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Simple Summary: Insulin-like peptides are known to be crucial endocrine hormones that influence
various physiological processes, including growth and reproduction in insects. However, the specific
roles of insulin-like peptides in the reproduction of natural enemy insects remain to be known. Coc-
cinella septempunctata is an effective biological control agent and it is of great biocontrol significance
to study the functions of insulin-like peptide genes in female reproduction of this natural predator.
In this study, we cloned two insulin-like peptide genes and analyzed their functions in female C.
septempunctata. It was found that silencing these insulin-like peptide genes resulted in significant
down-regulation of ovarian development-related genes, leading to a prolonged pre-oviposition
period, decreased fecundity, and reduced hatching rates of female C. septempunctata. These findings
confirm the regulatory functions of these insulin-like peptide genes in female C. septempunctata repro-
duction and enhance our understanding of peptide hormones in natural enemy insects, contributing
to improved biological pest control strategies.

Abstract: Insulin-like peptides (ILPs) are important peptide hormones in insects, particularly involved
in regulating physiological processes such as growth, development, and reproduction. However,
the specific roles of ILPs in the reproduction of natural enemy insects remain unknown. In this
study, two ILP genes, CsILP1 and CsILP2, were cloned and their functions were analyzed in female
Coccinella septempunctata L. (Coleoptera: Coccinellidae). The open reading frames (ORFs) of CsILP1
and CsILP2 were 384 bp and 357 bp, respectively. The expression of CsILP1 increased on the 6th day
after eclosion, reaching its peak on the 12th day, while CsILP2 levels showed a significant increase on
the 6th day and then stabilized. In different tissues, CsILP1 was highly expressed in ovaries, while
CsILP2 predominated in elytra. Injection of dsRNA targeting CsILP1 and CsILP2 resulted in the
down-regulation of insulin pathway genes. The relative expression of ovarian development-related
genes Vasa, G2/M, and Vg was reduced by 82.50%, 89.55%. and 96.98% in dsCsILP1-treated females,
and by 42.55%, 91.36%, and 55.63% in dsCsILP2-treated females. Furthermore, substantial decreases in
14-day fecundity were observed, with reductions of 89.99% for dsCsILP1 and 83.45% for dsCsILP2. These
results confirm the regulatory functions of CsILP1 and CsILP2 in female C. septempunctata reproduction.

Keywords: insulin-like peptides; insulin pathway; female reproduction; Coccinella septempunctata

1. Introduction

Insulin-like peptides (ILPs) are bioactive polypeptides in insects that act as endocrine
hormones, playing a critical role in maintaining physiological homeostasis [1–4]. For
insects, ILP was first identified in Bombyx mori, and it was designated as bombyxin [5–7].
Subsequently, more than 30 ILPs were identified in B. mori [8–10]. Up to now, eight ILPs
have been found in Drosophila melanogaster [2,3], seven in Anopheles gambiae, five in Anopheles
stephensi [11], eleven in Acyrthosiphon pisum [12], and five in Leptinotarsa decemlineata [13].

Insects 2024, 15, 981. https://doi.org/10.3390/insects15120981 https://www.mdpi.com/journal/insects

https://doi.org/10.3390/insects15120981
https://doi.org/10.3390/insects15120981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0003-0651-1242
https://doi.org/10.3390/insects15120981
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects15120981?type=check_update&version=1


Insects 2024, 15, 981 2 of 14

Different ILPs show different levels of expression in various tissues [4,10]. For instance, in
adult D. melanogaster, ILP2 was most highly expressed in the brain, while ILP3 was in the
midgut muscle, ILP6 was in the fat body, ILP7 was in the abdominal neuromeres and ILP8
was in the ovary [4,14]. In Aedes aegypti, the ILPs 1, 3, 4, 7, and 8 were specifically expressed
in the brain, ILP2 in the ovary, ILP5 in the carcass, and ILP6 in the fat body [15]. In B. mori,
bombyxins A-G showed high expression in the brain [10], bombyxin-Y in the fat body
and ovary [9,16,17], bombyxin-Z was highly expressed in follicular cells, and bombyxin-
X exhibited the highest expression in the fat body [9]. This tissue-specific expression
observed among ILPs contributes to the functional diversity in the regulation of growth,
development, metabolism, and reproduction [2,10,18].

