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Abstract: Schizophrenia is a complex and heterogenous psychiatric disorder characterized by positive,
negative, and cognitive symptoms. Our previous study identified three subgroups of schizophrenia
patients based on plasma microRNA (miRNA) profiles. The present study aims to (1) verify the
reproducibility of the miRNA-based patient stratification and (2) explore the pathophysiological
pathways linked to the symptoms using plasma miRNAs. We measured levels of 376 miRNAs in
plasma samples of schizophrenia patients and obtained their Positive and Negative Syndrome Scale
(PANSS) scores and the Brief Assessment of Cognition in Schizophrenia (BACS) scores. The plasma
miRNA profiles identified similar subgroups of patients as in the previous study, suggesting miRNA-
based patient stratification is potentially reproducible. Our multivariate analysis identified optimal
combinations of miRNAs to estimate the PANSS positive and negative subscales and BACS composite
scores. Those miRNAs consistently enriched ‘inflammation’ and ‘NFκB1′ according to miRNA set
enrichment analysis. Our literature-based text mining and survey confirmed that those miRNAs
were associated with IL-1β, IL-6, and TNFα, suggesting that exacerbated positive, negative, and
cognitive symptoms are associated with high inflammation. In conclusion, miRNAs are a potential
biomarker to identify patient subgroups reflecting pathophysiological conditions and to investigate
symptom-related molecular mechanisms in schizophrenia.

Keywords: circulating microRNA; schizophrenia; patient subgroups; clinical biomarker; inflammation

1. Introduction

Schizophrenia is a complex and heterogenous psychiatric disorder characterized by
positive (e.g., hallucinations), negative (e.g., emotional withdrawal), and cognitive (e.g.,
deficits in working memory) symptoms. These symptoms exhibit diverse manifestations
across patients, with temporal fluctuations in individual cases [1–3]. A standardized mea-
surement of the symptoms is essential to perform appropriate assessment and to offer
optimal treatment for each patient [4]. Examples of those measurements are the Positive
and Negative Syndrome Scale (PANSS), which is a clinician-rated scale for positive and
negative symptoms and general psychopathology [5], and the Brief Assessment of Cogni-
tion in Schizophrenia (BACS), which is a concise cognitive battery comprising six subtests,
evaluating verbal memory, working memory, motor speed, verbal fluency, attention, and
executive function [6]. These standardized measurements have delivered insights into the
patient subgroups based on symptoms [7] and different response patterns to antipsychotic
treatments [8].
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Significant challenges remain in treating those symptoms due to the heterogeneous
response to antipsychotic treatments. While antipsychotic therapy is available for treating
the positive symptoms, approximately 30% of patients experience persistent positive symp-
toms despite adequate treatment using multiple antipsychotic medications, a condition
known as treatment-resistant schizophrenia [9]. Moreover, current antipsychotic treatments
have limited efficacy on the negative and cognitive symptoms [2,10]. The prevalence of
poor responders to antipsychotics and the challenges in developing new drugs for the
poor responders can be attributed, at least in part, to an insufficient understanding of the
heterogeneous pathophysiology of schizophrenia. Elucidating this heterogeneity at the
molecular level is crucial to providing optimal treatments for each patient and to facilitating
the development of novel drugs.

Omics-based molecular biomarkers have been explored to understand the heteroge-
nous pathophysiology of schizophrenia. Transcriptome analyses of post-mortem brains
have elucidated subgroups of schizophrenia patients, suggesting γ-aminobutyric acid [11],
immune-related [12] and proteasome-related [13] pathways as underlying mechanisms
for heterogeneity. Proteome analysis of serum samples has identified two subgroups of
schizophrenia patients: one characterized by immune molecules and the other by growth
factors and hormones [14].

The heterogeneity of the pathophysiology may reflect that of the symptom. A transcrip-
tome analysis of whole blood samples has revealed that immune-related genes correlated
with PANSS positive subscales, while mitochondrial pathway-related genes correlated with
PANSS negative subscales [15]. A proteome analysis of serum samples identified several
proteins (e.g., C-reactive protein and osteopontin) that correlated with PANSS positive
and negative subscales [16]. These transcriptome and proteome data provide valuable
information for understanding the molecular mechanisms underlying the heterogenous
pathophysiology within schizophrenia. However, their potential as clinical biomarkers is
limited by their instability under storage conditions because both mRNAs and proteins are
prone to degradation during the storage and processing, thereby potentially affecting their
reliability [17,18].

Circulating microRNAs (miRNAs), such as plasma miRNAs, have attractive features
as clinical biomarkers [19]. miRNAs exhibit exceptional post-sampling stability due to the
resistance to endogenous RNase activity, even under harsh conditions regarding tempera-
tures, pH, storage periods, and freeze–thaw cycles [20,21]. Circulating miRNAs offer a less
invasive alternative to brain tissue sampling and may serve as potential indicators of cere-
bral biological processes because brain-derived miRNAs can pass through the blood–brain
barrier via exosomes and enter the systemic circulation [22]. On the other hand, miRNAs
are also found in protein complexes and apoptotic bodies in body fluids [23], originating
from various tissues and cellular processes throughout the body. In addition, miRNAs have
the potential to capture a broad spectrum of biological information because each miRNA
modulates the post-transcriptional expression of multiple target genes, thereby influencing
diverse physiological processes such as inflammation and neuroplasticity [24].

Circulating miRNAs have revealed several aspects of heterogeneity among schizophre-
nia patients. Pérez-Rodríguez et al. discriminated treatment-resistant schizophrenia from
antipsychotic treatment responders among schizophrenia patients using a whole blood
miRNAs signature [25]. Lai et al. revealed several miRNAs in peripheral mononuclear
leukocytes were differentially correlated with PANSS negative subscales and neurocogni-
tive performance scores [26].

Our previous study identified three subgroups of schizophrenia patients based on
plasma miRNA profiles, where the subgroups were characterized by different inflammatory
backgrounds [27]. One major limitation in the previous study was the small size of the
patient sample (n = 26). Thus, the reproducibility of these findings remains to be established.

The present study aims to (1) verify the reproducibility of the miRNA-based patient
stratification and (2) explore pathophysiological pathways linked to symptoms using
plasma miRNAs. The present study demonstrates that plasma miRNAs reproducibly
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stratified schizophrenia patients into three subgroups in an independent cohort. Further-
more, our miRNA analysis associated the positive, negative, and cognitive symptom scores
with inflammation. These results suggest that miRNAs are promising clinical biomarkers
for identifying patient subgroups and bridging symptoms with pathophysiological sig-
nals. These findings may contribute to realizing precision medicine and developing novel
therapeutic strategies.

2. Results
2.1. Plasma miRNA Profiles Identified Similar Subgroups of Schizophrenia Patients as in the
Previous Study

We tested if plasma miRNA profiles can identify three subgroups of schizophrenia pa-
tients as in the previous study [27], using an independent cohort of patients. We measured
expression levels of 376 miRNAs in plasma of 70 schizophrenia patients (Table 1). The
whole miRNA profiles identified three subgroups (a, b, and c) of the patients (Figure 1A),
where subgroup a exhibits low miRNA levels in the second quadrant from the left, sub-
group b shows high miRNA levels in the left half, and subgroup c has low miRNA levels
in the rightmost third. There was no apparent bias in age and sex between the subgroups
(Figure S1A).

Table 1. Characteristics of schizophrenia patients.

Characteristics n = 70
(Overall)

n = 41
(with BACS)

Age, mean ± S.D. 35.0 ± 13.7 31.2 ± 14.7
Male, n (%) 29 (41.4) 18 (43.9)

Race: Japanese, n (%) 70 (100) 41 (100)
PANSS total score, mean ± S.D. 68.4 ± 20.7 68.0 ± 18.1

PANSS positive symptom subscale score, mean ± S.D. 15.8 ± 6.5 15.4 ± 6.4
PANSS negative symptom subscale score, mean ± S.D. 17.9 ± 6.8 18.2 ± 6.8

PANSS general psychopathy subscale score, mean ± S.D. 34.8 ± 10.3 34.4 ± 8.8
BACS composite score, mean ± S.D. - −1.27 ± 1.08

We investigated the similarity between the miRNA-based subgroups in this study
and those in the previous study [27]. We visualized a heatmap of the miRNA levels in
this study using the predefined miRNAs that were distinctive among the subgroups in the
previous study (Figure 1B). The predefined miRNAs identified three patient subgroups
(1′, 2′, and 3′) with miRNA patterns similar to those in the previous study. The subgroups
based on the predefined miRNAs were largely matched with those based on the whole
miRNA profiles (26 out of 32 patients in the subgroup 1′ were clustered into subgroup b, 19
out of 33 patients in the subgroup 2′ were clustered into subgroup c, and 4 out of 5 patients
in subgroup 3′ were clustered into the subgroup a). There was no apparent bias in the age
and sex between the subgroups (Figure S1B). Although the miRNA-based subgroups were
similar between the present and previous studies, subgroup 2′ in this study did not exhibit
the high PANSS levels, whereas subgroup 2 in the previous study showed relatively high
PANSS levels.
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Figure 1. Plasma miRNA profiles identified similar subgroups of schizophrenia patients as in the
previous study. (A) Whole miRNA profiles identified three subgroups of schizophrenia patients (a,
b, and c). Heatmap shows expression levels of all the 376 miRNAs and scores of PANSS positive
symptom subscales (PANSS P), PANSS negative symptom subscales (PANSS N), PANSS general
psychopathy subscales (PANSS GP), PANSS total (PANSS T), and BACS composite (BACS). BACS
scores in 29 out of 70 patients were not measured (gray-colored cells). (B) The patient subgroups
based on the whole miRNAs were similar to those based on the predefined 40 miRNAs that were
distinctive in the subgroups of the previous study. Heatmap shows expression levels of the predefined
40 miRNAs extracted from the whole 376 miRNAs, and 6 out of the predefined 40 miRNAs were not
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measured in the measurement platform (gray-colored cells). The predefined miRNAs also identified
three subgroups of patients (1′, 2′, and 3′). Red frames indicate the miRNAs that were distinctive in
each subgroup of the previous study. ‘1-up’ and ‘1-down’ are the upregulated and downregulated
miRNAs in the subgroup 1 of the previous study, respectively. ‘2-down’ is the downregulated
miRNAs in the subgroup 2 of the previous study. ‘3-up’ and ‘3-down’ are the upregulated and
downregulated miRNAs in the subgroup 3 of the previous study, respectively.

