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Abstract

Brains have evolved diverse neurons with varying morphologies and dynamics that impact

temporal information processing. In contrast, most neural network models use homoge-

neous units that vary only in spatial parameters (weights and biases). To explore the impor-

tance of temporal parameters, we trained spiking neural networks on tasks with varying

temporal complexity, holding different parameter subsets constant. We found that adapting

conduction delays is crucial for solving all test conditions under tight resource constraints.

Remarkably, these tasks can be solved using only temporal parameters (delays and time

constants) with constant weights. In more complex spatio-temporal tasks, an adaptable

bursting parameter was essential. Overall, allowing adaptation of both temporal and spatial

parameters enhances network robustness to noise, a vital feature for biological brains and

neuromorphic computing systems. Our findings suggest that rich and adaptable dynamics

may be the key for solving temporally structured tasks efficiently in evolving organisms,

which would help explain the diverse physiological properties of biological neurons.

Author summary

The impressive successes of artificial neural networks (ANNs) in solving a range of chal-

lenging artificial intelligence tasks have led many researchers to explore the similarities

between ANNs and brains. One obvious difference is that ANNs ignore many salient fea-

tures of biology, such as the fact that neurons spike and that the timing of spikes plays a

role in computation and learning. Here we explore the importance of adapting temporal

parameters in spiking neural networks in an evolutionary context. We observed that

adapting weights by themselves (as typical in ANNs) was not sufficient to solve a range of

tasks in our small networks, and that adapting temporal parameters was needed (such as

adapting the time constants and delays of units). Indeed, we showed that adapting weights

is not even needed to achieve solutions to many problems. Our findings may provide

some insights into why evolution produced a wide range of neuron types that vary in

terms of their processing of time and suggest that adaptive time parameters will play an

important role in developing models of the human brain. In addition, we showed that
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adapting temporal parameters makes networks more robust to noise, a feature that can

prove beneficial for neuromorphic system design.

Introduction

Neurons spike, and the timing of spikes matters in neural computations [1–5]. However, it is

notable that most computational models of neural systems ignore spikes and spike timing,

relying on the finding that the first principal component of neural information is in the firing

rate [6]. For example, Artificial Neural Networks, such as convolutional networks and trans-

formers, use rate coding, with units taking on real valued activation levels that discard all tem-

poral information. As a consequence, researchers using ANNs as models of brains assume that

rate coding is a good abstraction that can support neural-like computations across a variety of

domains, including vision, language, memory, navigation, motor control, etc. [7–10]. Further-

more, because there are no spikes, most ANN learning algorithms ignore the role of fine tem-

poral information and are restricted to changing spatial parameters in the network, namely

weights and biases. Similarly, networks that are built through evolutionary algorithms gener-

ally ignore spike timing, assume rate coding, and typically only adapt the weights and biases.

Even most spiking neural networks (SNNs) only learn through the adaptation of weights and

biases. That is, in most cases, models do not allow for learning and adaptation to extend to the

dimensions of time, such as modifying the conduction delays and time constants of neurons

(although see for example [11–13]).

However, there is strong evidence that adaptive processes modify the neural processing of

time. For example, there is growing evidence for myelin plasticity, in which conduction times

of neurons are modified in adaptive ways to support motor control [14], the preservation of

remote memories [15], spatial memory formation [16], and more generally, myelination is

argued to be a plastic process that shapes learning and human behavior [17]. In addition to

these examples of in-life learning, and more relevant to the current project, evolution has pro-

duced neurons that vary dramatically in their morphology in ways that impact their processing

of time, partly due to the diverse set of axono-dendritic structures [18, 19]. For example, con-

duction rates of neurons vary by over an order of magnitude [20] and time constants of neu-

rons by almost two orders of magnitude [21, 22]. That is, evolution appears to have produced a

diverse set of neuron types to exploit the dimension of time. An archetypal example of this is

the method by which barn owls perform sound localisation [23]. By contrast, with few excep-

tions, units in artificial neural networks are identical to one another apart from their connec-

tion weights and biases.

There is some work with spiking neural networks that explores the adaptive value of

learning time-based parameters. For example, it has been shown that adapting time con-

stants in addition to weights improves performance on tasks with rich temporal structure

[12]. Interestingly, the learned time constants showed distributions that approximate those

observed experimentally. With regard to delays, the traditional approach has been to couple

non-learnable (fixed) delays with spike-timing dependent plasticity (STDP) and study their

combined computational properties [24, 25]. More recently, researchers have developed

methods of learning delays [13, 26, 27]. However, this research has only adapted a single

temporal parameter along with weights, and as far as we are aware, no one has adapted

delays through evolutionary algorithms. Accordingly, it remains unclear how these different

temporal mechanisms interact and we do not have a clear picture of their computational
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advantages in an evolutionary context that might help explain the physiological diversity of

neurons.