ILPs regulate insect reproduction mainly through the insulin pathway [19–23]. In the
insulin pathway, ILPs act as upstream regulatory factors, binding to the insulin receptor
(InR) and phosphorylating it. The phosphorylated InR further binds to and phosphorylates
the insulin receptor substrate (IRS). The phosphorylated IRS transmits the signal down-
stream via phosphoinositide 3-kinase (Pi3k) [19]. Pi3k consists of a regulatory subunit
(Pi3k-R) and a catalytic subunit (Pi3k-C). Phosphorylated IRS binds to Pi3k-R, activating
Pi3k-C, which in turn phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to
phosphatidylinositol-3,4,5-triphosphate (PIP3). When the concentration of PIP3 accumu-
lates to a certain level, it activates downstream protein kinases AKT [22]. Activated AKT
cascades downstream effector proteins to regulate cell growth, development, and differ-
entiation [24]. Among the downstream effector proteins related to reproduction, protein
G2/mitotic-specific cyclin-B (G2/M) is a cell-cycle regulatory protein that mediates the cells
from interphase to division. Since vigorous reproduction in insects is associated with active
cell division, G2/M is regarded as an indicator of reproductive system development [25].
Protein VASA is a member of the DEAD-box family, and it functions in regulating cell
proliferation. VASA is widely expressed in insect germ cells, and required for oogenesis [26].
Vitellogenin (Vg) is a glucose–lipid complex protein with high molecular weight [27]. The
synthesis of protein Vg in the fat body determines the vitellogenesis [27,28]. Therefore, the
expression levels of Vasa, Vg, and G2/M are often used to assess ovarian development at
the molecular level [25–28].

Coccinella septempunctata L. (Coleoptera: Coccinellidae) is a natural predator of many
pests such as aphids, spider mites, and scale insects [29,30]. It is characterized by strong
reproduction, long lifespan, and wide distribution [31,32]. As an effective biological control
agent, its reproductive capacity has been heavily researched [33,34]. Insect reproduction
is regulated by various endocrine hormones [27,35–37], especially juvenile hormone (JH)
and peptide hormones [38]. JH has been proven to be necessary for female ovarian matura-
tion [37–39], while the role of peptide hormones like ILPs remains unclear. In this study,
two ILP genes (named CsILP1 and CsILP2) were cloned from C. septempunctata, and their
expression profiles and functions in female reproduction were verified. These results will
enhance our understanding of the molecular mechanisms by which peptide hormones
regulate the reproduction of natural enemy insects, and promote biological control of pests.

2. Materials and Methods
2.1. Insects

Seven-spot ladybird beetles (C. septempunctata) were captured from wheat fields
(38◦82′ N, 115◦45′ E) at Hebei Agriculture University, Baoding, Hebei, China. Subse-
quent generations of larvae and adults were reared under conditions of (24 ± 1) ◦C and
(60 ± 5)% relative humidity with a 16:8 h light/dark photoperiod, and fed on Megoura
japonica Matsumura. Larvae were reared singly in 4 cm diameter Petri dishes. Newly emerged
adults were paired, and each couple was transferred into a 180 mL clear plastic cup.

M. japonica was reared for generations in the Insect Physiology and Toxicology Lab-
oratory of Hebei Agricultural University under conditions of (23 ± 1) ◦C and (50 ± 5)%
relative humidity. They were fed on fresh pea seedlings [40].
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2.2. RNA Isolation and cDNA Cloning of CsILP1 and CsILP2

Total RNA was isolated from the whole body of a 10-day-old female adult with the Total
RNA Extraction Kit (Tiangen, Beijing, China) following the instructions. RNA contamination
and degradation were monitored on 0.8% agarose gel electrophoresis. The concentration of
RNA was examined by ultra-micro spectrophotometer MD2000C (Biofuture, Beijing, China).
RNA samples (>1 µg, 28S:18S ≥ 1.0, OD260/280 = 1.8–2.2, OD260/230 ≥ 2.0) were used to
synthesize cDNA using RT mix with DNase All-in-One (Suzhou, US EVERBRIGHT, China).

