’s performance, which identified 82 of the 151 patients 
(0.53), the Euclidean model performed worse, identifying only 62 stroke patients (0.41), 
while the Euclidean–Lorentz model outperformed by identifying 94 (0.62). Across all im-
ages, the Euclidean–Lorentz model achieved a higher overall accuracy (0.50) than the Eu-
clidean model (0.45) (Figure 4). 

 
Figure 4. Zero-shot identification of stroke patients. The diagram above shows how many of the
zero-shot stroke patients were identified across the Euclidean and Euclidean–Lorentz models, as well
as by human radiologists with emergent non-contrast brain CT imaging. We also note that 26 patients
were not identified using any of the three approaches.

Table 3. Projected Gradient Descent adversarial attack. The bold denotes the better performing model.

Dataset Model Type Epsilon Top 1
Accuracy

Top 5
Accuracy

MMN Euclidean ResNet 18 0.003 6.50 53.12
MMN Euclidean–Lorentz ResNet 18 0.003 45.72 91.15
MMN Euclidean ResNet 18 0.006 0.08 6.55
MMN Euclidean–Lorentz ResNet 18 0.006 4.87 41.91
MMN Euclidean ResNet 18 0.012 0.00 2.81
MMN Euclidean–Lorentz ResNet 18 0.012 0.52 18.37

MD Euclidean ResNet 18 0.003 3.78 56.38
MD Euclidean–Lorentz ResNet 18 0.003 12.47 69.74
MD Euclidean ResNet 18 0.006 0.02 14.55
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Table 3. Cont.

Dataset Model Type Epsilon Top 1
Accuracy

Top 5
Accuracy

MD Euclidean–Lorentz ResNet 18 0.006 2.64 38.03
MD Euclidean ResNet 18 0.012 0.01 3.50
MD Euclidean–Lorentz ResNet 18 0.012 0.17 23.16

MMD Euclidean ResNet 18 0.003 13.48 74.63
MMD Euclidean–Lorentz ResNet 18 0.003 13.93 48.04
MMD Euclidean ResNet 18 0.006 1.29 33.55
MMD Euclidean–Lorentz ResNet 18 0.006 2.22 28.92
MMD Euclidean ResNet 18 0.012 0.01 16.05
MMD Euclidean–Lorentz ResNet 18 0.012 0.27 23.95

4. Discussion

Limitations in model generalizability are a significant barrier to the large-scale clinical
implementation of deep learning methods in medical imaging settings. Our empirical
analysis study elucidates several important insights into the comparative value of clipped
Euclidean–Lorentz HCNNs and Euclidean CNNs in neuroimaging tasks, as well as other
medical imaging settings, especially with respect to generalizability. The results suggest
parity in performance between the two neural network approaches in smaller, less complex
datasets. We further note distinct semantic organization within the respective embedding
spaces, with the HCNN aligning better with ground truth relations between the neuroimag-
ing classes. In assessing generalizability, the HCNN achieved a similar out-of-sample
performance in identifying AD and normal NCCT images but a greatly improved zero-shot
performance in identifying ischemic stroke in NCCT images.

The cross-entropy loss and Top-1 accuracy metrics followed a similar trend across
the three medical imaging datasets. Notably, these metrics were identical or similar in
datasets where the CNN achieved a higher performance (>95% accuracy). However, as
the complexity and size of the datasets grew, there was a precipitous drop in HCNN
performance compared to the CNN. Interestingly, despite the difference in loss in the
MMN dataset, the Top-1 accuracy between the two models was more similar, unlike in the
MD dataset. In the settings of both performance parity and disparity, the Top-5 accuracy
metric across the two models was nearly identical in all three datasets, perhaps due to the
improved generalizability of HCNNs, which we will explore further.

The achievement of parity replicates the findings from Guo et al., which demonstrate
that clipped HCNNs achieve a similar performance in data settings without strong hierar-
chy [12]. Nevertheless, we illustrate that the performance of the HCNN suffers compared
to the CNN when applied to larger datasets with seemingly more difficult tasks. Given the
similarity in model size across the three datasets, our findings may suggest that HCNNs,
as currently constructed, are less efficient with their trainable parameters, contrary to the
prior literature [8].