Here we ask whether adapting the temporal parameters of units (axonal delays, synaptic

time constants, and bursting), in addition to a spatial parameter (synaptic weights), in spiking

neural networks using a simple evolutionary algorithm improves model performance on a

range of logic problems that involve a diverse set of input-output mappings. We do this by

training networks on a series of tasks of increasing temporal complexity, from semi-temporal

binary logic problems (mapping spike trains to spike counts) to fully spatio-temporal tasks

(mapping spike trains to spike trains). We find that: (1) in these temporally structured tasks,

trainable temporal mechanisms are essential to be able to perform the tasks; (2) there are sig-

nificant advantages in terms of performance and training robustness to co-evolving multiple

mechanisms; (3) adaptive temporal mechanisms provide robustness to noise in both inputs

and parameters. These findings provide a proof of principle for the advantages of adapting

temporal parameters in natural evolution, may help explain why spatio-temporal heterogene-

ity is so widespread in nervous systems, and may inform the design of efficient neuromorphic

hardware.

Methods

First, we describe the network architecture and input-output encodings used across simula-

tions, followed by a description of the neuronal model, and finally the evolutionary algorithm

we employed.

Fig 1. Schematic of the framework for this study. (A) The network architecture and the input-output encoding pair. (B) The neuron

model illustrating the adaptable parameters and computation of the somatic voltage. (C) Steps of the evolutionary algorithm, which

includes: initialization, evaluation, sorting by loss, selection of elites and the generation of a new child population.

https://doi.org/10.1371/journal.pcbi.1012673.g001
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The network architecture and input-output encoding

For all simulations we used a feedforward network with two input neurons, four to six hidden

neurons and one output neuron, as illustrated in Fig 1A. We chose to train models on logic

problems (XOR, XNOR, OR, NOR, AND and NAND) in small networks as they offer a tractable

context for investigating the impact of various neuronal parameters and their role in neural

computation across a wide range input-output mappings, including nonlinearly-separable out-

put mappings.

We varied input-output encodings across simulations. The inputs constituted spike trains

containing zero to five spikes. This type of encoding can be thought of as burst coding, where

we feed the input layer a single burst and test the impulse response of the network. Technically,

a real input spike train can be considered as a sequence of bursts, thus this formalism assumes

that the timing between bursts is large enough to warrant independent analysis. In this work,

this singular burst is padded with silent periods of up to 20 ms on both sides of the burst.

Meanwhile, the output code can be a spike count (Fig 1A left output table) or a spike train of a

singular burst (Fig 1A right output table). In a spike count, the timing of the spikes does not

matter. When the input-output encodings are both spike trains, we can think of the network

as engaging in spatio-temporal mapping [28, 29].

The neuronal model

The building block of the evolved networks was a modified version of the leaky integrate-and-

fire neuron (LIF). We introduced three modifications: i) axonal conduction delays were either

increased or decreased. This effect is manifested through a synaptic parameter DL
i , where D

stands for the total delay, L is the layer index and i is the neuron index. The effective axonal

delay is the sum of a default delay (the same for all neurons) and an adaptable ‘change in delay’

parameter which can take positive or negative values. A positive change in delay is analogous

to a slow down in the transmission speed. This is manifested as a shift to the right in the spik-

ing plots shown later and vice versa for a negative change. In brief, we mutate the change in

delay and add it to the default value to obtain the effective delay. Technically, the total delay

that the soma experiences is the aggregate effect of the pre-synaptic axon and the dendrite,

however we simply combine these two and describe them collectively as axonal delays. ii) The

leak/decay was shifted from the soma to the dendrites/synapses. This formulation is not new,

but employed before in [30, 31]. Technically, there are two main sources of decay in real neu-

rons, one in the dendrites and the other in the soma. Since the dendritic decays are slower due

to the low pass filtering induced by the whole associated axon-dendritic structure ([32] Chap-

ter 4), for simplicity, tractability and speed, we only include the dendritic decay and treat the

somatic decay as effectively instantaneous relative to the dendritic one. Note, synaptic and

somatic time constants converge when all the synapses have the same time constant. iii) In

some simulations we included a spike Afterpotential (AP) that is added to the total somatic

voltage after a neuron fires [33]. The role of this AP voltage is to afford the neuron the ability

to fire multiple spikes after a threshold crossing. Also, when the AP is added, the standard hard

reset of the neuron’s potential is removed so as to allow bursting (as will be shown in the equa-

tions) but since the AP is always inhibitory it can also mutate to prevent the neuron from spik-

ing after the initial spike. The concept of the spiking AP has been formalized in [33], and later,

its contribution to bursting has been investigated in [34]. The implementation of the spiking

AP here is minimalistic, while achieving the desired outcome of bursting. The equations for
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the modified LIF in differential form are represented by Eq 1.
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These equations describe multiple pre-synaptic neurons in layer L − 1, indexed by j, con-

verging on a single postsynaptic neuron in layer L, indexed by i. In these equations, v(t)i is the

somatic voltage, ui,j is the synapto-dendritic voltage, which incorporates the contributions of

the synaptic kernels and the dendritic filtering. Thus, Eq 1 summarizes the postsynaptic poten-

tial contribution from neurons j to neuron i. Ai,j is the per-dendrite AP feedback. t
syn
i;j , Wi,j and