From the unpublished transcriptome database of C. septempunctata, we identified
two differently expressed insulin-like peptides, namely CsILP1 and CsILP2. Primers
for amplification of CsILP1-ORF and CsILP2-ORF were designed using Primer Premier
6.0 software (Table S1). The sequences of CsILP1 and CsILP2 were PCR-amplified following
protocol: 95 ◦C 3 min, (95 ◦C 15 s, 55 ◦C 15 s, 72 ◦C 3 min) *35 cycles, 72 ◦C 5 min, 4 ◦C hold,
using 2× High-fidelity PCR Master Mix (Sangon, Shanghai, China). The PCR products
with the expected size were cut from the gels, cloned into a pEasy-Blunt Zero Cloning
vector (Transgen, Beijing, China), transferred into Trans1-T1 phage Resistant Chemically
Competent cells, and then sequenced.

2.3. Bioinformatics Analysis

The ORFs of CsILP1 or CsILP2 were determined by NCBI Open Reading Frame
Finder (https://www.ncbi.nlm.nih.gov/orffinder, accessed on 25 January 2024). The
RNA sequences were translated to amino acid sequences by the Expasy Translate tool
(https://web.expasy.org/translate/, accessed on 21 April 2024). Conserved Domains
were searched by NCBI Conserved Domains Search (https://www.ncbi.nlm.nih.gov/
Structure/cdd/wrpsb.cgi, accessed on 21 April 2024). The physical and chemical param-
eters were given by the Expasy ProtParam tool (https://web.expasy.org/protparam/,
accessed on 21 April 2024). The presence of signal peptides was predicted by PredictProtein
(https://predictprotein.org/, accessed on 16 May 2024). The amino acid sequences of
ILPs in various insect species were searched from the NCBI database. The genomic con-
texts were predicted by NCBI Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
23 May 2024). DNAMAN 8.0 and MEGA7.0 software were used for sequence alignment.
The Swiss Model (https://swissmodel.expasy.org/, accessed on 23 May 2024) was used for
protein tertiary structure prediction. The ESPript 3.x (https://espript.ibcp.fr/ESPript/cgi-
bin/ESPript.cgi, accessed on 23 May 2024) was used to edit sequence alignment results.

2.4. Expression Profiling Analysis of CsILP1 and CsILP2

To determine the expression profiles of CsILP1 and CsILP2 on different days after
female eclosion, female adults were collected randomly on days 2, 4, 6, 8, 10, 12, and
14 after eclosion randomly. For each time point, 1 individual was treated as 1 replicate,
and 4 biological replicates were set (a total of 28 individuals were used). To study the
expression profiles of CsILP1 and CsILP2 in different tissues, we dissected the head, muscle,
fat body, elytra, gut, and ovary of 10-day-old female adults. Each sample weighed 20 mg
(each dissected from 20 females), with 4 biological replicates for each tissue.

Total RNA isolation and cDNA synthesis of each sample was performed as described
above, and the cDNA concentration was diluted to 120–150 ng/µL for RT-qPCR. The
primers for RT-qPCR were designed by Primer Premier 6.0, and 16S ribosomal RNA (16S
rRNA) and β-actin were selected as reference genes [41,42]. RT-qPCR was performed using
2*SYBR Green qPCR Master Mix (Suzhou, UElandy, China) on a Bio-Rad CFX machine
(Bio-Rad, Hercules, CA, USA). The reaction volumes contained 10 µL of 2*SYBR Green
qPCR Master Mix, 8 µL of ddH2O, 0.5 µL of each primer (10 µm), and 1 µL of cDNAs,
and followed protocol: 95 ◦C for 2 min, followed by 40 cycles of 95 ◦C for 10 s, 58 ◦C for
15 s, and 72 ◦C for 15 s, then 95 ◦C for 1 min, 50 ◦C for 1 min, and 65 ◦C for 5 s. Technical
replicates were performed 3 times.

https://www.ncbi.nlm.nih.gov/orffinder
https://web.expasy.org/translate/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://web.expasy.org/protparam/
https://predictprotein.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://swissmodel.expasy.org/
https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
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2.5. RNA Interference Experiment

