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Abstract

The iterative shrinkage-thresholding algorithm (ISTA) is a classic optimization algorithm for

solving ill-posed linear inverse problems. Recently, this algorithm has continued to improve,

and the iterative weighted shrinkage-thresholding algorithm (IWSTA) is one of the improved

versions with a more evident advantage over the ISTA. It processes features with different

weights, making different features have different contributions. However, the weights of the

existing IWSTA do not conform to the usual definition of weights: their sum is not 1, and they

are distributed over an extensive range. These problems may make it challenging to inter-

pret and analyze the weights, leading to inaccurate solution results. Therefore, this paper

proposes a new IWSTA, namely, the entropy-regularized IWSTA (ERIWSTA), with weights

that are easy to calculate and interpret. The weights automatically fall within the range of [0,

1] and are guaranteed to sum to 1. At this point, considering the weights as the probabilities

of the contributions of different attributes to the model can enhance the interpretation ability

of the algorithm. Specifically, we add an entropy regularization term to the objective function

of the problem model and then use the Lagrange multiplier method to solve the weights.

Experimental results of a computed tomography (CT) image reconstruction task show that

the ERIWSTA outperforms the existing methods in terms of convergence speed and recov-

ery accuracy.

Introduction

Inverse problems in imaging are essential for physical and biomedical sciences [1]. They have

been widely used in optical and radar systems, including X-ray computed tomography (CT),

positron emission tomography (PET), and electrical tomography (ET). An inverse problem in

imaging aims to estimate an unknown image from the given measurements by solving an opti-

mization problem with a regularizer. Mathematically, it is to infer an original signal x 2 Rn

from its measurements b = Ax 2 Rm. Here, A 2 Rm × n is a linear random projection (matrix).

Because m� n, this inverse problem is typically ill-posed.
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Therefore, researchers typically construct an optimization problem and utilize a regularizer

to solve it. However, the employed regularizer is usually nonsmooth, so it cannot be solved in

a straightforward manner. Therefore, many first-order iterative proximal gradient methods

have also been proposed, e.g., the iterative shrinkage-thresholding algorithm (ISTA) [2], two-

step ISTA (TwISTA) [3] and fast ISTA (FISTA) [4, 5]. The ISTA is one of the most popular

methods for solving such problems, and its advantage is its simplicity. However, the ISTA has

also been recognized as a slow method. TWIST, as a faster method than the ISTA, also has

good effectiveness. The FISTA has low complexity, fast convergence, and moderate recovery

accuracy. It has been proven that the FISTA can also be faster than TWIST by several orders of

magnitude. In addition, the alternating direction method of multipliers (ADMM) [6] and pri-

mal-dual hybrid gradient (PDHG) algorithm [7] are important methods. These methods solve

inverse problems with nonsmooth regularizers that possess high computational efficiency.

Unfortunately, these methods treat every attribute equally, which can result in inaccurate opti-

mal solutions.

Recently, the iterative weighted shrinkage-thresholding algorithm (IWSTA) [8] and its vari-

ants have been developed to extend the range of practical applications. These methods often

outperform unweighted algorithms. Nasser et al. [9] proposed the weighted FISTA

(W-FISTA), which has higher estimation efficiency than the original FISTA but the same com-

plexity. Candes et al. [10] proposed an iterative algorithm for reweighted L1 minimization

(IRL1) to penalize better nonzero coefficients. This method solves the imbalance between the

L1 and L0 norms. Chartrand et al. [11] proposed an iterative reweighted least-squares (IRLS)

algorithm to attain an improved ability to recover sparse signals. IRLS and IRL1 are known for

their state-of-the-art reconstruction rates for noiseless and noisy measurements. Foucart et al.
[12] proposed a weighted method to obtain the solution of a system with the minimal Lq quasi-

norm (WLQ). This method generalizes and improves the result obtained with the L1 norm.