Di,j are the synaptic time constant, synaptic weight and axonal delay respectively between neu-

rons j and i. ti,j, n is the time, indexed by n, of a spike arriving from neuron j to neuron i. This

time belongs to the set of all spike times in a train between two neurons {t1, t2, t3, . . ., tn, . . .,

tN}. δ is the Dirac delta function. N and K, are the total number of incoming spikes and pre-

synaptic neurons (previous layer) respectively. S(t) is the output spike train of the post synaptic

neuron, H is the Heaviside function and vth is the threshold voltage. t
ap
i;j is the AP time constant

and βi,j is the AP scale between neurons j and i. The parameters τap and vth are constant and

have the values 4 ms and 1.1 mV respectively. Regarding the reset operation, if no afterpoten-

tial is involved, it is a hard reset, where v(t) is forcibly pulled down to zero. By contrast, if the

afterpotential is involved, no hard reset is required as the afterpotential itself can pull the

somatic voltage even below zero (or realistically more negative i.e hyperpolarization).

The above differential equations are discretized and presented analytically in Eq 2 following

the convention used by [12, 35], where Δt, the time step, is set to 1 ms. A simple visualization

of these dynamics is provided by Fig 1B, illustrating the contribution of three pre-synaptic

neurons to the somatic voltage of a single postsynaptic neuron while highlighting some of the

mutable parameters.
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The evolutionary algorithm

The evolutionary algorithm we used is an example of a ‘Natural Evolution Strategy’ [36] and is

visualized in Fig 1C. The evolutionary procedure starts with the random initialization of a pop-

ulation of (hundreds of thousands) solutions. These solutions are then evaluated for their per-

formance. The loss function used in their evaluation depends on the type of output—if the

output is a spike count, mean square error (MSE) is used, whereas if the output is a spike train,

an exponential decay kernel, with a 5 ms time constant, is applied to both the output and target

[37] before calculating the MSE. The solutions are then sorted according to their loss, and the

top performing solutions (elites) are chosen as parents for the next generation. The number of

elites chosen are in the thousands. Following their selection, the elites are mutated by adding

randomized vectors to their parameters. These vectors have normally distributed values with

zero mean and unit variance (*N(0, 1)), but multiplied by a scaling factor which is referred to

as the mutation rate (MR). The MR is analogous to the learning rate in backpropagation-based

learning, a high MR would greatly differentiate a child solution from its corresponding parent.

Finally, it should be noted that the values any parameter can take during evolution are

restricted to fall within a specified range as [Valuemin, Valuemax]. This constraint is a form of

regularization and will be referred to hereafter as the clipping range.

Note, we are not committed to this specific evolutionary algorithm, and indeed, we could

have used other optimization algorithms such as surrogate gradient decent [38] to explore the

benefits of modifying temporal parameters. However, we decided to work with a standard evo-

lutionary algorithm for two reasons: a) evolutionary algorithms are easier to use with spiking

networks given that no gradients need to be computed, and b) the diversity of neurons in the

brain is the product of evolution, so it seemed more elegant to use an evolutionary algorithm.

Regardless, we expect that similar outcomes would be obtained with alternative methods if

applicable.

Results

Adapting delays but not weights is necessary to solve a set of semi-temporal

logic problems

We first evolved spiking neural networks to implement boolean operators like AND, OR and

XNOR encoded in semi-temporal form, that is, when inputs were encoded as temporal

sequences and outputs decoded by spike count. The temporal nature of the inputs are illus-

trated in Fig 2B, where the first entry on the x-axis represents the input encoding 001 (NO) and

011 (YES), which means that the spike trains might take the form (......|......) for NO, and

(.......||.......) for YES. By contrast, the output is a spike count, with the first entry on the x-axis

either 0 (YES) or 1 (NO). Different combinations of spike trains and spike counts are applied

to each logic problem in five adaptation conditions (W, Wτc, Dτc, WD, and WDτc).
We find that evolving weights alone does not result in solutions to all problems as shown in

(Fig 2A and 2B leftmost grid). These subfigures show the number of generations needed to

reach a perfect solution (zero loss) for a given combination of i) co-mutated parameters, ii)

input-output encoding, iii) logic problem type, and iv) weight clipping range. The weight clip-

ping range is a hyperparameter that is used during evolution to restrict the values a parameter,

in this case weights, can take. We use subthreshold ([-1, 1]) mV and suprathreshold ([-2, 2])

mV clipping ranges as they exemplify networks that are restricted to values inclusive or exclu-

sive of the threshold value of 1.1 mV. In this figure, each grid pattern represents an average of

five trials and each trial involves populations with approximately two million solutions. The

number of generations was employed as an indirect measure of the ease of finding a perfect
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solution. Thus, from an evolutionary perspective, fewer generations suggests that a given set of

neuronal parameters is more favorable to co-mutate to increase the chances of survival of an

individual. A trial involves running the evolutionary algorithm for twenty generations.