RNA Interference (RNAi) was applied to study the function of CsILP1 and CsILP2
in regulating the reproduction of female C. septempunctata, and dsGFP (green fluorescent
protein) was used as the control [23]. The primers of dsRNA templates (dsCsILP1, dsCsILP2,
and dsGFP, Table S2) were designed using Primer Premier 6.0 including a T7 promoter
sequence. The dsRNA was synthesized according to the instructions of the T7 RiboMAX™
Express RNAi System kit (Promega, Shanghai, China), and then the dsRNA concentration
was diluted to 1000 ng/µL. Afterward, 0.5 µL of dsRNA was injected into each abdomen
of 4-day-old female adults (1:1 paired with male adults) using the 5 µL microinjector
(Hamilton, Shanghai, China). For each treatment, 30 females were injected in 1 replication,
from which 3 individuals were collected at 1, 3, and 5 days after injection to test the
silencing effects of target genes, and 3 biological replicates were conducted. To further test
the specificity of dsRNA, 3 individuals were collected at 3 days after injection. The relative
expression levels of CsILP2 after injection of dsCsILP1 and levels of CsILP1 after injection of
dsCsILP2 were measured and 3 biological replicates were conducted (a total of 270 female
individuals were injected and 81 individuals were used to test the silencing effects and
specificity of dsRNA at random).

In addition, to determine the function of CsILP1 and CsILP2, female adults were
selected 3 days after interference. The expressions of downstream genes in the insulin
pathway InR, IRS, Pi3k-R, Pi3k-C, and AKT were tested. The expressions of genes Vasa, Vg,
and G2/M, reflecting the developmental status of the female reproductive system, were
also measured. The primers for RT-qPCR were designed by Primer Premier 6.0 (Table S3),
and 16S rRNA and β-actin were selected as reference genes [41,42]. For each treatment,
3 samples were set for 1 replicate and this was repeated 3 times (a total of 27 individuals
were tested).

Then, 3 days after interference, female adults were dissected to observe the ovary
status, 3 females were used for each treatment, and this was repeated 3 times (a total of
27 females were dissected). After interference, the pre-oviposition period, 14-day fecundity,
and the color of eggs laid in the first spawning were recorded, 8 couples were set for
1 replicate and repeated 3 times [40,43]. For each treatment, the hatching rate was recorded,
with 100 eggs collected in 1 sample, 4 samples for 1 replicate, and repeated 3 times.

2.6. Statistical Analysis

Relative expression of genes was calculated by 2−∆∆Ct (Ct value is the number of qPCR
cycles). IBM SPSS Statistics V21.0 was used for statistical analysis. For the RNAi experiment,
the interference efficiency and specificity of dsRNA were analyzed by Student’s t-test. Other
data were analyzed using one-way analysis of variance (ANOVA), with multiple comparisons
conducted using Tukey’s HSD (p < 0.05). All data were shown as mean ± standard error (SE).

3. Results
3.1. Sequence Analysis of CsILP1 and CsILP2

The cDNA sequences of CsILP1 and CsILP2 were cloned and submitted to GenBank
with accession Nos. OR656512 and OR656513, respectively. Both gene CsILP1 and CsILP2
were located on chromosome 3 (NC_058191.1), gene CsILP1 has three exons and gene
CsILP2 has two exons.

The ORF of CsILP1 was 384 bases, encoding a protein of 127 amino acids with a
predicted molecular weight (MW) of 14.51 kDa and a theoretical isoelectric point (pI) of
8.34. The ORF of CsILP2 was 357 bases, and it encoded a protein of 118 amino acids with
MW of 13.28 kDa and a pI of 6.68. The predicted CsILP1 and CsILP2 protein sequences
both contained a Sec/SPI signal peptide (1-27aa) and a conserved IlGF_like superfamily
domain (pfam00049), including B-chain, linker (C-peptide), and A-chain. For CsILP1, the
domain spans 37-125aa, and for CsILP2, it spans 38-117aa (Figure 1).
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Figure 1. Gene sequences of CsILP1 (A) and CsILP2 (B) and the corresponding protein sequence from
C. septempunctata. Signal peptides were “—” underlined, B chains were framed by green squares,
C peptides were framed by red squares, A chains were framed by blue squares. An asterisk indicates
the stop codon. Conserved domains were in red font. The characteristic cysteines of insulin-like
sequences were highlighted in green.

