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Abstract: Host–pathogen interactions and the design of vaccines for aquaculture fish viruses are
challenging and call for innovative approaches. This study explores the potential of adenoviral (Ad)
vectors Ad5 and chimeric Ad5/40 as gene delivery tools for fish brain cells susceptible to neurotropic
viruses. For this purpose, European sea bass (Dicentrarchus labrax) DLB-1 and gilthead seabream
(Sparus aurata) SaB-1 brain cell lines were infected with Ad5 or Ad5/40 vectors expressing GFP, and
we evaluated their capacity for infection by fluorescence microscopy and flow cytometry, as well as
their antiviral innate immune response by the transcription of gene markers (irf3 and mx). We found
that both vectors are able to infect DLB-1 and SaB-1 brain cell lines to similar levels, as demonstrated
by fluorescence microscopy and flow cytometry, though the infection efficiency was low. In addition,
infection with Ad vectors regulated the transcription of genes related to the interferon-mediated
antiviral immune response. Our results indicate that the Ad5/40 vector achieves better infection and
consistent cellular distribution. These findings suggest that these vectors may offer targeted gene
delivery and local immune responses.
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1. Introduction

Over recent decades, fish vaccination has become the most effective method for pre-
venting infectious diseases in aquaculture, particularly those caused by viruses [1]. The
predominant strategies in both approved and experimental vaccines involve the administra-
tion of inactivated or attenuated microorganisms, with or without adjuvants [1]. However,
developing effective viral vaccines poses a significant challenge due to the unique physiolog-
ical characteristics of fishes as poikilothermic specimens and their environmental conditions,
complicating the design and generation of fully protective vaccines for aquaculture.

Adenoviral vectors (Ads) are non-integrative modified viruses known for their versa-
tility in delivering foreign genes to cells through the transient expression of the inserted
transgene [2]. Beyond being widely used in neuroscience and cancer gene therapy [3,4], Ads
have been extensively used in vaccine development for intracellular pathogens, especially
in cases where conventional vaccines show limited efficacy, such as the immunodeficiency
virus, tuberculosis, and influenza [4,5]. Most commonly, Ad vectors derive from the Ad
group C, serotype 5 (Ad5), which infects cells via the coxsackie-Ad receptor (CAR) thor-
ough its immunoglobulin (Ig) domain [6]. Interestingly, a homologous CAR exists in
fishes, functioning as a receptor for Ads [7–10]. In fact, a competitive inhibitor of the
CAR reduces the Ad5 infectivity in the fish CAR+ve CHSE-214 (from the Chinook salmon
Oncorhynchus tshawytscha) cell line but not in the CAR-ve EPC (from the fathead minnow
Pimephales promelas) cell line, demonstrating the presence and functional implication of
such receptors in Ad5 infectivity in fish [10]. Further studies have also demonstrated that
Ad5 vectors can, in vitro, infect different types of fish cell lines or primary cells, as well as
rainbow trout (Oncorhynchus mykiss) muscle or Japanese medaka (Oryzas latipes) brain cells
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after injection [10,11]. In general, these studies evidenced low infectivity of some of the
fish cells with the Ad vectors [10,11], suggesting promising applications in fish but limited
effects. Indeed, rainbow trout vaccination with Ads expressing infectious hematopoietic
necrosis virus (IHNV) and/or infectious pancreatic necrosis virus (IPNV) proteins showed
the production of the respective transgenes, induction of antiviral response, antibody pro-
duction, and protection upon infection [12,13]. Moreover, when injected directly into the
telencephalon of zebrafish (Danio rerio) embryos, 56% of them showed clear green fluores-
cence (GFP) expression [7]. This finding suggests that when Ad-vaccines are administered
to the fish, they could cross the haemato-cephalic barrier and enter the brain, allowing the
fish cells to be used for local immune response. Therefore, this barrier seems not enough to
impede the effectiveness of the vaccine when fish become infected.

