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Abstract: The interaction between plants and microorganisms plays a major role in plant growth
promotion and disease management. While most microorganisms directly influence plant health,
some indirectly support growth through pest and disease suppression. Endophytic entomopathogenic
fungi are diverse, easily localized, and have long-lasting effects on insect pests. When inhabiting
plants, these fungi alter secondary metabolites, volatile organic compounds, and microbiomes,
enhancing plant resistance to pests and diseases and sometimes improving growth. However,
their persistence in plant systems may be challenged by the plant’s defense mechanisms or by
human interventions such as insecticides, fungicides, herbicides, and phyto-insecticides, which are
common in agriculture. As effective biocontrol agents, endophytic entomopathogenic fungi can
also be integrated with other pest management strategies like predators, parasitoids, and chemicals.
This review will explore the impact of endophytic entomopathogens on plant systems and their
compatibility with other management practices.

Keywords: insect pathogen; plant-inhabiting; metabolites; volatiles; microbiome; compatibility

1. Introduction

The relationship between plants and endophytic microorganisms has emerged as a
key insight in enhancing our understanding of plant growth and resilience. Historically, the
exploration of endophytic microorganisms primarily focused on plants native to temperate
regions. However, in recent years, studies have shifted their focus to tropical plants.
Endophytic microorganisms are believed to affect plant growth, including stimulating
growth and protecting the plant from pests and diseases. Plants are estimated to harbor
one or more endophytic fungi and bacteria. Still, several studies are to be conducted on
these endophytes and plants to explore their need in pest control [1], as recent studies have
shown that endophytic microbes reduce pest attacks and enhance plant growth [2].

Numerous reports have been published about the interaction of endophyte microbes
with plants, including mycorrhizal fungi [3]. Plant growth promoting regulators [4,5] and
other fungal endophytes in grass [6–8]. The main endophytic organisms are fungi and
bacteria [9,10]; a few algae and oomycetes are also reported as endophytic [11].
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In general, endophytes are defined by many [12], but in simple terms, those organisms
do not produce harmful symptoms in plant tissues [13]. Endophytes fall into two groups:
those that do not develop external structures from the host and those capable of creating
such structures as nodules of N2-fixing bacteria. Their main purpose is to protect their
host plants from herbivores such as cattle and pest insects and increase plant resistance to
pathogens that produce antimicrobial agents and plant growth hormones; they can also
counteract adverse biotic and abiotic conditions [1].

Mainly reported fungal endophytes are Penicillium, Alternaria, Colletotrichum, Fusar-
ium, Aspergillus, Phoma, Phomopsis, Pestalotiopsis, Xylaria, Phomopsis, Diaporthe, Acre-
monium, Chaetomium, Trichoderma, Curvularia, etc., each with different roles [14]. Like-
wise, bacterial endophytes including, Rhizobium, Bradyrhizobium, Rhodococcus, Bacillus,
etc. [15,16]. Additionally, Pythium oligandrum, an oomycete algae, is reported as a growth-
promoting and plant-protection endophyte [17].

Most of these endophytes are responsible for plant diseases (adverse effects), plant
growth, and protection (positive effects). Endophytic pathogens, like Alternaria and
Cladosporium, cause plant leaf spot diseases, which are good examples. Also, some
endophytes will arrest the growth and development of endophytic pathogens and promote
plant growth and pest resistance [18]. In that way, entomopathogenic endophytes play a
significant role in plant protection from pests.

Even though bacteria and fungi species are reported as plant endophytes, fungi are
diverse. More than hundreds of endophytic fungi were reported, with an excellent example
of 257 ITS fungal endophytic genotypes from coffee plantations in Colombia, Hawaii,
Puerto Rico, and Mexico [19]. Also, fungal endophytes are localized [20], establishing a
long-term systemic infection for insects [13]. Hence, this review discusses the influence and
compatibility of entomopathogenic fungi with their host plants and insects.

2. Entomopathogenic Fungi as Endophytes

Entomopathogenic fungi can infect arthropod pests in a wide species range. Almost
all terrestrial ecosystems and habitats play various ecological roles [21]. In addition to soil
and phylloplane, they have also been observed as endophytes and rhizosphere-competent
microorganisms [22–25].