2.2. Multivariate Analysis Identified Symptom-Related miRNAs as Optimal Combinations of
miRNAs to Estimate Symptom Scores

We first applied a univariate analysis to explore the associations between miRNA levels
and the symptom scores. We calculated correlation coefficients for all the combinations
between the 376 miRNAs and the symptom scores (i.e., PANSS total scores, PANSS positive
subscales, PANSS negative subscales, PANSS general psychopathy subscales, and BACS
composite scores) (Table 2 and Table S1). No single combination demonstrated a significant
correlation (Benjamini–Hochberg corrected p >0.05).

Table 2. Correlation coefficients between miRNA levels and symptom scores.

Symptom Score miRNA r q-Value

PANSS positive subscale
hsa-miR-519c-3p −0.405 0.322

hsa-miR-650 −0.349 0.819
hsa-miR-1296-5p 0.290 0.838

PANSS negative subscale
hsa-miR-208a-3p 0.339 0.838
hsa-miR-518f-3p −0.334 0.838
hsa-miR-27b-3p 0.326 0.838

PANSS general
psychopathy subscale

hsa-miR-519c-3p −0.390 0.396
hsa-miR-551a −0.364 0.740

hsa-miR-34b-5p −0.289 0.838

PANSS total
hsa-miR-519c-3p −0.419 0.291

hsa-miR-551a −0.327 0.838
hsa-miR-150-5p −0.296 0.838

BACS composite
hsa-miR-320e −0.536 0.291

hsa-miR-671-5p −0.458 0.819
hsa-miR-500b-5p 0.444 0.838

r, Pearson’s correlation coefficient. q-value, Benjamini–Hochberg corrected p-value. The most significant three
correlations per symptom score in terms of q-values were displayed although no single combination showed
significant correlation (q-value > 0.05).

We then conducted a multivariate analysis to explore the associations between miRNA
levels and symptom scores because multiple miRNAs have potential to reveal more com-
plex relationships with symptoms than a single miRNA [28]. We developed multivariate
regression models based on partial least squares (PLS) to estimate the symptom scores
using miRNA levels. In the model development process, we optimized the combinations of
miRNAs as input variables through a forward stepwise method to minimize the root mean
standard error of cross validation (RMSECV), which is the estimation error in leave-one-out
cross validation (Figure 2A,B and Table S2). The estimation accuracy of the models with
the optimal miRNAs was confirmed via a scatter plot between observed and estimated
symptom scores in the cross validation (Figure 2C) and their RMSECV: 2.786 for PANSS
positive subscales (range: 7–38), 2.359 for PANSS negative subscales (range: 7–36), 4.961
for PANSS general psychopathy subscales (range: 16–65), 6.696 for PANSS total scores
(30–120), and 0.308 for BACS composite scores (range: −4.467–0.476). There was no notable
influence of time difference from blood sampling to PANSS/BACS measurement, age,
and sex on the estimation accuracy in the cross validation (Figure S2). We regarded the
optimal combination of miRNAs to estimate symptom scores as symptom-related miRNAs.
Since the cross validation generates different models for each sample, the final model was
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calibrated using all the samples. Regression coefficients of the final models can indicate the
impact of the optimized miRNA on the symptom scores (Table S2). For example, negative
regression coefficients indicate an inverse relationship between miRNA levels and symp-
tom scores, suggesting that higher levels of specific miRNAs are associated with lower
symptom scores.

A
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Figure 2. Multivariate analysis identified symptom-related miRNAs as optimal input variables to
estimate symptom scores. (A) The scheme explains leave-one-out cross validation and variable
selection. (B) The number of miRNAs as input variables was increased until no remaining variables
that improve RMSECV. Forward stepwise method was used as the variable selection method. (C) The
estimation accuracy of the models with optimal miRNAs was confirmed by scatter plot between
observed and estimated symptom scores in leave-one-out cross validation. The red dashed lines
represent the line of perfect agreement between observed and estimated symptom scores.

2.3. Symptom-Related miRNAs Enriched Inflammatory Pathways and Were Reported to Regulate
IL-1β, IL-6, and TNFα

We explored pathological pathways linked to the symptoms through the miRNAs. We
performed miRNA set enrichment analysis on the symptom-associated miRNAs (Table 3).
‘Inflammation’ and ‘NFκB’ were enriched in all the miRNA sets except for PANSS general
psychopathy, which did not enrich any function. In addition, brain-related terms were
enriched in all the miRNA sets, except for PANSS general psychopathy (‘brain.cerebellum’
in PANSS positive-related miRNAs, ‘brain’ in PANSS negative-related miRNAs and PANSS
total-related miRNAs, and ‘brain.nucleus_caudatus’ in BACS composite-related miRNAs).
The subsequent analysis examining the association between the symptoms and inflamma-
tion focused on PANSS positive subscale, PANSS negative subscale, PANSS total scores,
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and BACS composite scores, while excluding PANSS general psychopathology, as it did
not enrich ‘inflammation’.

Table 3. Enriched pathways by symptom-related miRNAs.

miRNA Set Enriched Pathway Nmapped/Npredefined FDR

PANSS positive-related
miRNAs

(32 miRNAs)

Immune Response 18/92 6.24 × 10−10

Inflammation 15/112 9.25 × 10−6

Cell Differentiation 11/56 9.82 × 10−6

NFKB1 8/26 1.87 × 10−5

Cell Death 11/78 2.33 × 10−4

Brain.cerebellum 6/21 8.43 × 10−4

Aging 9/63 1.31 × 10−3

Plasma Cell Differentiation 4/8 1.71 × 10−3

Hormone-mediated Signaling Pathway 8/58 2.81 × 10−3

DNA Damage Repair 5/19 3.15 × 10−3

Embryonic Stem Cell Differentiation 6/31 3.44 × 10−3

Cell Motility 5/21 4.90 × 10−3

Cell Cycle 9/83 5.20 × 10−3

Circadian Rhythm 5/22 5.50 × 10−3

STAT3 3/5 5.82 × 10−3

Megakaryocyte Differentiation 3/5 5.82 × 10−3

Apoptosis 10/106 6.01 × 10−3

Brain Development 6/36 6.50 × 10−3

Neuron Differentiation 4/14 8.52 × 10−3

AKT1 3/6 9.33 × 10−3

Hematopoiesis 7/57 1.08 × 10−2

Response to Estrogen 3/8 1.77 × 10−2

MYC 5/40 4.84 × 10−2

PANSS negative-related
miRNAs

(42 miRNAs)

Neuron Differentiation 9/14 3.26 × 10−8

Inflammation 16/112 3.14 × 10−5

Testis 11/47 4.39 × 10−5

HIF1A 6/11 1.03 × 10−4

Cell Differentiation 11/56 1.23 × 10−4

Apoptosis 14/106 3.57 × 10−4

Cell Proliferation 12/80 4.53 × 10−4

Embryonic Stem Cell Differentiation 8/31 4.68 × 10−4

Cell Cycle 12/83 6.04 × 10−4

Hormone-mediated Signaling Pathway 10/58 8.02 × 10−4

Brain Development 8/36 1.02 × 10−3

Neuron Apoptosis 5/15 4.58 × 10−3

Placenta 4/11 1.23 × 10−2

Adipogenesis 5/20 1.25 × 10−2

Brain 5/20 1.25 × 10−2

Osteogenesis 8/59 1.33 × 10−2

Muscle Development 5/21 1.39 × 10−2

NFKB1 5/26 3.02 × 10−2

BMP2 2/2 3.02 × 10−2

Embryonic Development 4/17 3.62 × 10−2

Smooth Muscle Cell Proliferation 4/18 4.48 × 10−2

Erythrocyte Differentiation 3/9 4.89 × 10−2

PANSS general
psychopathy-related miRNAs

(22 miRNAs)
No item was significantly enriched - -
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Table 3. Cont.

miRNA Set Enriched Pathway Nmapped/Npredefined FDR

PANSS total-related miRNAs
(35 miRNAs)

Brain 8/20 1.48 × 10−5

Testis 11/47 2.87 × 10−5

Embryonic Stem Cell Differentiation 9/31 2.96 × 10−5

Cell Death 12/78 1.22 × 10−4

Cell Proliferation 12/80 1.26 × 10−4

Immune Response 13/92 1.45 × 10−4

Cell Cycle 12/83 1.72 × 10−4

Hormone-mediated Signaling Pathway 10/58 2.78 × 10−4

Brain Development 8/36 4.27 × 10−4

Inflammation 13/112 5.72 × 10−4

Cell Differentiation 9/56 1.11 × 10−3

Apoptosis 12/106 1.30 × 10−3

MYC 7/40 4.47 × 10−3

Glucose Metabolism 6/28 4.56 × 10−3

Hematopoiesis 8/57 5.48 × 10−3

HIF1A 4/11 6.89 × 10−3

STAT3 3/5 8.54 × 10−3

Cell Motility 5/21 8.61 × 10−3

Wound Healing 5/23 1.20 × 10−2

AKT1 3/6 1.38 × 10−2

NFKB1 5/26 1.79 × 10−2

Innate Immunity 6/42 1.95 × 10−2

Cardiogenesis 3/7 2.02 × 10−2

Keratinocyte Proliferation 2/2 2.18 × 10−2

Latent Virus Replication 4/17 2.30 × 10−2

Aging 7/63 2.99 × 10−2

Angiogenesis 7/65 3.47 × 10−2

BACS composite-related
miRNAs

(24 miRNAs)

Inflammation 12/112 2.03 × 10−5

Cell Proliferation 9/80 7.91 × 10−4

Immune Response 8/92 7.56 × 10−3

Myocardium 6/41 1.06 × 10−2

Cell Death 7/78 1.27 × 10−2

Osteogenesis 6/59 1.78 × 10−2

Brain.nucleus_caudatus 3/10 3.55 × 10−2

NFKB1 4/26 4.20 × 10−2

Nmapped, number of mapped miRNAs; Npredefined, number of predefined miRNAs in each pathway; FDR, false
discovery rate. A list of the symptom-related miRNAs is shown in Table S2.