This study aims to expand our knowledge and potential application of Ad vectors
in Mediterranean Sea fish species. Thus, we evaluated herein the infectivity of two Ad
vectors in two marine fish brain cell lines, from European sea bass (Dicentrarchus labrax) and
gilthead seabream (Sparus aurata). We have selected two fish brain cell lines since Ads show
very good applications in mammalian neurosciences and because they are also selected as
vaccination models against fish neurotropic viruses [14–16], specifically targeting viruses
that affect the brain [17,18]. The application of these vectors in vaccine development could
significantly improve protection against viral diseases in aquaculture.

2. Results and Discussion

In this study, we evaluated the tropism of two adenoviral vectors, Ad5-CMV-GFP (Ad5)
and a chimeric Ad5/40-CMV-GFP (Ad5/40), in brain cell lines derived from fish species
relevant for Mediterranean aquaculture, which are highly susceptible to the neurotropic
betanodavirus: DLB-1 from European sea bass and SaB-1 from gilthead seabream [19,20].
The two defective Ads were selected due to their broad tropism [6], which makes them
promising biotechnological tools for targeting fish species that express a CAR-homologous
receptor. The cell lines used serve as model systems for studying viral infections and
immune responses to neurotropic viruses [19–21], making them particularly suitable for
investigating the potential of adenoviral vectors in fish. Considering the great variability in
viral susceptibility and immune responses across different fish species, we chose an in vitro
approach. This method facilitated a controlled evaluation of the adenoviral vectors’ perfor-
mance, enabling a comprehensive evaluation of their potential as versatile biotechnological
tools for gene delivery in the fish species under study. Thus, after the in vitro infection, our
findings revealed moderate tropism of both vectors towards DLB-1 and SaB-1 cell lines after
24 h of infection (Figure 1A–D), similar to previous observations in common carp (Cyprinus
carpio) and Nile tilapia (Oreochromis niloticus) cell lines [10]. Interestingly, only the highest
concentration of Ad vectors, 500 IU/cell, produced a significant infection. For both vectors,
fluorescence was distributed in the nucleus and cytoplasm, with the highest detection in
DLB-1 cells infected with the Ad5/40 vector (Figure 1A,B and insets). Additionally, we also
detected them in cellular granules of both fish cell lines (Figure 1A,C and insets), suggesting
potential exocytosis. This process may assist viral release or trigger an immune response,
as reported in bovine neuron-like adrenal chromaffin cells [22]. Replication-defective Ads
are suggested to alter the exocytotic machinery’s sensitivity or accessibility to calcium,
allowing increased exocytosis without a proportional rise in intracellular calcium [22]. Also,
a shift from synchronous to asynchronous exocytosis in Ad-infected cells was reported,
potentially influencing information transfer in neural cells [22], which deserves further
investigation to use Ads as vectors for exogenous expression studies.
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Figure 1. Analysis of the infection efficiency of Ad5-CMV-GFP (Ad5) and Ad5/40-CMV-GFP (Ad5/40)
vectors in fish brain cell lines. DLB-1 and SaB-1 cell lines were infected with 500, 50, or 5 IU/cell
Ad5 or Ad5/40 at 25 ◦C for 24 h. Controls consisted of mock-infected cells. Mock-infected cells were
treated with culture medium (0 IU/cell). Ad vector expression and GFP localization were observed
under a fluorescence microscope (A,B), while the percentage of GFP+ve cells and mean fluorescence
intensity in DLB-1 and SaB-1 cell lines were quantified by flow cytometry (C,D). Gene expression of
mx (E) and irf3 (F) coding antiviral genes in DLB-1 and SaB-1 cell lines was evaluated by real-time
PCR. Bars represent the mean ± standard error of the mean (n = 3). Asterisks denote differences with
mock-infected cells (p < 0.05; Student’s t-test). Scale bars: 50 µm.