Entomopathogenic fungi are essential to biological pest control since they are the
natural enemies of many insect pests [26,27]. These fungi can develop within insects after
penetrating their exoskeleton or outer coating, eventually causing the host to die. Since
entomopathogenic fungi are unique to insects, using them in pest management [28,29] is
considered more environmentally benign than chemical insecticides [25]. This strategy
is a component of integrated pest management plans, which seek to support sustainable
agriculture and lessen dependency on artificial pesticides [30].

After discovering that these fungi can be endophytes with a systemic biological control
function [25,31], there is concern about previously unconsidered interactions between ento-
mopathogenic fungi and beneficial organisms, including other biological control agents.
Also, the defense mechanism of insects against entomopathogenic fungi, like the exoskele-
ton barrier, can be eliminated. Additionally, due to feeding the endophyte colonized plants,
the spores may affect the insect gut directly, increasing the high infectivity change [31].
There has been considerable use of entomopathogenic fungi for controlling many crop
pests, including stem borer (Chilo partellus) in maize and sorghum [32], cotton leaf roller
(Sylepta derogata) [33], potato beetle (Leptinotarsa decemlineata) [34], aphids (Aphis spp.), tea
mosquito bug (Helopeltis spp.) that affect guava, moringa, and cashew [35,36], and wheat
mites (Amblyomma maculatum and A. americanum) [37,38].

There is a growing interest in endophytic fungi due to their ability to enhance plant
growth, improve nutrition, and control pests and plant diseases [39–42]. Endophytes can
also increase crop yields, remove contaminants, inhibit pests, and generate fixed nitrogen
or novel substances [43]. In 1866, de Bary described fungi as endophytes, but they were
considered neutral, causing no harm or benefit to their plant hosts [44]. Studies focusing
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on endophytes have increased significantly over the last 30 years. Endophytic fungi have
only recently been discovered to play an essential role in protecting plants from herbivores
such as insects. In addition to providing nutrition to the host, they also enhance the plant’s
ability to withstand drought, cold, and pathogens.

Endophytic microorganisms have been found to occur in every plant studied to date.
Our planet is estimated to have 1.5 million different fungal species, but only a small
percentage have been described [45]. Since most fungal species are significant from the
perspective of environmental and biotechnological research, endophytic fungi have only
been isolated from very few of the 300,000 existing plant species, and endophytes have
the potential to produce new antibiotics, enzymes, dyes, and other valuable compounds.
Furthermore, they can be beneficial in controlling pests and diseases and enhancing plant
growth vigor by supplying nutrients or hormones to the host. Different aspects of fungal
endophytes have been discussed in these aspects in several reviews [40,46–50].

There are various examples of entomopathogenic endophytic fungi isolated from different
host plants in the literature reviews [24,46]. The results of some of the experiments conducted by a
group in Brazil also showed the presence of entomopathogenic endophytic microorganisms. There
were several fungi that were commonly isolated from several studied plant hosts, such as Beauveria,
Cladosporium, Cordyceps, Paecilomyces (Isaria), and Verticillium (Lecanicillium), Pochonia chlamydospo-
rium [29,51,52]. Other well-known entomopathogenic fungi include, Metarhizium [24,46,51], Isaria
fumosorosea, Beauveria brongniartii [53], and Akanthomyces muscarius [54].

The endophytic entomopathogenic fungi of this type have been identified among
plants of agricultural significance (Figure 1), including Zea mays [55], Glycine max [55],
Theobroma cacao [56], Saccharum [57], Vitis labrusca [58], Coffea Arabica [59], and some Citrus
species [60], Medicago sativa, Solanum lycopersicum, Cucumis melo, Triticum [61,62], Gossypium
spp. [63], Corchorus capsularis [64], Musa spp. [65], Capsicum spp. [66], Brassica oleracea [50],
Vicia faba [67], Ipomoea batatas [68], Manihot esculenta [69], Papaver somniferum [70], Brassica
napus [71], Ulmus spp., Vitis vinifera, and Saccharum officinarum [1].
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3. Metabolic Changes in Host Plants Due to Endophytic Entomopathogenic Fungi

As mentioned above, many entomopathogenic fungi are colonizing different host
plants. However, these entomopathogenic fungi may alter the plant nutrients and/or
defensive compounds within the plant, which may adversely impact the plant’s ability to
serve as a food source for herbivores or repel them (Figure 2) [72–77]. Those adverse effects
may be due to plants’ production of phenolics, terpenes, flavonoids, alkaloids, and volatile
organic compounds (VOCs) as secondary metabolites [78,79]. Also, some hormones will be
produced in plants that may induce resistance against herbivores and plant growth.