Wipf et al. [13] presented distinct detail-separable and nonseparable iterative reweighting

algorithms and introduced mainly nonnegative sparse coding examples via reweighted L1 min-

imization (IRW) for solving linear inverse problems. However, the weights of these algorithms

do not conform to the usual weight definition. Their sums are not one, and these weights are

distributed over an enormous range. Such weights are difficult to explain and may lead to inac-

curate results. Table 1 lists some IWTAs and their details.

This paper proposes a new IWSTA based on entropy regularization called the entropy-reg-

ularized IWSTA (ERIWSTA). This algorithm makes the weights easy to calculate, and it has

good interpretability. Additionally, the iterative formula update process becomes simple.

Experimental results obtained in synthetic CT image denoising tasks show that the proposed

method is feasible and effective.

Related work

We introduce the general model of an inverse problem and its solving method (the ISTA). For

the convenience of description, we present the symbolic notations. Matrices are represented as

capital letters. For a matrix A, A*i, Ai* and Aij denote the i-th column, the i-th row and the (i,
j)-th element of A, respectively; k � ki represents the i-norm of a vector. All the vectors are col-

umn vectors unless transposed to a row vector by a prime superscript T.

The equation of an inverse problem in imaging can be expressed as follows [14]:

b ¼ Axþ �; ð1Þ

where x 2 Rn denotes an unknown image, b 2 Rm denotes the given measurements, A 2 Rm × n

is called the system matrix (usually, m�n), and � is the unknown disturbance term or noise.
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Note that the system is underdetermined. To reconstruct the original image x, researchers usu-

ally construct the following optimization problem [15]:

min
x

1

2
k Ax � b k2

2
: ð2Þ

Generally, the least-squares method is used to solve the problem.

To suppress overfitting, some scholars [16–18] have introduced the L0 norm to Eq (2) as

sparse prior information. Therefore, to obtain the solution of Eq (2), we must solve an optimi-

zation problem that minimizes the cost function [19]:

min
x

1

2
k Ax � b k2

2
þbk x k0; ð3Þ

where kxk0, the number of nonzero components of x, is the regularizer that imposes prior

knowledge (sparsity); β> 0, the regularization coefficient, is a hyperparameter used to control

the tradeoff between accuracy and sparsity. Eq (3) is an NP-hard optimization problem [20],

which is highly discrete, so it is challenging to precisely solve this problem. Thus, we must seek

an effective approximation solution for this problem. The L1 norm regularizer is introduced as

a substitute for the L0 norm. That is [2],

min
x

1

2
k Ax � b k2

2
þbk x k1: ð4Þ

This is a convex continuous optimization problem with a sole nondifferentiable point

(x = 0). The classic method for solving the problem is the ISTA proposed by Chambolle et al.
[21, 22]. The ISTA updates x through the following shrinkage and soft thresholding operation

in each iteration:

xkþ1 ¼ softbt½xk � 2tATðAxk � bÞ�; ð5Þ

where k represents the k-th iteration, t is an appropriate step size and soft is the soft threshold

operation function. The soft function has the following form:

softyðxiÞ ¼ signðxiÞðjxij � yÞ; ð6Þ

where sign(xi) is the sign function of xi and θ is the threshold.

Recently, the IWSTA has attracted more interest than the ISTA, as it outperforms its

unweighted counterparts in most cases. In these methods, decision variables and weights are

optimized in an alternating manner, or decision variables are optimized under heuristically

chosen weights. Usually, the objective function of this type of algorithm has the following form

Table 1. Variants of weighted methods.