We consolidated the association of the symptom-related miRNAs with inflammation
based on literature information. We conducted literature-based text mining to quantify
the publications that associate miRNAs with diseases or proteins. Among disease-related
terms, ‘inflammation’ was reported as one of the top two most frequently associated with
the miRNAs for all the evaluated symptoms (i.e., PANSS positive and negative subscales,
PANSS total scores, and BACS composite scores) (Figure 3A). Similarly, among protein-
related terms, the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as other
proteins, including TGF-β1, PTEN, BCL2, VEGF-A, AKT1, STAT3, CASP3, and MYC, were
consistently reported as one of the top twenty most frequently associated with the miRNAs
(Figure 3B).
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A

B

PANSS positive-
related miRNAs

PANSS negative-
related miRNAs

PANSS total-
related miRNAs

BACS composite-
related miRNAs 
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Number of publications that associated the symptom-related miRNAs with disease

PANSS positive-
related miRNAs
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related miRNAs

PANSS total-
related miRNAs

BACS composite-
related miRNAs 

Figure 3. Symptom-related miRNAs were frequently associated with inflammation, IL-1β, IL-6,
and TNFα in literature text. (A) Bar charts show the total number of publications that associated
the symptom-related miRNAs with the predefined entities within the ‘disease’ category. Blue color
highlights inflammation. (B) Bar charts show the total number of publications that associated the
symptom-related miRNAs with the predefined entities within the ‘protein’ category. Blue color
highlights IL-1β, IL-6, and TNFα.

We investigated whether the symptom-related miRNAs can associate the deterioration
of the symptoms with increased levels of IL-1β, IL-6, and TNFα. We surveyed studies
that experimentally demonstrate the regulatory functions of the symptom-related miRNAs
on IL-1β, IL-6, and TNFα. We identified studies that experimentally demonstrate the
miRNAs positively or negatively regulated with IL-1β, IL-6, and TNFα (Table S3). We
then qualitatively inferred the levels of cytokines in each subgroup (Figure 4) based on
the experimental evidence and the regression coefficients of the multivariate regression
models. Some miRNAs with positive regression coefficients in the models estimating
PANSS positive and negative subscales and PANSS total scores were reported to upregulate
IL-1β, IL-6, and TNFα, while others with negative regression coefficients were reported to
downregulate these cytokines. These results suggest that patients with high PANSS scores
(positive, negative, and total scores) could have high levels of IL-1β, IL-6, and TNFα. For
example, PANSS positive subscales were associated with high levels of miR-9 according
to the regression coefficients in the PLS models (Table S2). The miR-9 was reported to
upregulate IL-1β (Table S3). Therefore, high PANSS positive subscales were associated
with high levels of IL-1β (Figure 4). Similarly, some miRNAs with positive regression
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coefficients in the model estimating BACS composite scores were reported to downregulate
IL-1β, IL-6, and TNFα, while others with negative regression coefficients were reported to
upregulate these cytokines. These results suggest that patients with low BACS composite
scores could have high levels of IL-1β, IL-6, and TNFα.
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regression coefficients
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IL-6
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Figure 4. Patients with severe symptom scores were inferred to have high levels of IL-1β, IL-6, and
TNFα. Each input variable (i.e., miRNA) in the models estimating the symptom scores (PANSS
positive subscales, PANSS negative subscales, PANSS total scores, and BACS composite scores) has



Int. J. Mol. Sci. 2024, 25, 13522 11 of 22

either positive or negative regression coefficient. High symptom scores were associated with high
levels of miRNAs with positive regression coefficients and low levels of miRNAs with negative
regression coefficients. Several miRNAs were reported to upregulate (indicated by a standard arrow)
or downregulate (indicated by a flat-headed arrow) IL-1β, IL-6, and TNFα. High levels of miRNAs
that upregulate these cytokines and low levels of miRNAs that downregulate these cytokines were
associated with high cytokine levels. Combining these relationships, exacerbated symptoms (i.e.,
high PANSS scores and low BACS scores) were associated with high levels of these cytokines.

3. Discussion
3.1. Plasma miRNA Profiles Are Potentially Reproducible Biomarkers to Stratify
Schizophrenia Patients

The present study reproducibly demonstrated the potential of plasma miRNAs to
stratify schizophrenia patients into three subgroups, consistent with findings from previous
research [27]. The overall miRNA profiles, which are the measured miRNAs in each
study, identified three subgroups of schizophrenia patients in both the present (Figure 1A
and Table 1) and previous [27] studies. The predefined miRNAs that distinguished the
subgroups in the previous study also identified three patient subgroups in the present study
with similar miRNA patterns (Figure 1B), suggesting that the predefined miRNAs may
serve as a signature to identify comparable patient subgroups across different datasets. Our
findings demonstrated that both overall miRNAs and the predefined miRNAs identified
similar patient subgroups (Figure 1B). These findings suggest that our study identified
comparable patient subgroups to those in the previous study, even without relying on the
predefined miRNAs.

The miRNA-based identification of three patient subgroups may be robust to the
differences in the data backgrounds between the previous and present studies. One major
difference lies in the patients’ backgrounds. Races of the patients in the previous study
were ‘Black or African-America’ and White, while those in the present study were Japanese.
Additionally, the phases of symptoms were different; the previous study included acute
conditions only while the present study did not set specific inclusion criteria on the phase
of symptoms. There was also a notable difference in the severity of symptoms: mean
PANSS total scores of 93.3 ± 9.5 in the previous study and 68.4 ± 20.7 in the present
study. Furthermore, the medication protocols varied; a washout period for antipsychotics
was implemented in the previous study, whereas antipsychotic use was allowed in the
present study. The study designs also differed; the previous study recruited patients
in a clinical trial, while the present study included patients receiving routine medical
care. Another difference lies in the miRNA measurement platform; the previous study
measured 179 miRNAs, while the present study analyzed 376 miRNAs, with 136 miRNAs
shared between the two studies. Despite these differences, the plasma miRNA profiles
reproducibly identified three patient subgroups, suggesting that miRNA-based patient
stratification is robust against such variations across different studies.

Meanwhile, some findings were inconsistent between the present and previous studies.
The present study did not associate the miRNA-based subgroups with distinctive PANSS
profiles, whereas the previous study demonstrated higher PANSS scores in the miRNA-
based subgroup 2. This discrepancy may be attributed to either (1) a false-positive result
in the previous study due to its limited sample size (n = 26) or (2) a true-positive finding
that lacks robustness across the different data backgrounds mentioned above. Either way,
this discrepancy suggests that PANSS profiles are not robust surrogates for the miRNA-
based patient stratification, although the previous study suggested that both miRNAs and
PANSS profiles could be a potential biomarker to identify the patient subgroups. Thus,
miRNAs may be a more reliable biomarker than PANSS to identify patient subgroups
across the different datasets. Another discrepancy is that the present study demonstrated
less distinctive patterns of the predefined miRNAs compared with the previous study
(Figure 1B). This is presumably because the predefined miRNA was defined using the data
in the previous study only, and, thus, there is limited extrapolation capability for the data
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in the present study. There is room for further investigation to determine which miRNAs
are optimal as signatures to obtain more reproducible results on the patient stratification
across different datasets.

3.2. Plasma miRNAs Are a Potential Molecular Biomarker to Reflect Severities of Positive,
Negative, and Cognitive Symptoms

We presented a simple yet effective approach to identify symptom-related miRNAs by
combining PLS regression, leave-one-out cross validation, and forward stepwise variable
selection (Figure 2A,B). PLS is a linear regression technique that can handle multicollinearity,
thereby enabling the use of a large number of variables (e.g., 376 miRNAs), even with
small sample sizes (e.g., 41 samples) while avoiding overfitting [29]. Leave-one-out cross
validation utilizes data from limited sample sizes by using all samples in both training
and validation, while maximizing the number of training samples in each iteration of
cross validation [30]. Forward stepwise variable selection efficiently explores optimal
combinations of miRNAs with reduced computational cost by starting with a small number
of miRNAs and incrementally adding a beneficial miRNA to improve the estimation
accuracy. Their combination provides a framework to identify the optimal set of miRNAs
in estimating symptom scores. Each method can be tailored to the specific characteristics of
datasets. PLS may not be suitable to handle non-linear associations between miRNAs and
symptom scores. In such instances, non-linear alternatives like kernel PLS may be more
appropriate, although they involve higher computational demands [31]. Leave-one-out
cross validation can be computationally intensive and may lead to high variance in model
assessment. Instead, k-fold cross validation may provide more computationally efficient
and stable results, although it can have more bias in the model assessment [32]. When
forward stepwise variable selection fails to identify miRNAs with sufficient estimation
accuracy, alternative techniques such as Variable Importance in Projection [33] can be
employed, or variable selection methods can be tailored to the specific characteristics of the
data [34].

Our multivariate analysis demonstrated the potential of plasma miRNAs to estimate
the symptom scores. While multiple studies have reported correlations between individual
miRNA expression levels and symptom scores in schizophrenia using univariate analysis,
these correlations often lack reproducibility across different studies [35,36]. To address this
issue, we propose analyzing multiple miRNAs as a signature. This approach may uncover
associations that are not detectable when examining each miRNA independently. Our PLS
models using optimal miRNAs successfully estimated positive, negative, and cognitive
symptom scores in leave-one-out cross validation (Figure 2C), despite no single miRNA
significantly correlating with symptom scores in our univariate analysis (Tables 2 and S1).
This miRNA signature approach has shown promise in other contexts, such as discriminat-
ing schizophrenia patients from healthy controls [26] and identifying treatment-resistant
schizophrenia [25]. Given these results, miRNA signature-based approaches can be valu-
able for associating miRNAs with symptom scores in schizophrenia, potentially offering
improved reproducibility and robustness compared with univariate methods.

Plasma miRNAs are potential clinical biomarkers to deliver multifaceted information
including, but not limited to, symptom severity. The miRNA-based estimation of symptom
scores may serve as an objective surrogate for subjective symptom evaluations, which
can be time consuming, as in cognitive function assessments [37], thereby reducing the
burden on patients and clinicians. Additionally, miRNA-based prediction of responsiveness
to antipsychotics, as demonstrated by Pérez-Rodríguez et al. [25], may contribute to the
design of individualized treatment plans. MicroRNAs can also provide insights into other
clinically relevant factors, such as potential responses to investigational drugs and risk
of adverse effects, provided that miRNAs–factor relationships are established. Given the
cumulative nature of miRNA-associated information, a single measurement of plasma
miRNAs has potential to provide multifaceted information for precision psychiatry. Further
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exploration of the associations of miRNAs with clinical and pathophysiological parameters
is essential to expand the utility of miRNAs in psychiatric practice.