3.1. Changes in Volatile Blends

In different metabolic changes, VOCs play a main role as preventive measures and
decide the attraction of natural enemies towards plants and the repulsion of herbivores
away from plants. In plants, microbes play a significant role in producing and releasing
specific plant volatiles [80,81]. Insect population dynamics may be altered at higher trophic
levels through endophytic colonization by entomopathogenic fungi [3,5,6,82]. As a result of
herbivores influencing plant volatiles, changes in volatiles and attraction to natural enemies
have been observed in response to endophytic microorganisms [4,83,84].

The Beauvaria colonization alters the plant’s chemical volatiles, some of which are
reported to attract natural enemies, and some possess antimicrobial properties. Further-
more, a study reported the effects of endophytic B. bassiana (Bals.) Vuill and Metarhizum
brunneum (Petch) (Ascomycota: Hypocreales) on volatile compounds released by the leaves
from melon plants [85]. Subsequent aphid infestation results in quantitative and qualitative
differences in the leaves that Beauvaria and Metarhizium colonized with and without aphid
infestation. This may be caused by the defense responses triggered by endophytic fungi
colonized plants, which in turn cause changes in volatile blends [86]. Defense compounds
such as cis-jasmone and methyl jasmonate were increased simultaneously with the shift in
volatile emission [87,88].

The melon plants that B. bassiana colonized and infested with Myzus periscae produced
a more volatile compound, 6-methyl-octadecane, which may serve as an attractant to
natural enemies or repellent to pests [89], but further studies will be required.
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Figure 2. Metabolic changes in host plants due to endophytic entomopathogenic fungi. The en-
dophytic entomopathogenic fungus (1) enters the plant system through the roots and colonizes
within the plant tissues (2). This colonization may alter plant volatiles (3), secondary metabolites,
and hormones, which can result in repelling insect pests (4) and attracting natural enemies, such as
predators (5) and parasitoids (6).



J. Fungi 2024, 10, 865 5 of 18

Aphid immune responses were reduced by endophytic colonization by B. bassiana
(altering aphid symbionts), causing aphids to become more attractive to predators when
consuming endophytically colonized plants [73–75,77,90]. There was also a significant
amount of VOC compound 1-iodo-2-methyl-undecane in colonized non-aphid-infested
melon plants, previously reported as a floral volatile [91].

In wild cotton, plants colonized by B. bassiana release natural enemy attractants such
as 4-methyl-octane, a-caryophyllene, and (E)-hex-2-en-1-ol [92]. Caryophyllene and alpha-
caryophyllene were released more significantly in the presence of endophytic colonization.
However, this effect was neutralized after caterpillar feeding [93,94].

3.2. Influence on Secondary Metabolites

Next to volatile compounds, plant secondary metabolites play a significant role in
plant protection against pests. These alterations in secondary metabolites are mainly due
to herbivore feeding, but endophytic colonization also plays a vital role.

O. nubilalis feeding on maize with B. bassiana as an endophyte displayed fewer insects
with mycoses [1]. It was suggested that, since no conidia were found inside the host plant,
the mechanism of action may involve fungal metabolites, which are responsible for insect
deterrents or antibiosis [95].

Different researchers have found some defensive compounds like lipo-chitooligosaccharides
(LCO) [96], root exudates like sugars, amino acids, organic acids, phenolic compounds [97,98],
strigolactone (SL) [99], and arabinogalactan proteins (AGPs) [100], are reported as a result
of colonization of entomopathogenic fungi. Sometimes, these secondary metabolites act as
barriers to endophytic fungus colonization. In those cases, endophytic fungi create detoxi-
fying and degradation enzymes, such as cellulases, chitinases, amylases, β-1,3-glucanases,
and lactases, to overcome the harmful effect of plant metabolites. Furthermore, fungal
metabolites are crucial to various interactions between the fungus, plants, and its insect
host. They assist in reducing abiotic and biotic stress or mediate intra or inter-specific
communication functions in plants [101]. The synthesis of root exudates by host plants has
increased the presence of Metarhizium in some plants [102].