Weights are atemporal parameters, and when faced with a temporal input (a spike train),

we observe that weight-only mutated networks have the lowest performance. Clearly the most

important temporal parameters are delays, as all networks that include delays (columns Dτc,
WD, and WDτc) solve all problems. Delays allow neurons to modify spike arrival times on

postsynaptic targets, and when combined with other parameters, greatly enhance the ability of

the networks to successfully map input spike trains to spike counts following a diverse set of

input-output mappings. Of course, this does not mean that weight-based solutions do not

exist. Rather, it shows that in these small feedforward networks, adapting temporal parameters

facilitates searching the search space. In addition, we found that the input-output encoding

scheme has a significant effect on these results, with the larger the number of spikes in the out-

put, the lower the performance. One possible reason for this is that it gets harder to optimally

distribute presyanptic activity to unique spike timings in the output as required by higher out-

put spike counts.

Weights and time constants can simulate delays

The importance of delays may help explain how networks which only adapt weights and time

constants can solve all the problems tested here, because weights and time constants in

Fig 2. Effect of the input-output encoding and the co-mutated parameters on the search speed and availability of solutions for

various logic problems. This effect is conveyed through the number of generations needed to find a solution, where the colour ‘tan’ means

no solutions found. This is performed for (A) [-2, 2] mV and (B) [-1, 1] mV weight clipping range during evolution. (C) Wτc only solutions

can simulate delays. Left, the spiking plot for a sample XNOR problem and right, an enlarged view for the voltage traces with their sum.

Abbreviations code, W: weights, τc: time constants, D: delays. For more details, see Table A in S1 Text and the related text.

https://doi.org/10.1371/journal.pcbi.1012673.g002
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combination can simulate delays, as shown in Fig 2C. This result is achieved through the inte-

gration of postsynaptic potentials of different time constants. The left image in Fig 2C is a spik-

ing raster plot, which shows the spike arrival times (arrow heads) and spiking times (blue dots)

for each neuron in the network (see Fig 1A for the neuron numbers), including the input neu-

rons, namely 1 and 2. The purple-dashed rectangle emphasizes a case where neuron 6 spikes

one millisecond later after the spikes from neurons 1 and 2 arrive. This process is expanded on

in the right image of Fig 2C, where the voltage traces of each synapse is shown beside their

sum. In this example, the sum of a slow excitation and fast inhibition is a rising potential that

fires 1 ms later after the arrival of the presynaptic spikes. While inhibition is typically slower

than excitation, fast inhibition has been observed in several systems (for example, [39]).

Adapting delays and time constants can solve all the semi-temporal logic

problems

Delays and time constants can solve all logic problems as shown in the middle of Fig 2A and

2B. Example solutions to the XOR problem in the form of the spiking plots are given in Fig 3C.

One interpretation of this is that time constants share some functionality with weights given

that weights in combination with delays are well suited to solve all logic problems, as shown in

the second image from the right in Fig 2. Specifically, short time constants can emulate

weight-based self-inhibition by preventing two successive spikes from eliciting a meaningful

response. Combined with the ability of delays to temporally separate spikes from the presynap-

tic neurons, this can lead to solutions which do not rely upon weight adaptation.

In additional simulations (not included here), networks with somatic time constants failed

to converge to a solution under the same simulation conditions. It is not immediately clear

why this might be the case. However, a possible reason might be that input units need to con-

tribute contrastive time constants to each hidden unit, and indeed, this is what we found with

our solutions as shown in the top middle left of Fig 3C. By contrast, if the time constants were

somatic, each column would necessarily have the same value, and this may prevent a solution.

The contrastiveness we observed might also help to explain the bimodal nature of the distribu-

tions shown on the bottom left of Fig 3C. However, it must be noted that the clipping con-

straint during evolution is a factor that contributes to the bimodal distributions of the delays

and time constants. In this case, further analysis is needed to disentangle these two factors, for

example, by applying different constraints during evolution.

Finally, another source of evidence for the shared computational roles of weights and time

constants is shown in Fig 3D. It can be seen that both distributions show a similar pattern of

modulation to the output encoding. Increasing the number of spikes in the output shifts the

parameter distributions towards more excitatory connections and also longer time constants.