The application of flow cytometry also allowed us to quantify the percentage of cells
producing the GFP as well as the intensity of the fluorescence (Supplementary Figure S1),
parameters that served to quantify the infection and replication potential of the Ad vectors.
Interestingly, both Ads demonstrated higher infection efficiency in the DLB-1 cell line
compared to SaB-1, as indicated by the percentage of positive cells and mean fluorescence
intensity (e.g., fold-change of percentage of positive cells of 3.9 ± 0.2 vs. 1.5 ± 0.1 with Ad5,
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and 4.1 ± 0.2 vs. 1.5 ± 0.0 with Ad5/40 for DLB-1 vs. SaB-1, respectively; Figure 1C,D). In
HEK293T cells, infections with both vectors at 37 ◦C followed expected patterns, reaching
up to 78% of positive cells and a dose-response decrease (Figure 2A–C). Very strikingly, a
significant drop in the infection rates at 25 ◦C was evidenced (Figure 2A–C), with similar
levels to those observed in fish cell lines in this and other studies. Unfortunately, DLB-1 and
SaB-1 cells cultured at 37 ◦C did not survive beyond 6 h post-infection since they are not
viable at this temperature. The weak expression of GFP in both cell lines suggests limited
transduction efficiency of the adenoviral vectors in these systems. Apparently, this could
be due to the differences in temperature, as shown with the HEK293T cell line, in which
the infection rate decreases when cultured at 25 ◦C. This fact suggests that infectivity of the
European sea bass and gilthead seabream by Ad vectors might be more influenced by the
temperature than by the cell type or origin.
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Figure 2. Analysis of the infection efficiency of Ad5-CMV-GFP (Ad5) and Ad5/40-CMV-GFP (Ad5/40)
in HEK293T cell line. HEK293T cells were infected with 500, 50, or 5 IU/cell Ad5 or Ad5/40 at
37 ◦C or 25 ◦C for 24 h. Mock-infected cells were treated with culture medium (0 IU/cell). Ad
vector expression and GFP localization was observed under a fluorescence microscope (A), while
the percentage of GFP+ve cells and mean fluorescence intensity in DLB-1 and SaB-1 cell lines was
quantified by flow cytometry (B,C). Gene expression of mx (D) and irf3 (E) coding antiviral genes was
evaluated by real-time PCR. Bars represent the mean ± standard error of the mean (n = 3). Asterisks
denote differences with mock-infected cells (p < 0.05; Student’s t-test). Scale bars: 50 µm.

The initial interaction of Ad5-derived vectors with host cells is mediated by CAR,
a receptor widely expressed on the surface of many mammalian cells through its two
extracellular Ig superfamily domains [6,23]. In fish, the CAR encoding gene has been
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identified in brain cells, enabling adenoviral entry [7–9]. Ad5 chimeras, such as Ad5/40,
carry fibers from other Ads to limit their broad tropism [24]. For example, Ad5/40 contains,
in its capsid, fibers from Ad5 and only the sort fibers from Ad40 [24]. The addition of
the short fibers to the chimeric Ad5/40 gives the vector enteric tropism in mammals, as
it is known that the long fibers of Ad40 bind to CAR, while the short fibers do not have
a described specific receptor yet [24,25]. Taken together, these findings suggest that both
Ad5 and Ad5/40 might use CAR as an entry point to infect DLB-1 and SaB-1 cell lines,
as shown in other fish species [9,10]. In fact, a search of European sea bass and gilthead
seabream genomes results in the positive and clear identification of CAR gene orthologues.
However, the enhanced tropism of Ad5/40 in brain cells could involve differential CAR
expression or the implication of additional receptors beyond CAR, indicating the need for
further research to explore these alternative pathways.