In the case of melon, the first report of 2-ethylhexyl nonyl sulfite was identified as a
biomarker in endophytically colonized plants when infested with cotton aphids [63].

3.3. Influence on Plant Hormones and Enzymes

Plant hormones and enzymes have less of an effect on plant protection but have a
significant role in plant growth. Combining entomopathogenic fungi biocontrol with plant
growth promotion in agriculture will have a more substantial impact [31]. Endophytes
produce a variety of phytohormones, such as indole-3-acetic acid (IAA), cytokines, and
other plant growth-promoting substances, which contribute to this effect [103]. Endophytes
also enhance the uptake of nutritional elements by their hosts by increasing nitrogen
uptake [104] and phosphorus uptake [105].

Endophytic Beauveria strains produce a variety of hydrolytic enzymes, like proteases
and chitinases that can harm ticks, suggesting that these enzymes play an important
role in pathogenesis. The endophytic strains also formed appressoria during tick cuticle
penetration [106].

3.4. Enhanced Antimicrobial Compounds

Even though microbes alter the plant metabolites and VOCs, their colonization will
result in antimicrobial compounds in plants as they are also considered foreign compounds
to the plant system and are harmful to those endophytes and other plant disease-causing
microbes. Some antifungal or antimicrobial compounds may be enhanced due to colo-
nization by entomopathogenic fungi. Antimicrobial properties are known to be associated
with some compounds such as benzaldehyde and (2Z,13E)-octadeca-2,13-dien-1-ol, which
are found in wild cotton plants that are colonized by endophytes and are infested with
pests [107–115]. Benzaldehyde exhibits some antimicrobial activity against Lecanicillium
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lecanii and impacts the growth of the fungus, the production of conidia, and the germina-
tion of spores [116]. In melon, defense compounds such as 1-iodo-2-methylundecane and
oxolan-2-one were present in large quantities when the fungus colonized the melon plants,
exhibiting a defense mechanism against it. Additionally, in melon plants, hexadecane-4-yl
2,2,2-trifluoroacetate exhibits antimicrobial activity against bacteria and fungi [117–119],
whereas 6-methyl-octadecane showed anti-nematode activity [120]. Similarly, 1-iodo-2-
methylundecane and 6-methyl-octadecane have combined action against Paecilomyces
lilacinus, an entomopathogenic fungus [121]. However, endophytic organisms can detoxify
those antimicrobial compounds in several cases.

4. Endophytic Entomopathogenic Fungi Discovered So Far

The direct and adverse indirect effects on plants and endophytic EPFs are becom-
ing successful in controlling herbivores. According to Paulo Teixeira Lacava (2014),
endophytic microorganisms play a significant role in controlling insects since they act
as a protective factor against insects [1]. Various genera of entomopathogenic fungi can
colonize a wide range of host plants as endophytes, which provides an exciting oppor-
tunity to improve their effectiveness [25]. An endophytic fungus, Phomopsis oblonga,
was found to protect elm trees from the beetle Physocnemum brevillineum, which spreads
the Dutch Elm disease through the transmission of the pathogenic fungus Ceratocystis
ulmi. A review provided many examples of fungal endophytes that control insects
and their ability to produce toxins that protect plants against herbivores [40]. The first
report on this correlation demonstrated that Epichloe typhina produced a toxin in Festuca
arundinacea, its host plant [122]. Inoculation of granular and aqueous formulations of
B. bassiana controlled the infestation of European Corn borer, Ostrinia nubilalis, in Zea
mays (Maize) [1].

The strains B. amorpha [123,124] have been employed against a major maize insect
pest (Spodoptera frugiperda), and the results have shown that endophytes from maize
are as effective as commercial entomopathogenic strains in Brazil for the control of
S. frugiperda. The same strains have also been tested in vivo and in vitro against an
ectoparasite bovine tick, Rhipicephalus microplus, and the strains reduced the egg weight
and reproduction efficiency of females. Field tests indicated that the endophytic strain
was the most effective, followed by a B. bassiana strain obtained from insects [106]. Until
now, this was the first field study in Brazil using endophytic entomopathogen fungi
to combat ticks, and the results showed an increase in mortality of 32% compared to
controls. The mortality of African ticks using insect isolates entomopathogens can be as
high as 85 percent [1], indicating that a search for new endophytes in combination with
improved delivery conidia can lead to an increase in mortality, leading to the possibility
of replacing synthetic compounds by biological control techniques. B. bassiana (Balsamo)
Vuillemin (Ascomycota: Hypocreales) grows directly through the cuticle of its host,
growing into the body of the insect, increasing throughout the body, and eventually
killing it [32].