The weight clipping range determines the mode of computation

The weight clipping range, as shown in Fig 3B, mainly affects two properties of the solutions:

the mode of computation and the EI ratio. The mode of computation refers to the methods by

which presynaptic neurons elicit a response in the postsynaptic neuron. When the clipping

range is below threshold, presynaptic neurons need to cooperate to induce a spike in the post-

synaptic neuron. This mode can be referred to as ‘feature-integration’, and is exemplified by

the top two spiking plots of Fig 3B. Alternatively, when the clipping range is above threshold, a

single spike from the pre-synaptic neuron may be sufficient to elicit a response in the postsyn-

aptic neuron. This mode can be referenced to as ‘feature-selection’, and is exemplified by the

bottom two spiking plots of Fig 3B. This dual nature of computation also explains the differ-

ence in the EI ratio between the weight clipping ranges examined. For the feature-integration
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mode, more cooperation between excitatory spikes is needed to produce the desired number

of spikes in the output. In contrast, this is not needed for the feature-selection mode, where

inhibition is favoured more so as to dampen excessive excitation, as shown by the dashed

ellipse in the bottom right most raster plot of Fig 3B. However, these computational modes are

not exclusive, as the suprathreshold clipping case ([-2, 2] mV) was found to exhibit both

modes.

In addition, as shown in Fig 3A, both the Excitation/Inhibition (EI) weight ratio and the

long/short time constant ratio also depend on which parameters are co-adapted. This inter-

dependence is also a function of the input-output encoding as seen by the different EI ratios

and long/short term constant ratios across various parameter combinations. For the EI weight

ratio, the most important factor is the increase in the number of output spikes, as reflected in

the increasing EI ratio with a larger number of output spikes.

Multiple parameter distributions support equivalent solutions

A generalization of the fact that weight clipping ranges can lead to qualitatively different solu-

tions to the same logic problem would be the following claim: multiple interacting neural

Fig 3. Properties of semi-temporal logic problems. (A) Solutions characteristics; demonstrating the impact of the co-mutated

parameters and the input-output encoding on the ratios of excitatory vs. inhibitory connections and long vs. short time constants. (B) The

weight clipping range dictates the modality of computation and excitatory/inhibitory ratio. Left, distribution of weights in the network at

various weight clipping ranges. Right, spiking raster plots illustrating the network behavior when the weight clipping range is below (top

row) and above threshold (bottom row). (C) Delays and time constants alone can solve all logic problems with constant weights (1 mV).

The heatmaps show the values of change in delays and time constants for the particular XOR problem in the accompanying spiking raster

plots (right), while the histograms show the distributions for both parameters aggregated across all logic problems. Regarding delays, we

mutate/adapt the change in delays and add it to a default value to acquire the total axonal delays (D) Weights and time constant

distributions as a function of the output code. For more details, see Tables B, C and D in S1 Text and the related text.

https://doi.org/10.1371/journal.pcbi.1012673.g003
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mechanisms can solve the logic problems in different ways as long as there is enough flexibility

in their dynamic range. This is exemplified by the results shown in Fig 4A, where we show that

various ranges of time constants, weights and input encodings can solve the XOR problem. For

the input encodings, one input was fixed (01) and the other, “input two” varied in duration

(i.e., 101, 1001, 10001). In these simulations, weights and delays are adapted while time

constants and weight clipping ranges are treated as hyperparameters of evolution, with time

constants and weight clipping ranges systematically varied across conditions.

It is evident from the results shown in Fig 4A that the search speed is negatively impacted

by the increase in the length of the input encoding, and the decrease in the weight clipping

range and time constants. For the input encoding case, longer time constants are needed to

communicate more distant spikes. However, since time constants are fixed as a hyperpara-

meter, there is an evolutionary pressure driving delays towards larger values for longer input

encodings. Thus, we observe a decrease in performance with longer input encodings because

the delays search space increases due to the need for longer delays. This outcome might also

help explain the decrease in performance with shorter time constants, as again longer delays

are necessary.

In addition, the results highlight the complimentary roles of time constants and delays.

This can be observed in Fig 4B, where, on average, longer delays are required to complement

shorter time constants. This outcome is another manifestation of a shared functionality, simi-

larly to the noted relationship between time constants and weights, here it is between delays

and time constants. The time constants in this figure (bar titles) were sampled across a range

of values where solutions exist.

Fig 4. The relationship between time constants, input encoding and weight clipping range in weights-delays mutated solutions for

the XOR problem. (A) This interplay is captured through the average number of generations needed to reach a zero loss (perfect) solution,

where each grid cell is the average of five solutions. (B) Average change in delays as a function of the weight clipping range and time

constants. Each bar is the average of several populations of solutions that solve the XOR, XNOR, OR, and AND logic problems. For more

details, see Tables E and F in S1 Text and the related text.

https://doi.org/10.1371/journal.pcbi.1012673.g004
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Weights and time constants are negatively correlated at a fixed somatic

activity level

In another manifestation of the shared functionality between weights and time constants, we

observe that when we hold the somatic activity/potential fixed, the weights and time constants

have an inverse relationship. That is, if we decrease the weights values, and at the same time

want to keep the somatic potential unchanged, we need to increase the time constants. This

can be observed in the leftmost image of Fig 4A, when one moves diagonally across the grid.