We also examined the expression of antiviral marker genes (mx and irf3) 24 h post-
infection to assess whether the vectors could trigger antiviral responses. In this case,
Mx functions as the final effector of the type-I interferon (IFN) pathway, the most potent
antiviral mechanism triggered upon initial contact with a virus in fish, which has been
shown to exert direct antiviral activity [26]. Therefore, this is widely recognized as one
of the main markers of the IFN antiviral response [26]. On the other hand, IRF3 is a key
molecule in the innate immune response, primarily involved in pathways associated with
infection responses. These include the modulation of the NF-κB pathway and cytoplasmic
DNA-mediated signaling [27,28], but IRF3 also participates in RIG-I-like receptor pathways,
leading to the induction of the IFN route during viral infections, such as those caused
by the nervous necrosis virus, underscoring its vital role in the antiviral defense [29,30].
Interestingly, infection with either of the Ads caused minimal changes in HEK293T cells
(Figure 2D,E). In contrast, while both fish cell lines were infected by Ads with low levels of
transgene expression, this expression was sufficient to trigger significant differences in the
IFN antiviral response (Figure 1E,F). Specifically, both Ads increased mx and irf3 expression
in SaB-1 cells at moderate concentrations. However, in the DLB-1 cell line, Ad5 inhibited
the antiviral response, while Ad5/40 significantly down-regulated mx and up-regulated
irf3 genes. Certain neurotropic viruses capable of crossing the blood–brain barrier can
trigger these large variations in antiviral response between species [30,31]. Indeed, the
betanodavirus is a neurotropic virus responsible for viral nervous necrosis across various
fish species and can cross the blood–brain barrier within hours [32]. This virus induces
differential immune responses, depending on the species, independently of their suscepti-
bility to the infecting strain. For example, markers within the type I interferon pathway,
such as the mx and irt3 genes used in this work, were up-regulated in the brain of infected
Senegalese sole (Solea senegalensis) but down-regulated in European sea bass infected with
virulent genotypes [30,33]. Conversely, in the brain of gilthead seabream infected with a
genotype to which it is asymptomatically resistant, this pathway was activated [30]. All of
these together point to comparable mechanisms of action, and thus initiate similar immune
responses. However, further research is necessary to confirm this. Unfortunately, these
interspecies disparities were only explored after in vivo betanodavirus infections [30,31,33].
Despite the significant efforts made by the scientific community to develop vaccines for
gilthead seabream and European seabass against viruses of aquaculture importance, their
effectiveness remains highly limited. Consequently, the development of novel biotechno-
logical tools, such as the adenoviral vectors employed in this study, which can express
a transgene of interest in the cells of these species while simultaneously modulating the
immune response, presents new opportunities. These advances pave the way for the
creation of innovative antiviral treatments and vaccines in a field that remains largely
underexplored, reduced to one study in rainbow trout [10], and untapped.

3. Materials and Methods

Defective recombinant Ads, Ad5, and chimeric Ad5/40, were obtained from the Viral
Vector Production Unit (“Universitat Autònoma de Barcelona”, Barcelona, Spain). DLB-1
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and SaB-1 cell lines, derived from the brain of European sea bass and gilthead seabream,
respectively, were cultured in Leibovitz’s L-15 medium (ThermoFisher Scientific, Waltham,
MA, USA) with 10% fetal bovine serum (FBS; ThermoFisher Scientific) and supplements
[2 mM L-glutamine, 100 IU/mL penicillin, 100 mg/mL streptomycin] at 25 ◦C. HEK293T
cells were grown in Dulbecco’s Modified Eagle Medium (DMEM; ThermoFisher Scientific)
with 10% FBS and supplements at 37 ◦C with 5% CO2, served as technical controls.

Human and fish cell lines were detached using standard trypsinization, washed,
and seeded in 12-well flat-bottom plates (ThermoFisher Scientific) before being infected
following a modified protocol [10]. In brief, cells were either mock- or Ad-infected with
500, 50, or 5 IU/cell of each virus in medium supplemented with 2% FBS. Experiments
were conducted in triplicate at 25 ◦C and 37 ◦C. After 24 h, the cells were washed for
further processing. Microscopic analysis was carried out using an Axio Observer 7 inverted
microscope (ZEISS, Oberkochen, Germany) to assess the expression of the target transgene
(GFP) [25]. Cells were later detached, washed, and analyzed with a FACSCalibur BD
flow cytometer (Becton Dickinson; Franklin Lakes, NJ, USA) to ascertain the extent of
the viral absorption, as indicated by the percentage of green positive cells and the mean
green fluorescence (FL1) intensity for each treatment. In each case, 10,000 events were
acquired [25]. Representative data corresponding to cell population and fluorescence
histograms are included in the Supplementary Figure S1.