The stem gall wasp Iraella luteipes (Thompson) (Hymenoptera: Cynipidae) larvae that
were discovered dead inside opium poppy stems were naturally infected with B. bassiana
strain EABb 04/01-Tip [70]. When treated artificially into the opium poppy seeds, vertical
transfer of an entomopathogenic fungus from mother plants that have been endophytically
colonized [125] provided resistance against I. luteipes.

The endophytic B. bassiana isolate has suppressed the stemborer (Sesamia calamistis) in
maize [95]. Endophytic B. bassiana strains significantly reduced the survival and damage
caused by banana stem weevils (Cosmopolites sordidus) in tissue-cultured banana plants [65].
Endophytic B. bassiana is also reported to control coffee berry borer (Hypothenemus ham-
pei) [46]. Furthermore, B. bassiana endophytic colonization on white jute decreased stem
weevil infestation [64].

Few studies have demonstrated the endophytic effect of B. bassiana and M. brunneum
on alfalfa, melon, tomato, and wheat [61,62] and B. bassiana on tomato [73] against S.



J. Fungi 2024, 10, 865 7 of 18

littoralis. Also, 12 isolates of B. bassiana and one isolate each of M. anisopliae and M. robertsii
were shown to colonize maize plants, with the highest rate being demonstrated by a B.
bassiana isolate (LPSc 1098) during foliar spraying. As a result, S. frugiperda in maize has
decreased larval growth, pupal survival, developmental stages, and a shorter lifespan.
Additionally, the colonization decreased reproductive success, longevity, and fecundity
among females [50].

The impact of endophytic colonization by the entomopathogenic fungi B. bassiana
ARSEF 3097 and Akanthomyces muscarius ARSEF 5128 on sweet pepper plant infestations
has altered the life cycle and behavioral response of the Myzus persicae var. nicotianae [65].

Maize seeds coated with microsclerotia of Metarhizium spp. induced the growth traits
of plants and reduced the survival of S. frugiperda [126]. The potential of four endophytic
fungal species, namely, Beauveria spp., Aspergillus spp., Curvularia spp., and Chaetomium
spp., against S. frugiperda in maize was tested [127]. Studies showed that, at 12 days after
treatment, Beauveria spp. (isolates at 1 × 106 conidia/mL) recorded high mortality under
laboratory conditions.

5. Compatibilities with Other Management Practices

Problems with any reasonable solutions are always expected. Likewise, here, for all
successful endophytic fungal organisms, the artificial problem is one of the management
practices we follow, like pesticides and botanicals. On the other hand, the endophytic
organism should not cause problems to the entomophagous natural enemies. However, em-
ploying entomopathogenic fungi in integrated pest management (IPM) in combination with
other biocontrol agents, such as parasitoids and predators [66,128,129], and with botanicals
will lead to environmental safety measures [68] (Figure 3). Similarly, compatibility between
all the management measures is necessary.
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pest management.
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5.1. Compatibility of Endophytic Fungi with Entomophagous Arthropods

By combining entomopathogenic fungi with entomophagous arthropods, the contact
action of these fungi and the ability of predators and parasitoids to search for their prey
can be utilized to ensure that fewer pests evade treatment [130,131]. A combination of
different biological control agents may be additive in suppressing pest populations [132].
Several studies have combined entomopathogenic fungi with other biological control
components, including predators, parasitoids, and nematodes, to evaluate their safety and
effectiveness [133–137].

Chyrysoperla carnea larvae prefer to feed on aphids reared on plants colonized with
B. bassiana than those grown on control plants, in a choice bioassay [129]. It was also
found that the number of aphids parasitized by Aphidius colemani and their sex ratio was
not influenced by whether the aphids had fed on B. bassiana colonized plants. Therefore,
Endophytic entomopathogenic fungi can be part of integrated pest management programs
with predators and parasitoids. Occasionally, the interval between the release of natural
enemies such as predators and parasitoids and the application of fungi affects the number
of aphids consumed and attacked by these predators and parasites [138–140].