Algorithm Reference Weights Min. Max. Regularizer

ISTA Daubechies et al. [2] 1 1 1 Xn

i¼1

jxij

IRL1 Candes et al. [10] 1

jxk� 1
i jþd

0 1

d
Xn

i¼1

logðjxij þ dÞ

WLQ Foucart et al. [12] 1

ðjxk� 1
i jþdÞ1� p 0 1

d1� p 1

p

Xn

i¼1

ðjxij þ dÞ
p

IRW Wipf et al. [13] 1þðjxi jþdÞ
pþ1

ðjxi jþdÞ
pþ1

0 1 Xn

i¼1

ðjxij �
1

ðxiþdÞ
pÞ

https://doi.org/10.1371/journal.pone.0311227.t001
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[13]:

min
x; w�0

1

2
k Ax � b k2

2
þb
Xn

i¼1

wijxij1: ð7Þ

In this paper, we improve the second term in Eq (7) to obtain a variant. Then, we propose

an iterative update law for the variant.

Methodology

The main idea of IWSTA-type algorithms is to define a weight for each attribute based on the

current iteration xk and then use the defined weights to obtain a new x. In this section, we

introduce an entropy regularizer to the cost function and obtain the following optimization

model:

min Fb;gðx;wÞ ¼ FðxÞ þ bGgðx;wÞ

s: t: wi � 0;
Xn

i¼1

wi ¼ 1

where FðxÞ ¼
1

2
k Ax � b k2

2

Ggðx;wÞ ¼
Xn

i¼1

wijxij þ g
Xn

i¼1

wi lnwi

ð8Þ

where γ� 0 is a given hyperparameter, and the inspiration for adding a term with logarithms

comes from the literature [23]. It is worth noting that if we do not use the entropy regularizer,

w can easily be solved as wi = 1 when |xi| = min{|x1|, . . ., |xn|}, and otherwise is 0 The update

rule can be easily explained by an example as

min f4; 1; 5g ¼ min 4w1 þ 1w2 þ 5w3

s: t:w1;w2;w3 � 0

w1 þ w2 þ w3 ¼ 1

The solutions are w1 = 0, w2 = 1 and w3 = 0, among which w2 corresponds to the minimum

value of {4, 1, 5}. This is very similar to the weight computation in the k-means algorithm. This

shows the simple fact that only one element of w is 1, and the others are 0, which is grossly

incompatible with the actual problem. Then, we add the negative entropy of the weights to

measure the uncertainty of the weights and stimulate more attributes to help with signal recon-

struction because it is well known that
Pn

i¼1
wi lnwi is minimized in information theory when

w1 ¼ w2 ¼ ::: ¼ wn ð9Þ

We alternatively solve w and x in Eq (8) as follows.

Update rule for w
To solve w, we introduce the Lagrange multiplier λ and obtain the following Lagrange func-

tion. For w, F(x) is a constant, so we only construct a Lagrange function on G(x), which can be
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expressed as follows:

Lðw; lÞ ¼ Ggðx;wÞ þ lð
Xn

i¼1

wi � 1Þ: ð10Þ

We set the partial derivatives of L(w, λ) with respect to wi and λ to zero and then obtain the

following two equations:

@Lðw; lÞ
@wi

¼ jxij þ gð1þ lnwiÞ þ l ¼ 0; ð11Þ

@Lðw; lÞ
@l

¼
Xn

i¼1

wi � 1 ¼ 0: ð12Þ

From Eq (11), we know that

wi ¼ exp �
l

g

� �

exp �
jxij

g

� �

expð� 1Þ: ð13Þ

Substituting Eq (13) into Eq (12), we have

Xn

i¼1

wi ¼ exp �
l

g

� �
Xn

i¼1

exp �
jxij

g

� �

expð� 1Þ ¼ 1: ð14Þ

It follows that

exp �
l

g

� �

¼
exp1

Pn
i¼1

exp �
jxij

g

� � :
ð15Þ

Substituting this expression into Eq (13), we obtain that

wi ¼

exp �
jxij

g
þ 1

� �

Pn
l¼1

exp �
jxlj

g

� � : ð16Þ

Such weights certainly satisfy the constraints that wi� 0 and
Pn

i¼1
wi ¼ 1.

Update rule for x
Inspired by the work concerning the ISTA, we adopt a similar approach for the iterative update

process of x. The construction of a majorization is an important step toward obtaining the

update rule.