The remaining samples were used for gene expression elsewhere [30]. The RNA was
extracted from samples preserved in TRIzol® Reagent (ThermoFisher Scientific, Waltham,
MA, USA). After treating 1 µg of RNA with DNAse I, cDNA synthesis was carried out
using Superscript IV. Quantitative PCR (qPCR) on a QuantStudioTM 5 Flex instrument
(Applied Biosystems, ThermoFisher Scientific, Waltham, MA, USA) was then employed
to measure mx Interferon-induced gtp-binding protein (mx) and interferon regulatory factor
3 (irf3) gene expression in each cell line using SYBR Green for detection. The reaction
included a 95 ◦C hold, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for one minute.
Relative gene expression was calculated as 2−∆Ct, with the elongation factor 1 alpha (ef1a)
gene as the internal control, and results were graphed. Primers, custom-designed using the
OligoPerfect software tool “https://apps.thermofisher.com/apps/olilgoperfect (accessed
on 9 December 2024)” and showed in Table 1, were validated for specificity with melting
curve analysis and negative controls.

Table 1. Primer sequences used for gene expression analysis.

Species Protein Name Gene Name Accession Number Sequence (5′-3′)

European sea bass

Mx Interferon-induced
GTP-binding protein Mx mx

AM228977,
HQ237501
AY424961

F GAAGAAGGGCTACATGATCGTC

R CCGTCATTGTAGAGAGTGTGGA

Interferon regulatory factor 3 irf3 CBN81356
F AGAGGTGAGTGGCAATGGTC

R GAGCAGTTTGAAGCCTTTGG

Elongation factor 1 alpha ef1a AJ866727
F CGTTGGCTTCAACATCAAGA

R GAAGTTGTCTGCTCCCTTGG

Gilthead seabream

Mx Interferon-induced
GTP-binding protein Mx mx FJ490556, FJ490555,

FJ652200

F AAGAGGAGGACGAGGAGGAG

R CATCCCAGATCCTGGTCAGT

Interferon regulatory factor 3 irf3 AM956899
F TCAGAATGCCCCAAGAGATT

R AGAGTCTCCGCCTTCAGATG

Elongation factor 1 alpha ef1a AF184170030
F CTTCAACGCTCAGGTCATCAT

R GCACAGCGAAACGACCAAGGGGA

https://apps.thermofisher.com/apps/olilgoperfect
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Table 1. Cont.

Species Protein Name Gene Name Accession Number Sequence (5′-3′)

Human

Mx Interferon-induced
GTP-binding protein Mx1 mx1 NM_001144925

F CTCCGACACGAGTTCCACAA

R GGCGGTTCTGTGGAGGTTAA

Interferon regulatory factor 3 irf3 BC071721
F AGGGGAGTGATGAGCTACGT

R GCTCACTGCCCAGTATGTGT

Elongation factor 1 alpha ef1a BC029337
F GTACTGTTCCTGTTGGCCGA

R GCGCTTATTTGGCCTGGATG

4. Conclusions

In summary, adenoviral vectors Ad5 and Ad5/40 are capable of infecting marine fish
brain cell lines DLB-1 and SaB-1, particularly the DLB-1 cell line from European sea bass
and the Ad5/40 vector. Notably, Ad5/40 demonstrates better cellular distribution within
the cytoplasm, nucleus, and cellular granules, while also initiating an antiviral response
similar to that observed in brain infections by neurotropic viruses [30]. In light of these
in vitro results, in vivo trials would be necessary to confirm their efficacy in animals. The
ability of viral proteins from an adenoviral vaccine to cross the blood–brain barrier, akin to
virions, could provide additional benefits by eliciting a targeted local immune response.
This innovative vaccination strategy in aquaculture could enhance our understanding of
fish immunology and neurovirology, leading to new antiviral approaches and supporting
sustainable practices.
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