In some studies, parasitoids colonized by entomopathogenic fungi endophytically
were reported to induce analogous effects [66,67,128]. However, the impact of colonization
on predators remains unknown and needs further investigation.

5.2. Compatibility of Entomopathogenic Fungi with Pesticides

Several studies have been conducted to assess the effects of pesticides on ento-
mopathogenic fungi [141,142]. Entomopathogenic fungi can respond synergistically, an-
tagonistically, or neutrally to insecticides [143]. Pesticides incompatible with these ento-
mopathogens can inhibit their development and reproduction, affecting IPM [141]. Data
concerning compatibility are essential before such associations (chemical insecticides and
entomopathogens) are used in the field [142].

Combining selective insecticides with entomopathogens allows greater control effi-
ciency, reducing insecticide application, reducing environmental contamination hazards,
and preventing pest resistance [144,145]. Through their effects on growth, sporulation, and
germination, insecticide application with entomopathogenic fungi may impact the latter’s
effectiveness. Therefore, testing an insecticide’s compatibility with entomopathogenic fungi
is crucial. Conidial survival may be affected by interactions with environmental variables,
agrochemicals, biopesticides, and/or chemical plant protection products [141]. Thus, the
compatibility of entomopathogenic fungi with different pesticide groups is discussed.

5.2.1. Insecticides

Entomopathogenic fungi and insecticides at sublethal concentrations work synergisti-
cally to enhance insect mortality [146]. This will also lessen environmental contamination,
the chance of resistance developing, and the dosage of highly beneficial insecticides. In con-
trast, some in vitro research shows that pesticides suppress the growth and development
of B. bassiana [141].

M. anisopliae and B. bassiana were shown to be most susceptible to dicofol (0.07%),
cypermethrin (0.009%), deltamethrin (0.005%), and chlorpyriphos (0.05%) [147]. However,
M. anisopliae was compatible with spinosad and indoxacarb [148]. In some strains of B.
bassiana, indoxacarb significantly inhibited sporulation and spore viability but did not
affect the species’ radial growth [149]. Chlorantraniliprole 18.5% SC was observed to
be compatible with B. bassiana based on their experimental results [150]. In contrast, M.
anisopliae at various concentrations (0.6, 0.3, 0.15, and 0.075%) showed a deleterious effect
on spore germination, but 76 percent spore germination was only found at the lowest
dosage of 0.037%. In the same trial, other insecticides that were shown to be compatible
with B. bassiana and M. anisopliae were Lambda-cyhalothrin 4.9% CS, Novaluron 10% EC,
Emamectin benzoate 5% WG, and Indoxacarb 15.8% EC.
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The impact of five pesticides on the vegetative growth of M. anisopliae was investi-
gated [151]. Findings indicated that imidacloprid had the lowest inhibitory effect (11.1%),
with deltamethrin (36.7%), cypermethrin (36.7%), thiodicarb (53.5%), and chlorpyrifos
(69.2%) following closely behind. A study showed imidacloprid’s compatibility with B.
bassiana and M. anisopliae, demonstrating the two entomopathogens’ high conidial pro-
duction and spore germination % [152]. However, deltamethrin exhibited the greatest
vegetative growth on both. When researchers examined three different imidacloprid doses
(0.5 × Dose of Field, 1 × Dose of Field, and 2 × Dose of Field) against B. bassiana, the
lowest field dose had a negligible inhibitory effect (5%) [141,153]. found that imidacloprid
exhibited the least growth inhibition for M. anisopliae at lower concentrations.

Thiodicarb’s effects on the vegetative growth of M. anisopliae were observed [143].
High levels of inhibition (>60%) were seen in their results. Comparatively, it was demon-
strated that imidacloprid was more effective than cypermethrin in increasing M. anisopliae
conidial production [146]. It was also discovered that M. anisopliae could tolerate the lowest
imidacloprid dosage [154]. Since B. bassiana and M. anisopliae could metabolize and release
chemicals as secondary nutrients, imidacloprid, which is neurotoxic to insects, did not
negatively affect them.