One of the known features of HCNNs is the improved preservation of hierarchical data
structures, as reflected by the organized embedding space [5,9]. Low-dimensional T-SNE
representations of the embedding space suggest a stratification of classes in the MMN
dataset, often by modality first and then disease type, in both models. Similarities in class
grouping may be starker in the Euclidean–Lorentz model, as observed in the hierarchical
clustering dendrogram from the embedding space.

Nevertheless, the noted limitations of low-dimensional representations may offer a
distorted view of the true geodesic distances between the average class embeddings [39].
To explore whether the two models developed meaningfully distinct organizations of
embedding space in a more robust fashion, we derived a respective geodesic distance
matrix for the average class embedding in both MMN models. We then compared the
pairwise distance matrix from each model against a constructed ground truth difference
matrix between the classes. Using the pairwise distance differences, as well as Spearman’s
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rank correlation coefficient, we showed that the HCNN, and not the CNN, better aligned
with our known semantic understanding of the class relationships.

As we observed superior learning and conservation of known class structures in
neuroimaging data, we further explored the tangible value of this distinguishing feature.
One of the most important aspects of any diagnostic medical imaging algorithm is its ability
to function with out-of-sample and out-of-distribution imaging data [40]. We specifically
found that the MMN HCNN performed similarly to the CNN in the OASIS I and stroke-
negative NCCT datasets, despite a poorer HCNN performance in terms of Top-1 accuracy
and loss in the MMN dataset.

We also found that in terms of zero-shot performance, the HCNN unequivocally
outperformed not only the CNN but also the trained radiologists by a significant margin.
Finally, the HCNN showed consistently increased durability to adversarial attacks, which
may be relevant in terms on confrontation with imaging artifacts, image quality disparities
between scanners, or image corruption that may or may not be perceptible [41,42]. As
suggested by prior studies in non-medical imaging settings [9,11,12], we showed that the
neuroimaging HCNN improved generalizability with respect to out-of-sample, zero-shot,
and adversarial attack performance.

Our study should be interpreted as having certain limitations. While recent studies
have attempted to move convolutional functions into hyperbolic space [14,38], we observed
significant numerical instability with these methods. While we did not observe numerical
instability in the hybrid models used in this study, the computational efficiency of HCNNs
was observed to be dramatically lower, with convergence requiring three to four times more
epochs with similar hyperparameters. This was even more pronounced in larger datasets,
limiting our ability to use larger datasets. We tested task complexity and size concurrently
across the three datasets, but future work should further explore scalability and complexity.
Additionally, we are restricted to speculating on the performance of clipped hybrid HCNNs
in the context of our included medical imaging classes and can only discuss generalizability
in terms of the out-of-sample and zero-shot datasets used.

These present limitations may slow down the larger-scale applications with larger
training sets that are required in models applied to clinical settings. As such, further
research and development is needed to improve the efficiency and scope of these hyper-
bolic models. Alternatively, other methods for achieving better generalizability, including
federated models and the complication of diverse datasets, continue to represent a valuable
practical approach [43,44].

5. Conclusions

In this study, we showed that agnostic HCNN models demonstrated a superior ability
to learn and retain a native hierarchical structure in a neuroimaging dataset compared
to Euclidean CNNs. Importantly, the HCNN achieved a disproportionately superior
performance in adversarial attack experiments and zero-shot settings, outperforming both
radiologists and CNNs. The neuroimaging HCNN also achieved parity in in-sample
performance with out-of-sample data but showed a depreciating performance in more
complex medical imaging task settings with larger datasets. These findings suggest that
improvements in the efficiency and scalability of HCNNs are needed to achieve parity
with CNNs. However, HCNNs provided notable value in their generalizability in medical
imaging settings with multi-modal and multi-disease neuroimaging data.
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//www.mdpi.com/article/10.3390/jimaging10120319/s1, Table S1: Neuroimaging Class Table Char-
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