Definition 0.1 (Majorization) AssumeC(x) is an n-dimensional real valued function about
vector x, we can denote ψk(x;xk) as a majorization forC(x) at xk (fixed) if ψk(xk) = C(xk) and
ψk(x)�C(x).

Clearly, C(x) is nonincreasing under the update rule xk+1 = minxψ(x|xk) because

Cðxkþ1Þ � cðxkþ1jxkÞ � cðxkjxkÞ ¼ CðxkÞ: ð17Þ

Then, we can construct a majorization for F(x).

Remark 0.1. Conditions for constructing surrogate function: A basic principle of optimization
algorithm is to construct an easily minimized function ψk(x;xk) to replace the original functionC
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(x). Then calculate the minimum value of the function ψk(x;xk), and use the minimum value
point as the new iteration point(i.e. xk+1 = argmin ψk(x;xk)). By continuously repeating the two
steps of constructing the surrogate function and finding the minimum value of the surrogate
function, an estimated sequence ψk ofC can be obtained. The estimated sequence ψk makesC
(xk) monotonically decreasing when the surrogate function satisfies the following conditions [24,

25]:

c
k
ðxkÞ ¼ CðxkÞ ð18aÞ

c
k
ðxÞ � CðxÞ; x 2 D ð18bÞ

Proposition 0.1 Notably, F(x) is a Lipschitz-continuous and differentiable convex function,
which has a majorization function at the fixed current iteration xk as follows:

f ðx; xkÞ ¼ FðxkÞ þ ½rFðxkÞ�
T
ðx � xkÞ þ

L
2
k x � xk k2

2
; ð19Þ

where L is larger than or equal to the maximum eigenvalue of ATA.

Proof. It is well known that

FðxÞ ¼
1

2
k Ax � b k2

2
¼ FðxkÞ þ ½rFðxkÞ�

T
ðx � xkÞ þ

1

2
ðx � xkÞ

TATAðx � xkÞ ð20Þ

Comparing F(x) with F(x, xk), we find that their last items are different. By performing sin-

gular value decomposition (SVD) on a symmetric definite matrix, we know that ATA = QTSQ,

in which Q is an orthogonal matrix consisting of all eigenvectors and S is a diagonal consisting

of all eigenvalues. Let z = x − xk; then,

zTðATAÞz ¼ zTQTSQz � L k Qz k2
2
¼ L k z k2

2
ð21Þ

It is also certain that zTATAz ¼ L k z k2
2
¼ 0 if x = xk. Thus, the proof is established. Now,

we obtain the majorization for the cost function F(x, w) on x.

�ðx; xkÞ ¼ f ðx; xkÞ þ bGgðx;wÞ; ð22Þ

which can be reorganized as:

�ðx; xkÞ ¼
L
2
k x � xk �

1

L
rFðxkÞ

� �

k2

2
þbGgðx;wÞ

¼
Xn

i¼1

f
L
2
k xi � xk �

1

L
rFðxkÞ

� �

i

k2

2
þbwijxijg þ constant:

ð23Þ

Then,

xkþ1 ¼ argmin
Xn

i¼1

L
2
fxi � xk �

1

L
rFðxkÞ

� �

i

g
2

2
þ bwijxij: ð24Þ

where (.)i denotes the i-th element of vector (.).

Let

rk :¼ xk �
1

L
rFðxkÞ; ð25Þ
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so we know that

xkþ1 ¼ argmin
Xn

i¼1

L
2
ðxi � rk

i Þ
2
þ bwijxij: ð26Þ

Let

gðxiÞ ¼
L
2
ðxi � rk

i Þ
2
þ bwijxij: ð27Þ

Let xk
i be the value of xi when the partial derivative

@gðxiÞ

@xi
is 0, that is:

@gðxiÞ

@xi
¼ Lðxk

i � rk
i Þ þ bwisignðx

k
i Þ ¼ 0; ð28Þ

By transferring terms, we can obtain the following equation:

rk ¼ xk
i þ

1

L
bwisignðx

k
i Þ ð29Þ

That is,

xðkþ1Þ

i ¼ xk
i þ

1

L
DFðxk

i Þ þ
1

L
bwisignðx

k
i Þ ð30Þ

Due to t ¼ 1

L and ΔF(x) = 2AT(Ax − b), the iterative formula can be easily obtained as fol-

lows:

xkþ1
i ¼ softbtwi

ðrk
i Þ ¼ softbtwi

½xk
i � 2tATðAxk

i � bÞ� ð31Þ

Therefore, the update of x is completed.

Experiments

Experimental description

We use a simulated CT dataset and a real PET dataset to evaluate the performance of the

ERWISTA. The simulated CT dataset consists of a Shepp-Logan phantom with 256 × 256 pix-

els. The use of phantom data brings many advantages, including the fact that we have accurate

a priori knowledge of the pixel values and the freedom to add noise to them as needed. We

blur the image (b) using a uniform 5 × 5 kernel (applied by the fspecial MATLAB function)

and then add Gaussian noise with a mean of 0 and variances of 10−2 and 10−3. The original

and blurred and noisy images are shown in Fig 1. The real dataset comes from the cooperating

hospital. The dataset includes low-dose and normal-dose PET images with size of 256 × 256.

All experiments are performed on an HP computer with a 2.5 GHz Intel(R) Core(TM) i7–

4710MQ CPU with 12 GB of memory using MATLAB R2019a for coding.

Evaluation standard

This paper uses the mean absolute error (MAE) to measure the similarity between the recon-

structed and true images. The value of the MAE is calculated by taking the average of the

squared differences between the restored pixel values and the true pixel values. Let x represent

the ground truth, x̂ represent the reconstructed image and N denote the number of voxels.
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The MAE is defined as follows:

MAE ¼
1

N
jjx � x̂jj

1
: ð32Þ

Generally, lower MAE values indicate better reconstructed image quality.

Experimental results of simulated dataset

To illustrate the performance of the proposed method, we provide some visual results. Fig 2

displays the cost function curves produced by six algorithms during training. They are the

ISTA, WLQ, IRW, IRL1, TwIST and the ERIWSTA. As is well known, we should not compare

the values of different cost functions. However, we can visually compare their convergence

speeds, in which an algorithm shows faster convergence when the corresponding curve

becomes flatter within fewer iterations. We find that the six algorithms tend to converge after

approximately several iterations and that the proposed algorithm has a fast convergence speed.

The ERIWSTA arrives at the stable status early.

Fig 3 shows the MAE curves of the six algorithms versus the number of iterations. Sub-

graphs (a) and (b) denote the curves produced in the cases with Gaussian noise levels of σ =

10−2 and σ = 10−3, respectively. We can observe that each algorithm has a small MAE value,

indicating that all methods have considerable denoising capabilities. However, compared with

the other algorithms, the ERIWSTA obtains the minimum MAE value after each iteration to

obtain a clearer denoised image by observing an enlarged detail image.

Figs 4 and 5 show the denoising results obtained by six algorithms under the given noise

level. As seen, the image reconstructed by the ERIWSTA has a better noise removal effect than

those of the other algorithms, and it can more accurately recover the edge information and tex-

ture features of brain images.

In addition, we further verify the effectiveness of the proposed algorithm. We select the

same row and column of four reconstructed images for one slice and compare them with the

corresponding rows and columns of the real image by their pixel values. Figs 6 and 7 show the

comparisons among the horizontal and vertical center profiles of the restored images, respec-

tively. IRL1 yields significant deviations from the true values in both the horizontal and vertical

regions. The ISTA, IRW, WLQ and TwIST recover well in the horizontal region but some-

times have abnormal states in the vertical region. These methods cannot guarantee a stable

denoising effect. Compared with the other algorithms, the ERIWSTA does not guarantee the

lowest denoising errors in all intervals, but it can fit the true values more accurately overall.