Apart from these reports, more compatible entomopathogenic fungi with newer
insecticides should still be explored. From this, we can develop and promote better-
integrated pest management packages for different pests.

5.2.2. Fungicides

Fungicides will probably have the most significant effect on entomopathogenic fungi
of all pesticides [155]. The compounds, particularly fungicides utilized to combat plant
pathogens, may also have adverse effects on entomopathogenic fungal populations, which
could decrease their ability to regulate pest populations [23,156,157]. However, because of
the severe incompatibility between fungicides and entomopathogenic fungi, several strains
of fungicide-resistant fungi were created through genetic modification [158].

Of the four fungicides tested, only Mancozeb 75% WP showed some degree of safety
when tested on B. bassiana and M. anisoplise with average spore germination at lower concen-
trations (0.5 and 0.25%) [150]. In contrast, Carbendazim 50% WP, Hexaconazole 5% EC, and
Propiconazole 25% EC completely inhibited their action at all concentrations. Also, there
was complete growth suppression of M. anisopliae in propiconazole, carbendazim, and flusi-
lazole at the recommended field dose [159]. It has also been reported that carbendazim and
mancozeb are highly toxic to Nomuraea rileyi. Carbandazim, propiconazole, chlorothalonil,
and hexaconazole were found to be highly harmful to N. rileyi by ultimately retarding its
growth. In contrast, captan and triadimefan were relatively safe for M. anisopliae [160].

The effectiveness of B. bassiana may be negatively impacted by using some fungicides.
Some fungicides work well with B. bassiana [161]. A compatibility study highlighted the
significance of conidial germination [142]. The concurrent application of copper oxide,
metalaxyl, and mancozeb with B. bassiana decreased insect infection, indicating that the
fungicides prevented germination on the cuticle [162]. However, the control efficacy might
be fine when fungicides are applied two or more days after fungal treatment. The fungicide
did not significantly influence fungal infection or growth within the insect host. Mancozeb,
which inhibited B. bassiana mycelial growth in laboratory culture, was found to have a
substantial effect on the fungus in the field based on fungal-induced mortality of the
Colorado potato beetle, Leptinotarsa decimlineata. Nonetheless, the field inhibition was
lower than in the lab, indicating that mancozeb does not eradicate B. bassiana from the
field. Metalaxyl had little effect in the field despite minimal suppression of B. bassiana in
the lab [163].

Twelve fungicides were tested, among which metalaxyl (0.1%), thiram (0.2%), and
chlorothalonil (0.1%) showed the least amount of suppression of vegetative growth and
spore germination of B. bassiana and M. anisopliae [147]. Benomyl (0.1%), orthocide (0.2%),
mancozeb (0.2%), tebuconazole (0.1%), pentachloronitrobenzene (0.1%), hexaconazole
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(0.1%), propiconazole (0.1%), difenoconazole (0.1%), and copper oxychloride (0.2%) were
the other nine fungicides that were incompatible and completely or strongly inhibited
vegetative growth and spore germination. Mancozeb fungicides inhibited B. bassiana on
agar media in the lab. In contrast, mancozeb had a detrimental effect on the species
abundance of potato leaves in the field [163].

Insecticide-compatible entomopathogens and compatibility with fungicides may be
incorporated into integrated pest and disease management practices.

5.2.3. Acaricides

Alongside insecticides and fungicides, acaricides are also essential pesticides in agri-
culture. However, few studies have explored the compatibility between entomopathogenic
fungi and acaricides. Recent research showed that Metarhizium spp. conidia and mi-
crosclerotia were more compatible with synthetic acaricides [164]. Additionally, different
isolates of Metarhizium demonstrated varying germination and growth patterns when
synthetic acaricides were incorporated into artificial media [153]. Combining deltamethrin
with Metarhizium pingshaense LCM S09 conidia resulted in greater tick control than either
treatment alone, especially in ticks susceptible to this synthetic acaricide [165].

A combination of Beauveria bassiana and spirodiclofen produced a synergistic inter-
action in eggs, larvae [166], and adults [167] of Tetranychus urticae. However, when B.
bassiana was combined with spiromesifen, fungal spore germination was reduced [168].
Later studies showed an additive interaction in both larvae and eggs of T. urticae [166].