3.3. Exacerbated Positive, Negative, and Cognitive Symptoms Are Associated with
High Inflammation

Our analysis on the symptom-related miRNAs suggested inflammation as a common
pathway for pathophysiology underlying the positive, negative, and cognitive symptoms.
The miRNA set enrichment analysis on the symptom-related miRNAs for PANSS positive
subscales, PANSS negative subscales, and BACS composite scores consistently enriched
‘inflammation’ and ‘NFκB1′ (Table 3). NFκB is a master immune transcription factor,
which regulates inflammatory cytokines, including IL-1β, IL-6, and TNFα, and is involved
in the pathogenesis of schizophrenia [38,39]. These results suggest that NFκB-related
inflammatory pathways such as IL-1β, IL-6, and TNFα are associated with the symptom-
related miRNAs.

Our literature-based text mining and survey on the symptom-related miRNAs associ-
ated exacerbated symptoms with high levels of inflammation. The text mining analysis
revealed that the symptom-related miRNAs have been frequently associated with inflam-
mation, IL-1β, IL-6, and TNFα in the literature (Figure 3). In addition, our literature survey
on experimental evidence confirmed that some of those symptom-related miRNAs were
reported to upregulate or downregulate IL-1β, IL-6, and TNFα (Table S3). Logical inference
combining this literature-based experimental evidence with the regression coefficients of
the models estimating the symptom scores (Table S2) suggested that patients with severe
symptom scores have high levels of IL-1β, IL-6, and TNFα (Figure 4).

Consistent with those findings in our miRNA-based analysis, precedented research
has associated schizophrenia symptoms with inflammation. The severity of positive symp-
toms correlated with plasma IL-6 [40] and IL-1β [41] levels. The severity of negative
symptoms correlated with serum IL-1β [42,43] and IL-6 [43,44] levels and plasma TNFα
levels [42,43,45]. The severity of cognitive impairment correlated with plasma IL-1β [46]
and TNFα levels [46] and serum IL-6 levels [47]. Symptom-associated inflammation is
not limited to these three cytokines. For example, our text mining analysis associated the
symptom-related miRNAs with TGF-β1 consistently for the PANSS positive, negative, total
scores, and BACS composite scores (Figure 3B). A study reported that plasma TGF-β1
levels were correlated with PANSS total scores [48]. Thus, TGF-β1 may also be involved in
the inflammation symptom association, although we focused on IL-1β, IL-6, and TNFα as
representative pro-inflammatory cytokines.

Our text mining analysis of the symptom-related miRNAs may provide deeper insights
into the pathophysiology of schizophrenia, extending beyond inflammation. By quantify-
ing publications that associate these miRNAs with various diseases and proteins across
approximately 1850 journals, we identified numerous associations, not limited to inflam-
mation and cytokines. Further investigation into the schizophrenia’s symptom-associated
disease/proteins may provide valuable insights into the pathophysiology of schizophrenia.

Osteoarthritis, a non-inflammatory joint disorder, was among the most frequently
reported diseases associated with symptom-related miRNAs (Figure 3A). This association
through miRNAs implies that schizophrenia and osteoarthritis may share common patho-
physiological mechanisms. The potential relevance between the two diseases is supported
by epidemiological and genetic risk studies, which have demonstrated that schizophrenia
patients and individuals with high schizophrenia polygenic risk scores had a reduced risk
of osteoarthritis [49–51]. While osteoarthritis is not typically classified as an inflamma-
tory arthritis like rheumatoid arthritis, inflammatory cytokines such as IL-1β, IL-6, and
TNFα play a role in its pathogenesis [52]. Specifically, TNF-α is responsible for not only
inflammatory pain but also osteoclast proliferation and differentiation, which are closely
related to joint pain [53]. Hence, dysregulated inflammatory cytokines may potentially be
a common pathophysiology for schizophrenia and osteoarthritis. Further investigation
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into such common pathways between schizophrenia and osteoarthritis may give a clue to
enhance understandings on the pathogenesis of both diseases.

PTEN, which is a tumor suppressor gene and inhibits the PI3K/AKT pathway [54], was
among the most frequently reported proteins associated with the symptom-related miRNAs
(Figure 3B). The association between PTEN and schizophrenia via miRNAs implies that
PTEN is involved in the pathophysiological mechanisms of the symptoms. Consistent with
our findings, research has associated the PTEN/PI3K/AKT axis with the pathogenesis of
schizophrenia [55,56]. For instance, genetic variants regarding PI3K/AKT were associated
with the risk of schizophrenia, suggesting PI3K/AKT is one of the causal mechanisms
of schizophrenia [57,58]. In addition, antipsychotics have ameliorated schizophrenia-like
behavior through a mechanism dependent on the PI3K/AKT axis in a rat model [59]. Our
miRNA-based findings corroborate the PTEN/PI3K/AKT axis as one of the key pathways
of schizophrenia and, thus, a potential target for schizophrenia treatment. In addition to
schizophrenia treatment, antipsychotics have demonstrated anti-glioblastoma activity by
stabilizing PTEN, suggesting that the PTEN/PI3K/AKT axis is also a potential target for
glioblastoma [60]. Collectively, miRNA research in schizophrenia has potential to expand
insights into the pathophysiology and treatments of other diseases as well as schizophrenia.

3.4. Anti-Inflammatory Treatments Are Potentially Effective for Positive, Negative, and Cognitive
Symptoms in a Specific Population

Anti-inflammatory drugs have demonstrated their potential to improve positive,
negative, and cognitive symptoms. Cho et al. conducted a meta-analysis of adjuvant anti-
inflammatory drugs [61]. Their meta-analysis demonstrated that, overall, anti-inflammatory
agents significantly reduced PANSS total, positive, and negative symptom scores, and
minocycline and pregnenolone significantly improved cognitive symptoms. They also
revealed that the effects of anti-inflammatory agents for the positive symptoms were en-
hanced in patients with high total PANSS scores at baseline. Their subgroup analysis
especially indicated that aspirin was more effective for clinical trials with high PANSS total
scores for the recruited patients, suggesting that there is heterogeneity among schizophre-
nia patients in terms of responsiveness to the anti-inflammatory treatments as well as
antipsychotics.

Patients with high inflammatory backgrounds might demonstrate enhanced therapeu-
tic benefits from anti-inflammatory drugs. As discussed in the previous section, both our
miRNA-based findings and existing research indicate that exacerbated symptoms can be
associated with high levels of inflammation. These observations suggest that individuals
with more severe symptoms, which may reflect higher inflammatory states, could be more
responsive to anti-inflammatory drugs. Additionally, high levels of inflammation have
been linked to treatment-resistant schizophrenia [62]. Thus, anti-inflammatory treatments
may offer potential benefits for those patients. To clinically verify this hypothesis and
optimize treatment strategies, it is essential to identify such high-inflammation patients
using reliable clinical biomarkers.

Plasma miRNAs are potential biomarkers to identify patients with high inflammation,
who may benefit from anti-inflammatory treatments. Two strategies can be considered
for using miRNAs to identify such patients. The first approach is to identify patient
subgroups based on miRNA profiles and select specific subgroups. Our previous study
revealed that subgroups 1 and 2 had higher inflammation; therefore, anti-inflammatory
drugs might be effective for patients in subgroups 1 and 2, corresponding to subgroups
1′ and 2′ in the present study (Figure 1B). The second approach is to select patients who
are estimated to have high symptom scores based on miRNA profiles. The miRNAs
adopted in our PLS model are expected to reflect the levels of inflammatory cytokines
(Figure 4). Consequently, selecting patients with high estimated symptom scores may
indirectly identify those with high inflammation. Given the advantageous features of
plasma miRNAs as clinical biomarkers, including their high stability after blood sampling,
miRNAs represent a promising approach to identify patients with high inflammation.
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This strategy potentially enhances the efficacy of anti-inflammatory drugs. The plasma
miRNA-based patient stratification may lead to the realization of personalized therapeutic
interventions for schizophrenia.

3.5. Limitations of This Study Inform Directions for Future Research

The sample size and diversity of patients in this study may still be insufficient to
generalize our findings. While plasma miRNA profiles reproducibly identified three
subgroups of patients, we were unable to evaluate the influence of demographic factors such
as ethnicity or symptom scores on the subgroup identification. Regarding the estimation of
symptom scores using plasma miRNA levels, we could only assess estimation accuracy
through cross validation, and we cannot rule out the possibility that the selected miRNAs
may be overfitted to this particular dataset. It is necessary to evaluate its performance on
an independent test set to determine the true generalizability of our models. Additionally,
this study analyzed miRNA expression at only one time point per subject. Longitudinal
evaluations could provide insights into whether these profiles indicate stable traits or
fluctuating states in individuals. Increasing the sample size and including a more diverse
patient population would enhance the robustness and generalizability of the subgroup
identifications and the symptom score estimation.

The patient subgroups were identified based on the relative levels of miRNAs among
patients in each study, as visualized in the heatmap of miRNA profiles (Figure 1). However,
due to the use of different miRNA measurement platforms, the miRNA levels and color
scales in the present study are not directly comparable to those in the previous study [27].
Consequently, it is uncertain whether subgroup 2 in the previous study and subgroup
2′ in the present study represent the same patient population. With a view to develop
a diagnostic biomarker to determine which subgroup each patient belongs to in clinical
practice, it would require an approach that enables assessment on a patient-by-patient basis.
To achieve this, it would be essential to establish a consistent and robust measurement
platform along with an appropriate discrimination model. Measurement platforms need to
be validated for the intended use, e.g., as clinical biomarkers in clinical practice, because
they have different reproducibility, bias, specificity, sensitivity, and accuracy [63,64]. A
discrimination model may, for example, calculate a composite score based on a miRNA
signature and set a threshold to determine whether an individual patient belongs to a
specific subgroup.