An indirect way to emphasize this trend is by building a relationship between the change in

time constants and the change in weights at a fixed somatic potential. Somatic potentials are

a measure of activity, thus keeping them fixed is analogous to keeping the activity/output pat-

tern fixed. Thus, we fix the somatic potential and ask how much change in time constants is

needed to compensate a change in weights. This argument is parameterized by the equations

in Eqs 3–5.

vsðtÞ ¼
XM

i¼1

wi
XN

n¼1

dðt � tinÞe
� tþtin
tic ð3Þ

vs ¼ w 1þ e
� T
tc

� �
ð4Þ

dtc
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¼ �

@vs
@w
@vs
@tc

¼ �
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c
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1þ e

T
tc

� �� �

ð5Þ

Eq 3 is a general form of a single postsynaptic neuron receiving spike trains from M presyn-

aptic neurons, where each spike train has N spikes, and where vs is the somatic voltage. The

second equation is a simplification under the assumption that there is only one presynaptic

neuron emitting two spikes separated by time T.

As seen from Equation Eq 5, a change in weights can be compensated by an opposite but

nonlinear change in the time constants. Although the nonlinearity is not readily evident in the

plots, the relationship is still highly non proportional as the boundaries of weights change by

0.1 mV while time constants change by 1 ms, as seen on the y-axis. Thus, at a fixed object

encoding length, smaller weight clipping ranges demand longer time constants for successful

mappings. However, if the time constants are fixed, then delays need to take larger values

which, in turn, increase the delays search space (as discussed before in the former Subsection).

In short, when the weight clipping range is small and the time constants are short, delays need

to evolve larger values, which makes it harder to find solutions quickly. Finally, it should be

noted that, although the weights search space shrinks from decreasing the clipping range, it

seems that it is overshadowed by the larger increase in the delays search space, negating any

decrease in search speed.

Adapting temporal parameters reduces the impact of noise in inputs and

weights

An important property of neural networks is their robustness to noise both intrinsic (associ-

ated with the units themselves) and extrinsic (from their inputs). Given the ubiquity of neuro-

nal noise, it is expected that evolution would select for mutations that are robust to various

forms of noise.
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To examine the impact of input noise, we: i) added random spikes that can appear any-

where in the spike train, systematically varying the spike insertion probability, and ii) added

temporal jitter to the spike times of the original spike train, systematically varying the spike jit-

ter standard deviation. The jitter takes the form of a Gaussian distribution centred on the orig-

inal temporal location with a variance parameterised by σ2. The results of these manipulations

are shown in Fig 5A for different combinations of adaptable parameters, namely; weights-

delays, weights-time constants, delays-time constants, and weights-delays-time constants.

To examine the effects of unit (neural) noise, we focused on the weights. Specifically, at

each generation, each child solution is copied a hundred times, and for each solution, a differ-

ent random vector *N(0, σ2) is added. This is followed by a loss calculation for each noisy

solution, which is then averaged, to give the loss of the initial child solution. Thus, a child solu-

tion that minimizes this loss ought to be more resistant to weight perturbations in its life time.

The results of these manipulations are shown in Fig 5B, when networks where characterized

by adaptable weights-only, weights-delays, weights-time constants, and weights-delays-time

constants.

From Fig 5A, it is clear that networks with adaptable delays and time constants (bottom

left) were the least robust to input noise, highlighting the primary importance of adaptable

weights in generating robustness to input noise. The three networks that included adaptable

weights all performed similarly in the context of noise. However, there is some indication that

adaptable delays contribute more robustness to spike jitter compared to time constants (when

spike insertion probability is low), and similarly, some indication that time constants contrib-

ute more to spike insertion robustness (when spike jitter is low). Accordingly, performance is

(marginally) best when all parameters are adaptable. Clearly though, the most important factor

is whether weights are adaptable or not when faced with both types of noise.

Fig 5. The effect of noise and uncertainty in inputs and weights. (A) Impact of additive noise and spike jitter in the input, quantified by

the minimum loss achieved within 100 generations. This is shown for weights-delays, weights-time constants, delays-time constants and

weights-delays-time constants mutated solutions. (B) Robustness of solutions trained to minimize noise in weights quantified by the

minimum loss in 1000 generations, with each loss averaged over 100 trials. This is shown for weights only, weights-delays, weights-time

constants and weights-delays-time constants mutated solutions. For more details, see Tables G and H in S1 Text and the related text.

https://doi.org/10.1371/journal.pcbi.1012673.g005
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From Fig 5B, it is clear that networks with adaptable weights show some robustness to

noise in the weights, and that the addition of delay adaptation further improved robustness.

Critically, the addition of time constant adaption played a much larger role in evolving robust

networks. The importance of time constants in this context may relate to the overlapping func-

tionality between weights and time constants discussed above (Fig 3D). In this case, the time

constants that were not perturbed by noise, and accordingly, the adaptable time constants

were able to compensate for the decrease in performance due to weight noise during

evolution.