Multiple sequence alignment (Figure 2) showed that CsILP1 and CsILP2 were highly
conserved, with 79.53% identity. For CsILP1 and CsILP2, the two cysteine residues (-C-) in
the B chain and the four cysteine residues (-C-) in the A chain are highly conserved across
all proteins, including four sequences derived from Tribolium castaneum (TcILP1, TcILP2b,
TcILP3, and TcILP4), eight sequences derived from D. melanogaster (DmILP1, DmILP2b,
DmILP3, DmILP4, DmILP5, DmILP6, DmILP7, and DmILP8), and one sequence derived
from humans (Homo sapiens insulin). At the C-terminal end of the B chain of CsILP1 and
CsILP2, there are typical C-peptide cleavage sites occupied by two consecutive lysines
(-K-K-). However, at the N-terminus of the A chain, CsILP2 has a typical C-peptide cleavage
site composed of two consecutive arginine and/or lysine residues (-K-R-). In CsILP1, the
lysine (K) at this position is replaced by glutamine (Q) (-Q-R-), and the -K-K- site appears
at the eighth and ninth amino acid residues following this.
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other insulin superfamily proteins. Sequences TcILP1, TcILP2b, TcILP3, and TcILP4 were derived
from T. castaneum. Sequences DmILP1, DmILP2b, DmILP3, DmILP4, DmILP5, DmILP6, DmILP7, and
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DmILP8 were derived from D. melanogaster. The sequence name was preceded by GenBank accession
number. Sequence Homo sapiens insulin was derived from humans. The canonical cleavage sites of
the C-peptide are marked by black arrows. The common sequence is highlighted in red font. The
green numbers represent the sites of the disulfide bonds, and the same numbers indicate they will be
connected together after the cleavage of the C peptide.

3.2. Expression Profiling of CsILP1 and CsILP2

The expression profiles of genes CsILP1 and CsILP2 at different days after eclosion
are shown in Figure 3. For CsILP1, the expression level increased sharply on the 6th day,
remained stable from the 6th to the 10th day, and peaked on the 12th day (F = 23.671; df = 6,
27; p < 0.001). The relative expression of the CsILP2 gene significantly increased on the 6th
day after eclosion and then remained stable (F = 9.013; df = 6, 27; p < 0.001).
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Figure 3. Mean (±SE) expression levels of CsILP1 (A) and CsILP2 (B) in C. septempunctata at different
days (2, 4, 6, 8, 10, 12, and 14 days after eclosion). Different letters represented significant differences
(ANOVA, Tukey’s HSD, α = 0.05).

Tissue-specific expression profiles are shown in Figure 4. Both CsILP1 and CsILP2
were expressed in all tissues. CsILP1 had the highest transcription levels in the ovary
(F = 5.046; df = 5, 23; p = 0.005). CsILP2 was the highest expressed in the elytra, followed by
the fat body, and the lowest in the gut and ovary (F = 33.570; df = 5, 23; p < 0.001).
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3.3. Functional Analysis of CsILP1 and CsILP2 by RNAi

To investigate the function of CsILP1 and CsILP2 in the reproductive process, females
were injected with dsCsILP1 or dsCsILP2, with dsGFP used as a control. The silencing
efficiencies of CsILP1 and CsILP2 were analyzed by RT-qPCR after dsRNA injection. Results
showed that, compared with the dsGFP control, the relative expression of CsILP1 decreased
by 82.02%, 99.06%, and 87.16% on days 1, 3, and 5 after dsCsILP1 injection, respectively
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(day 1, t = 6.283, df = 4, p = 0.003; day 3, t = 5.695, df = 4, p = 0.005; day 5, t = 7.381,
df = 4, p = 0.002, Figure 5A). Similarly, the relative expression of CsILP2 decreased by
87.91%, 96.75%, and 78.67% on days 1, 3, and 5 after dsCsILP2 injection, respectively (day
1, t = 14.426, df = 4, p < 0.001; day 3, t = 8.166, df = 4, p = 0.001; day 5, t = 4.088, df = 4,
p = 0.015, Figure 5B). Compared to dsGFP control, there was no significant difference in the
relative expression of CsILP2 after dsCsILP1 interference (t = 0.539, df = 4, p = 0.618), and
vice versa (t = 1.710, df = 4, p = 0.162).
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Silencing CsILP1 and CsILP2 affected the expression of insulin pathway genes
(Figure 6). Compared with the dsGFP control, the relative expression levels of down-
stream genes InR, IRS, Pi3k-R, Pi3k-C, and AKT decreased significantly by 80.95%, 87.77%,
88.58%, 79.96%, and 67.57%, respectively, on the third day post-dsCsILP1 injection. For
dsCsILP2 injection, the relative expression levels of InR and Pi3k-C showed no significant dif-
ference, while IRS, Pi3k-R, and AKT expression decreased significantly by 55.45%, 85.97%,
and 69.50%, respectively. Notably, the relative expression level of IRS in the dsCsILP1
group was significantly lower than that in the dsCsILP2 group, and there was no significant
difference in the relative expression levels of Pi3k-R and AKT between the dsCsILP1 and
dsCsILP2 groups (InR, F = 28.626, df = 2, 8, p = 0.001; IRS, F = 42.947, df = 2, 8, p = 0.000;
Pi3k-R, F = 42.217, df = 2, 8, p = 0.000; Pi3k-C, F = 48.054, df = 2, 8, p = 0.000; AKT, F = 11.832,
df = 2, 8, p = 0.008).