The patient population in this study reflects the diverse patient demographics encoun-
tered in routine clinical practice, rather than adhering to strict inclusion/exclusion criteria
typical of clinical trials. Several factors were not controlled, including treatment history
with antipsychotics, dietary habits, and smoking status. To evaluate the potential impact of
these uncontrolled variables on miRNA-based patient stratification and symptom severity
estimation, future investigations would require appropriately controlled patient cohorts
with standardized protocols for confounding factor management.

Our approach to interpreting miRNA functions combines three literature-based meth-
ods (i.e., miRNA set enrichment, text mining, and manual literature survey) but is still
not exhaustive. The miRNA set enrichment analysis tool TAM2.0 [65], which utilizes a
literature-derived database of miRNA–pathway associations, has not been updated since
2020, thus failing to reflect recent research findings. The text mining tool EmBiology, used
to quantify miRNA-protein/disease associations, has several limitations. Its full-text search
was restricted to approximately 1850 journals, with half from Elsevier B.V. and half from
other publishers. Moreover, its text-based associations do not guarantee experimental
validation. In addition, the simple enumeration of literature reports without normalizing
for pathway frequency across all journals may overrepresent commonly studied pathways
such as inflammation. Our manual literature survey, which explored experimental ev-
idence of miRNA effects on cytokines, cannot ensure comprehensive journal coverage
due to the labor-intensive nature of the literature search and perusal of experimental con-
ditions and results. Additionally, we focused on the experimental evidence supporting
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the hypothesis that exacerbated symptoms are associated with high inflammation. How-
ever, there could exist conflicting evidence for functions of miRNAs on cytokines. For
instance, one study demonstrated miR-16 mimic upregulated TNFα in HT29 cells [66]
(Table S3), while another found it downregulated TNFα in NH7A cells [67]. An automatic
and objective survey would enable us to compare such conflicting evidence comprehen-
sively, thereby determining which direction of regulatory function (e.g., whether miR-16
upregulates or downregulates TNFα) is more plausible. The development of an artificial
intelligence-based literature search tool capable of analyzing both text and figures from a
broader range of journals would enhance the comprehensiveness and objectivity of miRNA
functional analysis.

While this study focused on miRNAs, other small non-coding RNAs may also po-
tentially serve as clinical biomarkers to stratify patients and investigate symptom-related
molecular mechanisms. For example, transfer RNA fragments (tRFs) share several similar-
ities with miRNAs in terms of their biological functions and molecular structure [68,69].
Both tRFs and miRNAs regulate gene expression at the post-transcriptional level by binding
to target mRNAs. Additionally, tRFs are expected to have high post-sampling stability due
to their short RNA chain length, similar to miRNAs, making them attractive candidates as
a potential clinical biomarker. Future research should consider including tRFs in analyses
to provide a more comprehensive understanding of small RNA-mediated gene regulation
in schizophrenia.

4. Materials and Methods
4.1. Study Population

This study was conducted as an exploratory investigation utilizing the samples in the
biobank of National Center of Neurology and Psychiatry (NCNP, Tokyo, Japan), which
is an ISO 20387 accredited biobank, and was approved by the Ethical Research Practice
Committee of Daiichi Sankyo Co., Ltd. (Tokyo, Japan). Schizophrenia patients underwent a
structured interview using the Mini-International Neuropsychiatric Interview (M.I.N.I) [70],
Japanese version, administered by trained psychologists or psychiatrists. A consensus
diagnosis was made according to the DSM-IV criteria on the basis of the M.I.N.I, additional
unstructured interviews, and information from medical records. Patients with a history
of central nervous system disease or severe head injury were excluded. Seventy patients
were assessed by PANSS [5]. Forty-one patients out of the seventy patients were assessed
using the Japanese version of the BACS [71]. BACS composite scores were calculated by
averaging the z-scores of the six subtests based on the mean and standard deviation from a
healthy control group for each age group and sex [72].

4.2. Plasma Sample Preparation

Blood samples were collected from the patients within 67 days (mean 2.6 days) of the
PANSS assessment and 412 days (mean 5.9 days) of the BACS assessment. The blood sample
collection was performed via venipuncture into 7 mL EDTA-2Na-containing vacuum blood
collection tubes (VENOJECT II, Terumo, Tokyo, Japan). The samples were centrifuged at
2500× g for 10 min at 4 ◦C, dispensed in screw-capped polypropylene tubes (96 Jacket Tubes
1.3 mL internal type, FCR&Bio Co., Ltd., Hyogo, Japan). The resulting plasma samples
were stored in a deep freezer (−80 ◦C). The plasma samples were further centrifuged at
2500× g for 15 min at room temperature, and their supernatant (platelet-poor plasma) was
used for RNA extraction.

4.3. MicroRNA Measurement

We measured miRNA levels in the plasma samples obtained from all 70 patients.
RNA was extracted from the platelet-poor plasma samples using the Maxwell RSC miRNA
Plasma and Serum kit and the Maxwell RSC system (Promega, Madison, WI, USA) in accor-
dance with the manufacturer’s recommendation. Extracted RNAs were reverse transcribed
to cDNAs by conformational restricted miRNA specific-RT primers and the ID3EAL cDNA



Int. J. Mol. Sci. 2024, 25, 13522 17 of 22

Synthesis System (MiRXES Pte Ltd., Singapore). Expression levels of 376 miRNAs were
quantified using MiRXES ID3EALTM PanoramiR miRNA assays (MiRXES Pte Ltd.) based
on real-time polymerase chain reaction. The miRNA quantification results are presented
as a raw threshold cycle (Ct value), which represents the polymerase chain reaction cycle
upon reaching a designated threshold amplification level. The miRNAs of which ampli-
fication levels did not reach the designated threshold after 40-cycle amplification were
considered below the limit of quantification and were regarded as 41-cycle amplification
(Ct value = 41). We applied a global mean normalization to the miRNA Ct values using
Equation (1), which is the same as in the previous study [27], because the global mean nor-
malization outperforms the normalization using stable internal controls in terms of better
reduction in technical variation and more accurate appreciation of biological changes [73].

mi,j = −
(

ci,j −
∑itotal

i=1 ci,j

itotal

)
, (1)

where mi,j is the normalized miRNA level of the i-th miRNA in the j-th sample,ci,j is the Ct
value of the i-th miRNA in the j-th sample, itotal is the total number of miRNAs (i.e., 376),
and the negative sign outside parentheses converts the Ct values into the miRNA levels so
that higher miRNA levels correspond to higher miRNA concentrations (otherwise, higher
miRNA levels correspond to lower miRNA concentrations).

Hierarchical clustering analysis for the plasma samples on miRNA levels was per-
formed using the unweighted pair group method with arithmetic mean method and
Euclidean distance on Python 3.9.10 (Python Software Foundation, Wilmington, DE, USA).
The schizophrenia patients were clustered into subgroups according to the characteris-
tic patterns of miRNA levels. The heatmap was visualized using Microsoft® Excel® for
Microsoft 365 MSO 16.0.13127.21490 (Microsoft, Redmond, WA, USA).

4.4. Correlation Analysis Between miRNAs and Symptom Scores

We evaluated the association between individual miRNAs and the symptom scores
(i.e., PANSS total scores, PANSS positive subscales, PANSS negative subscales, PANSS
general psychopathy subscales, and BACS composite scores) using univariate analysis.
Pearson correlation coefficients were calculated to assess the relationship between each
miRNA level and the symptom scores. The correlations were considered significant when
the Benjamini–Hochberg corrected p was less than 0.05.

4.5. Extracting Symptom-Related miRNAs via Variable Selection in Multivariate
Regression Models

We evaluated the association between multiple miRNAs and the symptom scores
using multivariate analysis. Multivariate regression models were built by applying PLS to
z-score normalized input and reference variables [29]. The input variables are the miRNA
levels, while the reference variables are the observed symptom scores. The number of
latent variables, which is the tuning parameter in PLS, was determined so that RMSECV in
leave-one-out cross validation was minimized in a range from one to three. The optimal
combination of miRNAs was determined by the forward variable selection [74], which
is an iterative process that begins with an empty model and sequentially adds the input
variable that improves RMSECV the most until no remaining variables improve RMSECV.
We regarded the optimal combination of miRNAs as symptom-related miRNAs. The final
model for each symptom was calibrated using the symptom-related miRNAs of all the
samples to obtain regression coefficients.

4.6. MicroRNA Set Enrichment Analysis for Symptom-Related miRNAs

MicroRNA set enrichment analysis was performed using TAM 2.0 [65]. TAM 2.0
is a web-based tool that compares query miRNAs with reference miRNA sets to infer
functional associations. These reference sets were derived from manual curation of over
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9000 papers and were last updated in 2020. We used the symptom-related miRNAs as the
query miRNAs and selected ‘Mask cancer-related terms’ and ‘Mask non-standard terms’ in
the analysis settings. We filtered the enriched terms using the following acceptance criteria:
(i) category is either ‘Tissue Specificity’, ‘Function’, or ‘Transcription Factor’; (ii) multiple
miRNAs are mapped; and (iii) false discovery rate < 0.05 as statistical significance for
the enrichment. TAM 2.0 automatically maps the query miRNAs to their corresponding
miRNA genes, collapsing mature miRNA names (e.g., hsa-miR-144-5p to hsa-miR-144)
including all available duplicated genes (e.g., hsa-miR-194-5p to both hsa-miR-194-1 and
hsa-miR-194-2). As a result, the number of mapped miRNAs could be larger than the
number of query miRNAs.

4.7. Literature-Based Text Mining for miRNA-Associated Proteins/Diseases

We conducted an unbiased quantification of publications that associate miRNAs
with diseases or proteins using EmBiology (Elsevier B.V., Amsterdam, The Netherlands).
EmBiology extracts biological relationships between a query entity and predefined entities
through natural language processing for studies. The predefined entities are categorized
into several groups such as ‘proteins’, which contains IL-6 and TNF, and ‘diseases’, which
contains schizophrenia and inflammation. The literature text includes the full texts of
approximately 1850 scientific journals (ca. 925 journals from Elsevier B.V. and ca. 925 from
other publishers) and approximately 36 million abstracts, including the latest publications.
For example, when ‘miR-123′ is given as the query entity, EmBiology identifies descriptions
such as ‘transfection of miR-123 decreased IL-6′, thereby recognizing that miR-123 is
associated with IL-6.