These results may prove important for the design of neuromorphic systems which simulate

spiking neuron models. Thus, we can expect at least two sources of noise: i) sensor/input noise

and ii) uncertainty in the hardware realization of the network parameters. Mitigating these

two types of noise is of paramount importance for a reliable hardware implementation of spik-

ing neural networks. In this regard, we have shown that supporting weight based implementa-

tions with adaptable temporal parameters can decrease the impact of both forms of noise.

Bursting parameter was necessary for fully spatio-temporal tasks

It has been argued before that the brain learns spatio-temporal mappings [28, 29]. Thus, a rea-

sonable next step is to test these temporally adaptive networks on spatio-temporal mappings,

which in turn also increase the problem complexity. We achieve these kind of mappings by

replacing the spike count output code with a spike train, and in one simulation added adaptive

spike Afterpotential (AP) or bursting parameter (β). In Fig 6A, the number of successful solu-

tions (from five runs) before generation 200 is depicted, and in Fig 6B, the average number of

generations needed to reach a perfect solution is shown.

It is evident that as we increase the number of parameters in the neuronal model, it gets

progressively easier to evolve perfect solutions. These results are also mirrored with the num-

ber of solutions found. Indeed, performance is quite poor in the Wτc, Dτc and WD conditions

(conditions in which models performed quite well in solving the semi-temporal logic prob-

lems). All three of these adaptive parameters were required in order to do well, with the burst-

ing parameter required to solve all problems with all input and output encoding conditions.

Lastly, the input-output encoding scheme may act as a form of regularization which

impacts the distributions of the adapted delay parameters. In other words, and as shown in Fig

6C, the output spike trains can act as a boundary condition for the adapted delays. Systemati-

cally changing the temporal position of the output spikes (shown from left to right), leads to a

systematic shift in the distributions of changes in delays, where the values start with a heavy

bias towards large values (delays increase) then shifts incrementally to more negative values

(delays decrease).

Discussion

Despite the important role that spike timing plays in neural computations and learning, most

artificial neural networks (ANNs) ignore spikes, and even spiking neural networks (SNNs)

tend to restrict learning to the adaptive modification of atemporal parameters, namely, weights

and biases. In a series of simulation studies we highlight the importance of adaptively modify-

ing multiple temporal parameters (time constants, conduction delay, and bursting) in small

feed-forward networks in an evolutionary context. Our findings suggest that current network

models of the brain are ignoring important dimensions of variation in neurons that may play a

key role in how neural systems compute and learn.

In our first simulation we adapted weights, time constants, and conduction delays (but not

bursting) parameters and considered semi-temporal logic (XOR, XNOR, OR, NOR, AND, and
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NAND) problems, where the input is a spike train and the output is a spike count. In this con-

text, the importance of temporal parameters was evident both in terms of the models’ successes

in solving a range of problem as well as the number of generations required. Indeed, weight-

only adaptation only solved a subset of the problems, whereas all problems could be solved

without modifying weights. In addition, the adaptive parameters interacted in unexpected

ways, with pairs of parameters combining to simulate the impact of another, or sharing func-

tionality with another. For example, we found that weights and time constants sometimes sim-

ulated delays (see Fig 2C). Similarly, weights and time constants are affected by a systematic

increase in the number of spikes in the output (see Fig 3D), suggesting that they share func-

tionality. Together, these observations may help to explain why delays and time constants can

solve all logic problems.

We have also shown that multiple evolved solutions exist for the same problem and that

these solutions can differ qualitatively. For example, the weight clipping range dictates the

mode of computation. When individual synapses can be strong enough to drive a neuron to

fire following a single spike, we find the network often engages in the feature selection mode

by firing in response to a single spike from a single input. By contrast, when individual synap-

ses are weaker and cannot drive units beyond threshold, the network necessarily engages in

feature integration by combining multiple spikes from multiple inputs before firing. Typically,

weights are not clipped in SNNs, but real neurons are rarely (if ever) driven by a single spike,

and accordingly, the feature integration mode is more biologically plausible. Still, there are

cases in which bursts from a single presynaptic neuron can drive a postsynaptic neuron. For

Fig 6. Effect of the input-output encoding and the co-mutated parameters on the search speed and availability of solutions for

various logic spatio-temporal problems. These relationships are emphasized through (A) the number of perfect solutions found, and (B)

the average numbers of generations needed to reach a perfection solution. (C) Manipulating the change in delay distributions through the

output spike trains (shown on top of each figure). Abbreviations code, W: weights, τc: time constants, D: delays, β: spiking afterpotential.

For more details, see Tables I and J in S1 Text and the related text. For a bursting example, see Fig A in S1 Text.

https://doi.org/10.1371/journal.pcbi.1012673.g006
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example, in the domains of motor control, [40] reported that a train of action potentials in a

single pyramidal cell of rat primary motor cortex can cause whisker movement, and in the case

of sensory systems, rats could perceive the microstimulation of somatosensory (barrel) cortex

that produced a train of action potentials in a single neuron. Clearly, the strengths of synapses

vary across systems, and our findings suggest this will have important impacts on the nature of

the underlying computations. More generally, varying the hyperparameters of evolution

(weight clipping range, input encoding, etc.) can lead to equivalent solutions for the same

problem, with different distributions of adapted parameters observed across conditions.