Fig 1. Original and noisy head phantom images. (a) Head phantom with 256 × 256 pixels; (b) and (c) blurred images with 5 × 5

uniform kernels and additive Gaussian noise with variances of σ = 10−2 and σ = 10−3, respectively.

https://doi.org/10.1371/journal.pone.0311227.g001
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Fig 2. The cost functionF(x, w) versus the number of iterations for different Gaussian noise levels: (a) σ = 10−2

and (b) σ = 10−3.

https://doi.org/10.1371/journal.pone.0311227.g002
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Fig 3. MAE versus the number of iterations for different Gaussian noise levels: (a) σ = 10−2 and (b) σ = 10−3.

https://doi.org/10.1371/journal.pone.0311227.g003
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Fig 4. The denoising results yielded by different algorithms on a dataset with Gaussian noise at a level of σ = 10−2

after 30 iterations. (a) denotes the original image, and (b)–(g) denote the denoised images produced by the ISTA,

WLQ, IRW, IRL1, TwIST and the ERIWSTA, respectively.

https://doi.org/10.1371/journal.pone.0311227.g004

Fig 5. The denoising results yielded by different algorithms on a dataset with Gaussian noise at a level of σ = 10−3

after 30 iterations. (a) denotes the original image, and (b)-(g) denote the denoised images produced by the ISTA,

WLQ, IRW, IRL1, TwIST and the ERIWSTA, respectively.

https://doi.org/10.1371/journal.pone.0311227.g005
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Fig 6. Horizontal central profiles produced for the 128-th row of the restored images with different Gaussian noise levels: (a) σ = 10−2

and (b) σ = 10−3.

https://doi.org/10.1371/journal.pone.0311227.g006

PLOS ONE ERIWSTA

PLOS ONE | https://doi.org/10.1371/journal.pone.0311227 December 27, 2024 12 / 19

https://doi.org/10.1371/journal.pone.0311227.g006
https://doi.org/10.1371/journal.pone.0311227


Fig 7. Vertical central profiles produced for the 128-th column of the restored images with different Gaussian noise

levels: (a) σ = 10−2 and (b) σ = 10−3.

https://doi.org/10.1371/journal.pone.0311227.g007
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The ERIWSTA also has the best stability and robustness, can guarantee good denoising effects

in areas with minor pixel value variations, and can track the true profile more accurately.

Hyperparameter selection. We conduct hyperparameter experiments to select the opti-

mal penalty hyperparameter β and the optimal entropy-weighted hyperparameter γ. We pro-

vide a parameter range from 10−10 to 1010 and choose the MAE as the evaluation index. The

number of experimental iterations is 100, and we plot a three-dimensional line graph for the

ERIWSTA with the vertical axis representing the MAE values corresponding to different

hyperparameters, as shown in Fig 8. The optimal values of β and γ can be chosen from wide

ranges, and the ERIWSTA has stable lower MAE values for both, which also shows the excel-

lent robustness of the ERIWSTA. In addition, to ensure the validity of the experimental results,

we choose the optimal β and γ values for all the compared algorithms. For details, Tables 2 and

3 show the optimal values of all the algorithms’ β and γ parameters when conducting experi-

ments on the datasets with noise levels of σ = 10−2 and σ = 10−3, respectively. An interesting

observation is that, regardless of whether low or high noise levels are used, the restoration

accuracy of our algorithm is always better than that of the other approaches.

Experimental results of real PET dataset

To make the results more convincing, we added the experiment result of real PET image. Fig 9

shows the denoised images and the second to sixth columns of Fig 9 are the images recon-

structed using ISTA, WLQ, IRW, IRL1 and the proposed method, respectively. It is seen that

all methods have considerable denoising ability, and the proposed algorithm has a better ability

to denoise. Fig 10 shows the comparisons among the horizontal and vertical center profiles of

the restored PET images, respectively. The ISTA, IRW and WLQ recover well in the horizontal

region but sometimes have abnormal states in the vertical region. Compared with the other

algorithms, the ERIWSTA does not guarantee the lowest denoising errors in all intervals, but it

can fit the true values more accurately overall. The ERIWSTA also has the best stability and

robustness.