Among the twelve acaricide formulations tested, avermectins and pyrethroids were
compatible with B. bassiana. In contrast, acaricides from organophosphate and organos-
tannic chemical groups significantly affected conidial germination, vegetative growth,
and sporulation [169]. Similarly, a mixture of etoxazole and B. bassiana resulted in an
antagonistic interaction, with a slight reduction in mycelial diameter [166].

5.2.4. Herbicides

Herbicide sensitivity is typically higher in entomopathogenic fungi [170]. Due to
frequent application, herbicides can accumulate in the soil, which could reduce the fungi’s
effectiveness. Depending on the type and strain of the fungus, herbicides can have different
inhibitory effects on their development and sporulation processes [171]. Certain herbicides
and their soil residues can negatively affect entomopathogens, even at low concentrations,
making them incompatible with these agents [170,172].

To minimize any adverse effects on biocontrol efficiency and incorporate B. bassiana
into the integrated crop protection program, it is essential to understand the compatibility
of B. bassiana with commonly used herbicides when choosing appropriate compounds for
treatment scheduling [173]. When considering the detrimental effects of the herbicides
on the various developmental stages of B. bassiana, it was found that amidosulfuron and
dicamba had a lower fungistatic impact than the other herbicides tested, particularly on
the processes of vegetative mycelial growth and sporulation [172]. An experiment by Celar
and Kos (2016) reported that at 100% dosage, all herbicides in the test exhibited a robust
inhibitory effect on conidial germination [174]. The inhibition of conidial germination
exhibited a range of 82% with isoxaflutole and 100% with fluorochloridone, pendimethalin,
and prosulfocarb. Inhibition rates raised to 96–100% at a 200% dose.

Herbicides also significantly impact the growth and development of entomopathogenic
fungi, but there is less focus on this.

5.2.5. Phyto-Pesticides

The effectiveness of treating whiteflies, B. tabaci with individual neem (azadirachtin)
extracts and fungal entomopathogens (B. bassiana and P. fumosoroseus), was enhanced
through topical administration [175,176]. Compared to separate treatments of B. bassiana
and neem, the combined application produced 27.6 and 20.5% higher B. tabaci nymphal
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mortality [176]. When P. fumosoroseus and azadirachtin were combined, Bemisia argentifolii
nymphal mortality could reach 90% [175].

Aqueous extracts of two medicinal herbs (Calotropis procera and Inula viscosa) along
with endophytic fungal entomopathogens B. bassiana and M. brunneum were applied
in combination to affect the survival and growth of the sweet potato whitefly (Bemisia
tabaci) [68]. Endophytic B. bassiana combined with C. procera extract was found to have an
additive effect on the mortality of whitefly developmental stages. Conversely, the combined
impact of applying endophytic M. brunneum with either plant extract was more significant
in each case than the effects of individual treatments, but they were sometimes additive.

Together with B. bassiana, L. lecanii, and M. anisopliae, two botanical pesticides, Tondexir
(hot red pepper extract in mineral oil 85% EC) at 2.5 mL/liter of water and Palizin (coconut
soap 65% SL) at 1.5–2 mL/liter of water were tested to control Galleria mellonella. Comparing
the germination of B. bassiana to that of L. lecanii and M. anisopliae, the effects of Tondexir
and Palizin were noticeably different [177].

Recently, phyto-insecticides have gained importance in biorational management. They
may have an additive effect or enhance the impact of entomopathogens.

6. Conclusions

The study of epiphytic and endophytic entomopathogenic fungi against different
insect pests should be continued to the next level to explore their impacts on plant sys-
tems. The alterations in plant metabolites, volatile organic compounds, hormones, and
antimicrobial compounds will enhance the effect of those entomopathogens, both in plant
growth and defense against pests. Exploring these alterations will identify pest-repellent
and attractant compounds of natural enemies, induced plant antibiosis, etc., resulting in
a tritropic interaction between entomopathogens, plants, and insects. However, the chal-
lenge here is the compatibility of entomopathogens with the other management practices
followed. The compatibility of entomopathogens with entomophagous arthropods, like
predators and parasitoids will pave the way for incorporating simultaneous integrated
pest management. The compatibility of entomopathogens with pesticides will increase
their persistence period inside the host plant. Hence, futuristic invertebrate pathology in
an endophytic way will lead to efficient plant protection against insect pests.
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