Given a set of symptom-related miRNAs as the query entities, we quantified the
publications that associate each miRNA with the predefined entities using EmBiology,
filtered the associated entities by the categories ‘diseases’ or ‘proteins’, and reported the total
number of the publications for all the miRNAs per each category. For the disease, oncology-
related terms (e.g., ‘neoplasm’ and ‘metastasis’) were excluded. The text mining analysis
was conducted in June 2024 to include recent research findings (especially compared with
TAM2.0, which is based on data up to 2020).

4.8. Literature-Based Inference on Regulatory Functions of miRNAs on
Pro-Inflammatory Cytokines

We explored experimental evidence on the regulatory functions (i.e., upregulation or
downregulation) of miRNAs on representative pro-inflammatory cytokines (i.e., IL-1β, IL-6,
and TNFα) through a manual literature survey. We focused on the experimental evidence
supporting the hypothesis that exacerbated symptoms are associated with high inflamma-
tion. We considered experimental data from the literature as experimental evidence if the
experiments involve intervention with a specific miRNA (e.g., transfection of an agonistic
miRNA or a miRNA inhibitor) and measurement of the cytokines (e.g., protein levels of
IL-1β by enzyme-linked immunosorbent assay) in any species and any tissue. We accepted
the regulatory functions of miRNAs on the cytokines as hypothetical pathways if these
functions were demonstrated in at least two independent experimental studies.

5. Conclusions

MicroRNAs are a potential biomarker to identify patient subgroups reflecting patho-
physiological conditions and to investigate symptom-related molecular mechanisms in
schizophrenia. Patient-derived miRNAs offer promising potential for advancing precision
medicine by enabling patient stratification in clinical settings and enhancing our under-
standing of symptom-related pathogenesis, thereby facilitating both personalized treatment
strategies and targeted drug development.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms252413522/s1.

https://www.mdpi.com/article/10.3390/ijms252413522/s1
https://www.mdpi.com/article/10.3390/ijms252413522/s1


Int. J. Mol. Sci. 2024, 25, 13522 19 of 22

Author Contributions: Conceptualization, T.M. (Takuya Miyano), M.H. and T.M. (Tsuyoshi Mikkaichi);
methodology, T.M. (Takuya Miyano); software, T.M. (Takuya Miyano); validation, T.M. (Takuya Miyano);
formal analysis, T.M. (Takuya Miyano); investigation, T.M. (Takuya Miyano); resources, N.Y., K.H.
and N.K.; data curation, N.Y., K.H. and T.M. (Takuya Miyano); writing—original draft preparation,
T.M. (Takuya Miyano); writing—review and editing, M.H., N.Y., K.H., T.M. (Tsuyoshi Mikkaichi) and
N.K.; visualization, T.M. (Takuya Miyano); supervision, N.Y., K.H. and N.K.; project administration,
N.Y., K.H. and N.K.; funding acquisition, N.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was sponsored by Daiichi Sankyo Co., Ltd.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethical Research Practice Committee of Daiichi Sankyo Co., Ltd.
(registration code 000978, approved on 19 May 2022).

Informed Consent Statement: Broad informed consent for the NCNP biobank was obtained from
all participants.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We extend our gratitude to the members of the Department of Psychiatry
and Department of Bioresources at the NCNP, especially Makoto Matsui, Ayumu Wada, Chinatsu
Fujimaki, Kana Nakachi, Takahiro Tomizawa, Naoko Ishihara, and Ryo Matsumura for their valuable
support for symptom assessments.

Conflicts of Interest: T.M. (Takuya Miyano), M.H., T.M. (Tsuyoshi Mikkaichi), and N.K. are employees
of Daiichi Sankyo Co., Ltd. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

References
1. Fountoulakis, K.N.; Dragioti, E.; Theofilidis, A.T.; Wikilund, T.; Atmatzidis, X.; Nimatoudis, I.; Thys, E.; Wampers, M.; Hra-

nov, L.; Hristova, T.; et al. Staging of Schizophrenia with the Use of PANSS: An International Multi-Center Study. Int. J.
Neuropsychopharmacol. 2019, 22, 681–697. [CrossRef] [PubMed]

2. Correll, C.U.; Schooler, N.R. Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment,
and Treatment. Neuropsychiatr. Dis. Treat. 2020, 16, 519–534. [CrossRef] [PubMed]

3. van Os, J.; Kapur, S. Schizophrenia. Lancet 2009, 374, 635–645. [CrossRef] [PubMed]
4. Kumari, S.; Malik, M.; Florival, C.; Manalai, P.; Sonje, S. An Assessment of Five (PANSS, SAPS, SANS, NSA-16, CGI-SCH)

commonly used Symptoms Rating Scales in Schizophrenia and Comparison to Newer Scales (CAINS, BNSS). J. Addict. Res. Ther.
2017, 8, 324. [CrossRef] [PubMed]

5. Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13,
261–276. [CrossRef]

6. Keefe, R.S.E.; Goldberg, T.E.; Harvey, P.D.; Gold, J.M.; Poe, M.P.; Coughenour, L. The Brief Assessment of Cognition in
Schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr. Res. 2004, 68, 283–297.
[CrossRef]

7. Lefort-Besnard, J.; Varoquaux, G.; Derntl, B.; Gruber, O.; Aleman, A.; Jardri, R.; Sommer, I.; Thirion, B.; Bzdok, D. Patterns of
schizophrenia symptoms: Hidden structure in the PANSS questionnaire. Transl. Psychiatry 2018, 8, 237. [CrossRef]

8. Case, M.; Stauffer, V.L.; Ascher-Svanum, H.; Conley, R.; Kapur, S.; Kane, J.M.; Kollack-Walker, S.; Jacob, J.; Kinon, B.J. The
heterogeneity of antipsychotic response in the treatment of schizophrenia. Psychol. Med. 2011, 41, 1291–1300. [CrossRef]

9. Elkis, H.; Buckley, P.F. Treatment-Resistant Schizophrenia. Psychiatr. Clin. N. Am. 2016, 39, 239–265. [CrossRef]
10. McCutcheon, R.A.; Keefe, R.S.E.; McGuire, P.K. Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and

treatment. Mol. Psychiatry 2023, 28, 1902–1918. [CrossRef]
11. Bowen, E.F.W.; Burgess, J.L.; Granger, R.; Kleinman, J.E.; Rhodes, C.H. DLPFC transcriptome defines two molecular subtypes of

schizophrenia. Transl. Psychiatry 2019, 9, 147. [CrossRef] [PubMed]
12. Childers, E.; Bowen, E.F.W.; Rhodes, C.H.; Granger, R. Immune-Related Genomic Schizophrenic Subtyping Identified in DLPFC

Transcriptome. Genes 2022, 13, 1200. [CrossRef] [PubMed]
13. Hertzberg, L.; Maggio, N.; Muler, I.; Yitzhaky, A.; Majer, M.; Haroutunian, V.; Zuk, O.; Katsel, P.; Domany, E.; Weiser, M.

Comprehensive Gene Expression Analysis Detects Global Reduction of Proteasome Subunits in Schizophrenia. Schizophr. Bull.
2021, 47, 785–795. [CrossRef] [PubMed]

https://doi.org/10.1093/ijnp/pyz053
https://www.ncbi.nlm.nih.gov/pubmed/31563956
https://doi.org/10.2147/NDT.S225643
https://www.ncbi.nlm.nih.gov/pubmed/32110026
https://doi.org/10.1016/S0140-6736(09)60995-8
https://www.ncbi.nlm.nih.gov/pubmed/19700006
https://doi.org/10.4172/2155-6105.1000324
https://www.ncbi.nlm.nih.gov/pubmed/29430333
https://doi.org/10.1093/schbul/13.2.261
https://doi.org/10.1016/j.schres.2003.09.011
https://doi.org/10.1038/s41398-018-0294-4
https://doi.org/10.1017/S0033291710001893
https://doi.org/10.1016/j.psc.2016.01.006
https://doi.org/10.1038/s41380-023-01949-9
https://doi.org/10.1038/s41398-019-0472-z
https://www.ncbi.nlm.nih.gov/pubmed/31073119
https://doi.org/10.3390/genes13071200
https://www.ncbi.nlm.nih.gov/pubmed/35885983
https://doi.org/10.1093/schbul/sbaa160
https://www.ncbi.nlm.nih.gov/pubmed/33141894


Int. J. Mol. Sci. 2024, 25, 13522 20 of 22

14. Schwarz, E.; van Beveren, N.J.M.; Ramsey, J.; Leweke, F.M.; Rothermundt, M.; Bogerts, B.; Steiner, J.; Guest, P.C.; Bahn, S.
Identification of subgroups of schizophrenia patients with changes in either immune or growth factor and hormonal pathways.
Schizophr. Bull. 2014, 40, 787–795. [CrossRef]

15. Leirer, D.J.; Iyegbe, C.O.; Di Forti, M.; Patel, H.; Carra, E.; Fraietta, S.; Colizzi, M.; Mondelli, V.; Quattrone, D.; Lally, J.; et al.
Differential gene expression analysis in blood of first episode psychosis patients. Schizophr. Res. 2019, 209, 88–97. [CrossRef]

16. Schwarz, E.; Guest, P.C.; Steiner, J.; Bogerts, B.; Bahn, S. Identification of blood-based molecular signatures for prediction of
response and relapse in schizophrenia patients. Transl. Psychiatry 2012, 2, e82. [CrossRef]

17. Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat.
Biotechnol. 2006, 24, 971–983. [CrossRef]

18. Islam, M.N.; Masud, M.K.; Haque, M.H.; Hossain, M.S.A.; Yamauchi, Y.; Nguyen, N.-T.; Shiddiky, M.J.A. RNA Biomarkers:
Diagnostic and Prognostic Potentials and Recent Developments of Electrochemical Biosensors. Small Methods 2017, 1, 1700131.
[CrossRef]

19. Lim, M.; Carollo, A.; Neoh, M.J.Y.; Esposito, G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int. J. Mol.
Sci. 2022, 24, 436. [CrossRef]

20. Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant,
K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008,
105, 10513–10518. [CrossRef]

21. Brase, J.C.; Wuttig, D.; Kuner, R.; Sultmann, H. Serum microRNAs as non-invasive biomarkers for cancer. Mol. Cancer 2010, 9, 306.
[CrossRef] [PubMed]