Conclusions

This paper proposes a new IWSTA for solving linear inverse problems based on entropy regu-

larization. The main innovation of the algorithm is its introduction of an entropy regulariza-

tion term in the loss function of the classic ISTA. The weights of the new algorithm are easy to

calculate and have good interpretability. In addition, the iterative process of updating the for-

mula becomes simple. Finally, we demonstrate the algorithm’s effectiveness in CT and PET

data denoising experiments.

Although the experimental results show that the proposed method effectively removes

noise, this work still needs to be improved. The hyperparameters of all algorithms in this paper

are obtained by manually adjusting them according to the resulting imaging quality. This

selection method requires cyclic experiments for the selected parameter intervals to choose the

optimal parameters. This method could be more efficient and select only the optimal parame-

ters in the given interval. Therefore, in the future, we will study a method for adaptively setting

the parameters to accurately select the optimal parameters of each algorithm, thus ensuring

the algorithm’s effectiveness and further improving its noise reduction ability. In addition, the

data used in this experiment are phantom data. In algorithmic analyses, the use of simulated

data provides good properties. It is easy to add noise and is conducive to the theoretical study

of an algorithm’s effectiveness. However, the proposed algorithm still must be verified in more

practice. Therefore, verifying the algorithm’s effectiveness on more patients’ clinical data and

effectively improving the algorithm based on an actual application would be meaningful.

PLOS ONE ERIWSTA

PLOS ONE | https://doi.org/10.1371/journal.pone.0311227 December 27, 2024 14 / 19

https://doi.org/10.1371/journal.pone.0311227


Fig 8. 3D profiles of β and λ with respect to the MAE for different Gaussian noise levels: (a) σ = 10−2 and (b) σ = 10−3.

https://doi.org/10.1371/journal.pone.0311227.g008
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Table 2. The optimal MAE values and corresponding hyperparameters (Gaussian noise with σ = 10−2).

Termed β γ δ MAE

ISTA 10−3 − − 5.312077*10−7

WLQ 10−5 10−10 10−3 5.228672 * 10−7

IRW 10−5 10−2 10−3 5.410231 * 10−7

IRL1 10−5 − 10−3 5.228672 * 10−7

TwIST 10−5 − 10−5 5.333443 * 10−7

ERIWSTA 102 10−2 − 5.218246 * 10−7

https://doi.org/10.1371/journal.pone.0311227.t002

Table 3. The optimal MAE values and corresponding hyperparameters (Gaussian noise with σ = 10−3).

Termed β γ δ MAE

ISTA 10−3 − − 5.122013 * 10−7

WLQ 10−5 10−5 10−3 5.018339 * 10−7

IRW 10−5 10−2 10−3 5.410231 * 10−7

IRL1 10−5 − 10−3 5.018340 * 10−7

TwIST 10−5 − 10−5 5.311041 * 10−7

ERIWSTA 102 10−2 − 5.005524 * 10−7

https://doi.org/10.1371/journal.pone.0311227.t003

Fig 9. The denoising results yielded by different algorithms. (a) denotes the ground truth, and (b)–(f) denote the

denoised images produced by the ISTA, WLQ, IRW, IRL1 and the ERIWSTA, respectively.

https://doi.org/10.1371/journal.pone.0311227.g009
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Fig 10. The comparison between PET images reconstructed by different algorithms and the label images focuses on

specific pixel profiles: (a) shows the pixel values along the 128th row of the corresponding images. (b) shows the pixel

values along the 128th column of the corresponding images.

https://doi.org/10.1371/journal.pone.0311227.g010
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