Expression of reproductive-related genes after CsILP1 and CsILP2 silencing was shown
in Figure 7. Compared with dsGFP control, the expressions of Vasa, G2/M, and Vg decreased
significantly by 82.50%, 89.55%, and 96.98%, respectively, on the third day after dsCsILP1
injection. In the dsCsILP2 injection group, the expression of Vasa, G2/M, and Vg decreased
significantly by 42.55%, 91.36%, and 55.63%, respectively. Furthermore, the expressions of
Vasa and Vg in dsCsILP1 treatment were significantly lower than those in dsCsILP2 treatment
(Vasa, F = 21.337, df = 2, 8, p = 0.002; G2/M, F = 7.890, df = 2, 8, p = 0.021; Vg, F = 36.101,
df = 2, 8, p < 0.001).
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The ovarian development of female adults of C. septempunctata after CsILP1 and CsILP2
silencing is shown in Figure 8. Three days post-injection, the ovaries in the dsGFP control
matured with yolk deposition (Figure 8A). The ovaries in the dsCsILP1 (Figure 8B) and
dsCsILP2 (Figure 8C) treatment groups remained immature, with no yolk deposition observed.
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The effects of CsILP1 and CsILP2 silencing on the color of eggs are shown in Figure 9.
The color of eggs laid in the first spawning by female adults C. septempunctata in dsCsILP1
(Figure 9B) or dsCsILP2 (Figure 9C) treatment group appeared notably lighter than that in
the dsGFP control group (Figure 9A).
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dsCsILP1 (B) and dsCsILP2 treatment (C).

The effects of CsILP1 and CsILP2 silencing on the pre-oviposition, 14-day fecun-
dity, and hatching rate are shown in Table 1. Compared with the dsGFP control, the
pre-oviposition of female adults in the dsCsILP1 and dsCsILP2 treatment groups were signif-
icantly prolonged by 5.58 days and 4.54 days, respectively (F = 94.297; df = 2, 71; p = 0.048).
The total 14-day fecundity was significantly lower in the dsCsILP1 and dsCsILP2 treatment
groups, reduced by 89.99% and 83.45%, respectively (F = 88.020; df = 2, 71; p < 0.001), with
no significant difference between the dsCsILP1 and dsCsILP2 treatment groups. The hatch-
ing rate for the dsCsILP1 (83.11%) and dsCsILP2 (82.44%) treatment groups was significantly
lower than that of the dsGFP control group (90.11%), with no significant difference between
the two treatment groups (Table 1; F = 15.239, df = 2, 35, p < 0.001).

Table 1. Effects of CsILP1 and CsILP2 silencing on reproduction of female adults C. septempunctata.

Treatments Pre-Oviposition (Days) 14 Days Fecundity (Eggs per Female) Hatching Rate (%)

dsGFP 10.17 ± 0.29 c 296.79 ± 22.54 a 90.11 ± 0.93 a
dsCsILP1 15.75 ± 0.36 a 29.71 ± 8.83 b 83.11 ± 1.23 b
dsCsILP2 14.71 ± 0.26 b 49.13 ± 13.03 b 82.44 ± 1.50 b

Note: data were mean ± SE; different letters indicated significant differences between treatments (ANOVA,
Tukey’s HSD, α = 0.05).