22. Srivastava, A.; Filant, J.; Moxley, K.M.; Sood, A.; McMeekin, S.; Ramesh, R. Exosomes: A role for naturally occurring nanovesicles
in cancer growth, diagnosis and treatment. Curr. Gene Ther. 2015, 15, 182–192. [CrossRef] [PubMed]

23. Xu, L.; Yang, B.F.; Ai, J. MicroRNA transport: A new way in cell communication. J. Cell Physiol. 2013, 228, 1713–1719. [CrossRef]
24. Ma, Z.X.; Liu, Z.; Xiong, H.H.; Zhou, Z.P.; Ouyang, L.S.; Xie, F.K.; Tang, Y.M.; Wu, Z.D.; Feng, Y. MicroRNAs: Protective regulators

for neuron growth and development. Neural Regen. Res. 2023, 18, 734–745. [CrossRef]
25. Pérez-Rodríguez, D.; Penedo, M.A.; Rivera-Baltanás, T.; Peña-Centeno, T.; Burkhardt, S.; Fischer, A.; Prieto-González, J.M.;

Olivares, J.M.; López-Fernández, H.; Agís-Balboa, R.C. MiRNA Differences Related to Treatment-Resistant Schizophrenia. Int. J.
Mol. Sci. 2023, 24, 1891. [CrossRef]

26. Lai, C.Y.; Yu, S.L.; Hsieh, M.H.; Chen, C.H.; Chen, H.Y.; Wen, C.C.; Huang, Y.H.; Hsiao, P.C.; Hsiao, C.K.; Liu, C.M.; et al.
MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS ONE 2011, 6, e21635.
[CrossRef]

27. Miyano, T.; Mikkaichi, T.; Nakamura, K.; Yoshigae, Y.; Abernathy, K.; Ogura, Y.; Kiyosawa, N. Circulating microRNA Profiles
Identify a Patient Subgroup with High Inflammation and Severe Symptoms in Schizophrenia Experiencing Acute Psychosis. Int.
J. Mol. Sci. 2024, 25, 4291. [CrossRef]

28. West, M.; Ginsburg, G.S.; Huang, A.T.; Nevins, J.R. Embracing the complexity of genomic data for personalized medicine. Genome
Res. 2006, 16, 559–566. [CrossRef]

29. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130.
[CrossRef]

30. Cheng, H.; Garrick, D.J.; Fernando, R.L. Efficient strategies for leave-one-out cross validation for genomic best linear unbiased
prediction. J. Anim. Sci. Biotechnol. 2017, 8, 38. [CrossRef]

31. Rosipal, R. Nonlinear partial least squares an overview. In Chemoinformatics and Advanced Machine Learning Perspectives: Complex
Computational Methods and Collaborative Techniques; IGI Global: Hershey, PA, USA, 2011; pp. 169–189.

32. Shao, J. Linear Model Selection by Cross-validation. J. Am. Stat. Assoc. 1993, 88, 486–494. [CrossRef]
33. Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab.

Syst. 2005, 78, 103–112. [CrossRef]
34. Miyano, T.; Fujiwara, K.; Kano, M.; Tanabe, H.; Nakagawa, H.; Watanabe, T.; Minami, H. Efficient wavenumber selection based

on spectral fluctuation dividing and correlation-based clustering for calibration modeling. Chemom. Intell. Lab. Syst. 2015, 148,
85–94. [CrossRef]

35. Martinez, B.; Peplow, P.V. MicroRNAs as potential biomarkers for diagnosis of schizophrenia and influence of antipsychotic
treatment. Neural Regen. Res. 2024, 19, 1523–1531. [CrossRef]

36. Grosu, S, .A.; Dobre, M.; Milanesi, E.; Hinescu, M.E. Blood-Based MicroRNAs in Psychotic Disorders—A Systematic Review.
Biomedicines 2023, 11, 2536. [CrossRef]

37. Nuechterlein, K.H.; Nasrallah, H.; Velligan, D. Measuring Cognitive Impairments Associated with Schizophrenia in Clinical
Practice: Overview of Current Challenges and Future Opportunities. Schizophr. Bull. 2024, sbae051. [CrossRef]

38. Murphy, C.E.; Walker, A.K.; Weickert, C.S. Neuroinflammation in schizophrenia: The role of nuclear factor kappa B. Transl.
Psychiatry 2021, 11, 528. [CrossRef]

39. Song, X.Q.; Lv, L.X.; Li, W.Q.; Hao, Y.H.; Zhao, J.P. The interaction of nuclear factor-kappa B and cytokines is associated with
schizophrenia. Biol. Psychiatry 2009, 65, 481–488. [CrossRef]

40. Ding, M.; Song, X.; Zhao, J.; Gao, J.; Li, X.; Yang, G.; Wang, X.; Harrington, A.; Fan, X.; Lv, L. Activation of Th17 cells in drug
naïve, first episode schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 51, 78–82. [CrossRef]

https://doi.org/10.1093/schbul/sbt105
https://doi.org/10.1016/j.schres.2019.05.011
https://doi.org/10.1038/tp.2012.3
https://doi.org/10.1038/nbt1235
https://doi.org/10.1002/smtd.201700131
https://doi.org/10.3390/ijms24010436
https://doi.org/10.1073/pnas.0804549105
https://doi.org/10.1186/1476-4598-9-306
https://www.ncbi.nlm.nih.gov/pubmed/21110877
https://doi.org/10.2174/1566523214666141224100612
https://www.ncbi.nlm.nih.gov/pubmed/25537774
https://doi.org/10.1002/jcp.24344
https://doi.org/10.4103/1673-5374.353481
https://doi.org/10.3390/ijms24031891
https://doi.org/10.1371/journal.pone.0021635
https://doi.org/10.3390/ijms25084291
https://doi.org/10.1101/gr.3851306
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1186/s40104-017-0164-6
https://doi.org/10.1080/01621459.1993.10476299
https://doi.org/10.1016/j.chemolab.2004.12.011
https://doi.org/10.1016/j.chemolab.2015.09.009
https://doi.org/10.4103/1673-5374.387966
https://doi.org/10.3390/biomedicines11092536
https://doi.org/10.1093/schbul/sbae051
https://doi.org/10.1038/s41398-021-01607-0
https://doi.org/10.1016/j.biopsych.2008.10.018
https://doi.org/10.1016/j.pnpbp.2014.01.001


Int. J. Mol. Sci. 2024, 25, 13522 21 of 22

41. Lesh, T.A.; Careaga, M.; Rose, D.R.; McAllister, A.K.; Van de Water, J.; Carter, C.S.; Ashwood, P. Cytokine alterations in first-
episode schizophrenia and bipolar disorder: Relationships to brain structure and symptoms. J. Neuroinflamm. 2018, 15, 165.
[CrossRef]

42. Zhu, F.; Zhang, L.; Liu, F.; Wu, R.; Guo, W.; Ou, J.; Zhang, X.; Zhao, J. Altered Serum Tumor Necrosis Factor and Interleukin-1β in
First-Episode Drug-Naive and Chronic Schizophrenia. Front. Neurosci. 2018, 12, 296. [CrossRef] [PubMed]

43. Dunleavy, C.; Elsworthy, R.J.; Upthegrove, R.; Wood, S.J.; Aldred, S. Inflammation in first-episode psychosis: The contribution of
inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr. Scand.
2022, 146, 6–20. [CrossRef] [PubMed]

44. Dahan, S.; Bragazzi, N.L.; Yogev, A.; Bar-Gad, M.; Barak, V.; Amital, H.; Amital, D. The relationship between serum cytokine
levels and degree of psychosis in patients with schizophrenia. Psychiatry Res. 2018, 268, 467–472. [CrossRef] [PubMed]

45. Goldsmith, D.R.; Haroon, E.; Miller, A.H.; Strauss, G.P.; Buckley, P.F.; Miller, B.J. TNF-α and IL-6 are associated with the deficit
syndrome and negative symptoms in patients with chronic schizophrenia. Schizophr. Res. 2018, 199, 281–284. [CrossRef] [PubMed]

46. Baek, S.H.; Kim, H.; Kim, J.W.; Ryu, S.; Lee, J.Y.; Kim, J.M.; Shin, I.S.; Kim, S.W. Association between Peripheral Inflammatory
Cytokines and Cognitive Function in Patients with First-Episode Schizophrenia. J. Pers. Med. 2022, 12, 1137. [CrossRef]

47. Ribeiro-Santos, R.; de Campos-Carli, S.M.; Ferretjans, R.; Teixeira-Carvalho, A.; Martins-Filho, O.A.; Teixeira, A.L.; Salgado, J.V.
The association of cognitive performance and IL-6 levels in schizophrenia is influenced by age and antipsychotic treatment. Nord.
J. Psychiatry 2020, 74, 187–193. [CrossRef]

48. Li, H.; Zhang, Q.; Li, N.; Wang, F.; Xiang, H.; Zhang, Z.; Su, Y.; Huang, Y.; Zhang, S.; Zhao, G.; et al. Plasma levels of Th17-related
cytokines and complement C3 correlated with aggressive behavior in patients with schizophrenia. Psychiatry Res. 2016, 246,
700–706. [CrossRef]

49. Mors, O.; Mortensen, P.B.; Ewald, H. A population-based register study of the association between schizophrenia and rheumatoid
arthritis. Schizophr. Res. 1999, 40, 67–74. [CrossRef]

50. Sellgren, C.; Frisell, T.; Lichtenstein, P.; Landèn, M.; Askling, J. The association between schizophrenia and rheumatoid arthritis:
A nationwide population-based Swedish study on intraindividual and familial risks. Schizophr. Bull. 2014, 40, 1552–1559.
[CrossRef]

51. Zhang, R.; Sjölander, A.; Ploner, A.; Lu, D.; Bulik, C.M.; Bergen, S.E. Novel disease associations with schizophrenia genetic risk
revealed in ~400,000 UK Biobank participants. Mol. Psychiatry 2022, 27, 1448–1454. [CrossRef]

52. Dainese, P.; Wyngaert, K.V.; De Mits, S.; Wittoek, R.; Van Ginckel, A.; Calders, P. Association between knee inflammation and
knee pain in patients with knee osteoarthritis: A systematic review. Osteoarthr. Cartil. 2022, 30, 516–534. [CrossRef] [PubMed]