Importantly, different forms of adaption were important for coping with different types of

noise. In the case of input noise (in the form of adding or displacing spikes to the input), we

found adapting weights was most important, albeit a slight boost was gained by adapting all

the morphological parameters. In contrast, when introducing noise in the weights, co-adapting

weights with other temporal parameters lessens the impact of the uncertainty in the weights

values, with time constants being particularly important. For software implementations of

neural networks, it is mainly the input noise that is an issue, while for hardware implementa-

tions, it can be both the input noise and parameter noise as reflected in the uncertainty in the

parameter values. Accordingly, our results suggest that adapting temporal parameters may be

important in the development of neuromorphic systems which are robust to noise and

manufacturing inconsistencies.

Finally, when evolving networks on spatio-temporal tasks (mapping spike trains to spike

trains), the importance of adapting multiple spatio-temporal parameters is even more appar-

ent. Weights and time constants alone, or weights and delays alone could not solve the task as

reliably as when all three parameters are co-mutated. This enforces the need to incorporate

multiple relevant forms of temporal adaptation when tackling tasks of this sort. This claim is

further supported by the fact that adding a third form of temporal adaption, namely bursting,

greatly enhances the performance in mapping spatio-temporal spike patterns.

Of course, these findings have been obtained in highly idealized and simplified conditions,

with tiny networks composed of between 7 and 9 units adapted to solve boolean logic prob-

lems with a standard natural evolution algorithm. These are quite different conditions com-

pared to the environment faced by simple organisms billions of years ago. Nevertheless, we

take our findings as a proof of principle that adapting temporal parameters can be advanta-

geous in an evolutionary context, and that these observations may have important implications

for both neuroscience and modelling. With regards to neuroscience, our findings may help

explain why there are a wide variety of neuron types that vary in their morphological forms in

ways that dramatically modify their processing of time. A previous study has shown that vari-

ability in membrane and synaptic time constants is relevant when solving tasks with temporal

structure (e.g., [12]). Our studies extend these results to time constants, conduction delays,

and bursting parameters in an evolutionary context. The evolutionary context is important, as

different neuron types are the product of evolution not learning. Of course, in-life learning

may not be restricted to changes in synaptic strengths, and indeed, there is good empirical evi-

dence for learning on the basis of time-based parameters [14].

With regards to modelling, our findings are relevant to both the SNN and ANN communi-

ties. First, our findings suggest that the current focus on selectively learning or adapting

weights in SNNs is too restrictive, and that adding various temporally based parameters associ-

ated with spiking units may be important. This includes a bursting parameter that played a

crucial role in feedforward mappings of whole spike trains. As far as we are aware, we are the

first to map input-output spike trains in a feedforward manner in spiking networks. This may

require using many more neurons in SNNs that adapt only weights and biases. Critically,

adapting multiple parameters may be important not only for modelling the brain, but also for
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improving model robustness to noise. This latter observation may be particularly important if

SNNs are to be simulated on neuromorphic systems where various types of noise will be

present.

With regards to ANNs, our findings challenge a key assumption underpinning research

comparing ANNs to brains. The current excitement regarding ANN-brain alignment is based,

in large part, on the ability of ANNs to solve complex real word tasks (such as identifying

objects and engaging in dialogue) and the ability of ANNs to predict brain activity better than

alternative models, both in the domain of vision and language [41]. Based on these successes,

many researchers have concluded that rate coding is a good abstraction for spikes, with the

dimension of time reduced to time steps, and the only relevant variation between units being

their weights and biases. For example, in describing “The neuroconnectionist research pro-

gramme”, [42] write:

“ANNs strike the right balance by providing a level of abstraction much closer to biology

but abstract enough to model behaviour: they can be trained to perform high-level cognitive

tasks, while they simultaneously exhibit biological links in terms of their computational

structure and in terms of predicting neural data across various levels—from firing rates of

single cells, to population codes and on to behaviour.”

However, our results suggest that adaptation in time-based parameters is not only impor-

tant in simple tasks, but that quantitatively and qualitatively different types of solutions are

obtained under different conditions. This includes changing the distributions of the weights

themselves when other adaptive parameters are in play. This raises questions as to whether

ignoring spikes and time-based adaptive parameters is the best level of abstraction when build-

ing models of brains, and whether the solutions obtained with ANNs are brain-like given the

different types of solutions we observed across conditions. Consistent with these concerns,

there are some limitations with the evidence taken to support good ANN-brain alignment,

including problems with drawing conclusions from good brain predictivity scores [43, 44],

and the widespread failure of ANNs to account for empirical findings from psychology [45].

The brain has a language and its syllables are spikes. Our findings suggest that spikes and plas-

ticity of time-based parameters should play a more important role in the current research pro-

grams modelling the brain.
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