53. Yu, H.; Huang, T.; Lu, W.W.; Tong, L.; Chen, D. Osteoarthritis Pain. Int. J. Mol. Sci. 2022, 23, 4642. [CrossRef] [PubMed]
54. Carracedo, A.; Pandolfi, P.P. The PTEN-PI3K pathway: Of feedbacks and cross-talks. Oncogene 2008, 27, 5527–5541. [CrossRef]

[PubMed]
55. Matsuda, S.; Ikeda, Y.; Murakami, M.; Nakagawa, Y.; Tsuji, A.; Kitagishi, Y. Roles of PI3K/AKT/GSK3 Pathway Involved in

Psychiatric Illnesses. Diseases 2019, 7, 22. [CrossRef]
56. Enriquez-Barreto, L.; Morales, M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and

Schizophrenia. Mol. Cell Ther. 2016, 4, 2. [CrossRef]
57. Duan, S.; Gao, R.; Xing, Q.; Du, J.; Liu, Z.; Chen, Q.; Wang, H.; Feng, G.; He, L. A family-based association study of schizophrenia

with polymorphisms at three candidate genes. Neurosci. Lett. 2005, 379, 32–36. [CrossRef]
58. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated

genetic loci. Nature 2014, 511, 421–427. [CrossRef]
59. Nawwar, D.A.; Zaki, H.F.; Sayed, R.H. Role of the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in the anti-psychotic

effects of aripiprazole and sertindole in ketamine-induced schizophrenia-like behaviors in rats. Inflammopharmacology 2022, 30,
1891–1907. [CrossRef]

60. Jacob, J.R.; Palanichamy, K.; Chakravarti, A. Antipsychotics possess anti-glioblastoma activity by disrupting lysosomal function
and inhibiting oncogenic signaling by stabilizing PTEN. Cell Death Dis. 2024, 15, 414. [CrossRef]

61. Cho, M.; Lee, T.Y.; Kwak, Y.B.; Yoon, Y.B.; Kim, M.; Kwon, J.S. Adjunctive use of anti-inflammatory drugs for schizophrenia:
A meta-analytic investigation of randomized controlled trials. Aust. N. Z. J. Psychiatry 2019, 53, 742–759. [CrossRef]

62. Noto, C.; Gadelha, A.; Belangero, S.I.; Spindola, L.M.; Rocha, N.P.; de Miranda, A.S.; Teixeira, A.L.; Cardoso Smith, M.A.; de Jesus
Mari, J.; Bressan, R.A.; et al. Circulating levels of sTNFR1 as a marker of severe clinical course in schizophrenia. J. Psychiatr. Res.
2013, 47, 467–471. [CrossRef] [PubMed]

63. Hong, L.Z.; Zhou, L.; Zou, R.; Khoo, C.M.; Chew, A.L.S.; Chin, C.L.; Shih, S.J. Systematic evaluation of multiple qPCR platforms,
NanoString and miRNA-Seq for microRNA biomarker discovery in human biofluids. Sci. Rep. 2021, 11, 4435. [CrossRef]
[PubMed]

64. Godoy, P.M.; Barczak, A.J.; DeHoff, P.; Srinivasan, S.; Etheridge, A.; Galas, D.; Das, S.; Erle, D.J.; Laurent, L.C. Comparison
of Reproducibility, Accuracy, Sensitivity, and Specificity of miRNA Quantification Platforms. Cell Rep. 2019, 29, 4212–4222.e5.
[CrossRef] [PubMed]

65. Li, J.; Han, X.; Wan, Y.; Zhang, S.; Zhao, Y.; Fan, R.; Cui, Q.; Zhou, Y. TAM 2.0: Tool for MicroRNA set analysis. Nucleic Acids Res.
2018, 46, W180–W185. [CrossRef]

https://doi.org/10.1186/s12974-018-1197-2
https://doi.org/10.3389/fnins.2018.00296
https://www.ncbi.nlm.nih.gov/pubmed/29867314
https://doi.org/10.1111/acps.13416
https://www.ncbi.nlm.nih.gov/pubmed/35202480
https://doi.org/10.1016/j.psychres.2018.07.041
https://www.ncbi.nlm.nih.gov/pubmed/30138859
https://doi.org/10.1016/j.schres.2018.02.048
https://www.ncbi.nlm.nih.gov/pubmed/29499967
https://doi.org/10.3390/jpm12071137
https://doi.org/10.1080/08039488.2019.1688389
https://doi.org/10.1016/j.psychres.2016.10.061
https://doi.org/10.1016/S0920-9964(99)00030-4
https://doi.org/10.1093/schbul/sbu054
https://doi.org/10.1038/s41380-021-01387-5
https://doi.org/10.1016/j.joca.2021.12.003
https://www.ncbi.nlm.nih.gov/pubmed/34968719
https://doi.org/10.3390/ijms23094642
https://www.ncbi.nlm.nih.gov/pubmed/35563035
https://doi.org/10.1038/onc.2008.247
https://www.ncbi.nlm.nih.gov/pubmed/18794886
https://doi.org/10.3390/diseases7010022
https://doi.org/10.1186/s40591-016-0047-9
https://doi.org/10.1016/j.neulet.2004.12.040
https://doi.org/10.1038/nature13595
https://doi.org/10.1007/s10787-022-01031-w
https://doi.org/10.1038/s41419-024-06779-3
https://doi.org/10.1177/0004867419835028
https://doi.org/10.1016/j.jpsychires.2012.12.010
https://www.ncbi.nlm.nih.gov/pubmed/23360651
https://doi.org/10.1038/s41598-021-83365-z
https://www.ncbi.nlm.nih.gov/pubmed/33627690
https://doi.org/10.1016/j.celrep.2019.11.078
https://www.ncbi.nlm.nih.gov/pubmed/31851944
https://doi.org/10.1093/nar/gky509


Int. J. Mol. Sci. 2024, 25, 13522 22 of 22

66. Tian, Y.; Cui, L.; Lin, C.; Wang, Y.; Liu, Z.; Miao, X. LncRNA CDKN2B-AS1 relieved inflammation of ulcerative colitis via sponging
miR-16 and miR-195. Int. Immunopharmacol. 2020, 88, 106970. [CrossRef]

67. Wei, H.; Wu, Q.; Shi, Y.; Luo, A.; Lin, S.; Feng, X.; Jiang, J.; Zhang, M.; Wang, F.; Tan, W. MicroRNA-15a/16/SOX5 axis
promotes migration, 665 invasion and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Aging 2020, 12,
14376–14390. [CrossRef]

68. Venkatesh, T.; Suresh, P.S.; Tsutsumi, R. tRFs: miRNAs in disguise. Gene 2016, 579, 133–138. [CrossRef]
69. Shen, Y.; Yu, X.; Zhu, L.; Li, T.; Yan, Z.; Guo, J. Transfer RNA-derived fragments and tRNA halves: Biogenesis, biological functions

and their roles in diseases. J. Mol. Med. 2018, 96, 1167–1176. [CrossRef]
70. Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The

Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric
interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33.

71. Kaneda, Y.; Sumiyoshi, T.; Keefe, R.; Ishimoto, Y.; Numata, S.; Ohmori, T. Brief assessment of cognition in schizophrenia:
Validation of the Japanese version. Psychiatry Clin. Neurosci. 2007, 61, 602–609. [CrossRef]

72. Kaneda, Y.; Sumiyoshi, T.; Nakagome, K.; Ikezawa, S.; Oomori, T.; Furukoori, N.; Kunugi, H.; Matsuo, J.; Miyanomoto, S.;
Nakamura, J.; et al. Evaluation of cognitive functions in a normal population in Japan using the brief assessment of cognition in
schizophrenia Japanese version (BACS-J). Seishinigaku 2013, 55, 167–175. (In Japanese)

73. Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal
method for microRNA RT-qPCR data normalization. Genome Biol. 2009, 10, R64. [CrossRef] [PubMed]

74. Xiaobo, Z.; Jiewen, Z.; Povey, M.J.W.; Holmes, M.; Hanpin, M. Variables selection methods in near-infrared spectroscopy. Anal.
Chim. Acta 2010, 667, 14–32. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.intimp.2020.106970
https://doi.org/10.18632/aging.103480
https://doi.org/10.1016/j.gene.2015.12.058
https://doi.org/10.1007/s00109-018-1693-y
https://doi.org/10.1111/j.1440-1819.2007.01725.x
https://doi.org/10.1186/gb-2009-10-6-r64
https://www.ncbi.nlm.nih.gov/pubmed/19531210
https://doi.org/10.1016/j.aca.2010.03.048
https://www.ncbi.nlm.nih.gov/pubmed/20441862

	Introduction 
	Results 
	Plasma miRNA Profiles Identified Similar Subgroups of Schizophrenia Patients as in the Previous Study 
	Multivariate Analysis Identified Symptom-Related miRNAs as Optimal Combinations of miRNAs to Estimate Symptom Scores 
	Symptom-Related miRNAs Enriched Inflammatory Pathways and Were Reported to Regulate IL-1, IL-6, and TNF 

	Discussion 
	Plasma miRNA Profiles Are Potentially Reproducible Biomarkers to Stratify Schizophrenia Patients 
	Plasma miRNAs Are a Potential Molecular Biomarker to Reflect Severities of Positive, Negative, and Cognitive Symptoms 
	Exacerbated Positive, Negative, and Cognitive Symptoms Are Associated with High Inflammation 
	Anti-Inflammatory Treatments Are Potentially Effective for Positive, Negative, and Cognitive Symptoms in a Specific Population 
	Limitations of This Study Inform Directions for Future Research 

	Materials and Methods 
	Study Population 
	Plasma Sample Preparation 
	MicroRNA Measurement 
	Correlation Analysis Between miRNAs and Symptom Scores 
	Extracting Symptom-Related miRNAs via Variable Selection in Multivariate Regression Models 
	MicroRNA Set Enrichment Analysis for Symptom-Related miRNAs 
	Literature-Based Text Mining for miRNA-Associated Proteins/Diseases 
	Literature-Based Inference on Regulatory Functions of miRNAs on Pro-Inflammatory Cytokines 

	Conclusions 
	References