4. Discussion

Insect ILPs belong to the insulin superfamily proteins (ISPs), which include insulin,
insulin-like growth factor (IGF), relaxin, ILPs, etc. [44]. These ISPs are structurally con-
served across divergent taxa, with the ILP gene encoding a propeptide that includes
a signal peptide, a B-chain, a C-peptide linker, and an A-chain. Following the cleav-
age of the C-peptide, the B- and A-chains, linked by three disulfide bonds (formed by
six cysteine residues), convert into an activated form [44]. In this study, two ILP genes,
CsILP1 and CsILP2, were cloned from C. septempunctata. The predicted protein sequences
for both CsILP1 and CsILP2 contain a signal peptide and a conservative domain of IlGF_like
superfamily (including a B-chain, a C-peptide, and an A-chain).

Multiple sequence alignment showed the cysteine residue sites are conserved across
all sequences. CsILP2 has two typical C-peptide cleavage sites at the C-terminus of the
B-chain and the N-terminus of the A-chain, each occupied by pairs of consecutive arginine
and/or lysine residues (-K-K- and -K-R-). However, at the N-terminus of the A chain in
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CsILP1, the lysine (K) is replaced by glutamine (Q) (-Q-R-). The cleavage of the C-peptide
is crucial for the structure and function of ISPs, and any mutation at the cleavage site may
affect protein function [44]. Therefore, mutations in the cleavage site of c-peptide in CsILP1
might have some influence on its function.

On different days after female eclosion, the expression of CsILP1 sharply increased on
the 6th day and reached its peak on the 12th day, while the expression of CsILP2 significantly
increased on the 6th day and then remained stable. Previous research found that female C.
septempunctata deposited yolk on the 6th to 8th day after eclosion, and reached the spawning
peak around the 12th day. This consistency suggests that the expression dynamics of CsILP1
and CsILP2 may be closely related to the reproductive dynamics of C. septempunctata [39].

In most insects, ILPs are expressed in a variety of tissues, including the ovary, gut, fat
body, brain, hemolymph, and carcass [4,12,45]. This diversity in tissue-specific expression
often suggests functional differences among them. For instance, in B. mori, bombyxins
A-G, secreted by brain neurosecretory cells, regulate nutrient-dependent growth, and
metabolism, while the high expression of Bombyx IGF-like peptide (BIGFLP) in the fat body
shows its function on ovarian development [4,10,17,46]. In D. melanogaster, DmILP8, which
is highly expressed in the ovary, showed a clear reproductive relevance, and it was proposed
to be a relaxin-like peptide and have gonadotropic functions [14,47–50]. Furthermore,
the expression levels of ILPs are influenced by various environmental factors including
temperature, circadian rhythm [51], pesticides [52], and nutritional conditions [48]. Many
hormones and growth factors present in the elytra can alter body color and size in response
to environmental changes, which in turn affects the growth, development, and reproduction
of insects [53,54]. Therefore, we speculate that the expression of ILPs in the elytra may be
related to environmental response. In this research, CsILP1 was highly expressed in the
ovaries and CsILP2 in the elytra. These tissue-specific expressions of CsILP1 and CsILP2
indicate their relevance to reproduction and development, highlighting the importance of
further investigating their mechanisms of action.

The functions of ILPs in regulating the female reproduction are common in many
insects, such as D. melanogaster [14], A. aegypti [55], T. castaneum [56], Spodoptera litura [57],
Chrysopa septempunctata [38], Propylea japonica [23], Colaphellus bowringi [58], Chrysopa pal-
lens [36], Chilo suppressalis [59], and Adelphocoris suturalis [20]. In this study, females treated
with dsCsILP1 and dsCsILP2 showed prolonged preoviposition periods, reduced 14-day
fecundity, decreased hatching rates, and delayed ovarian development. At the molecu-
lar level, the expressions of reproduction-related genes Vasa, Vg, and G2/M were down-
regulated in both treatment groups. These observations indicated that CsILP1 and CsILP2
have a regulatory role in the reproductive process of C. septempunctata. The reproductive
development of insects involves oogenesis and vitellogenesis [60]. Gene Vasa is essential for
oogenesis, Vg for vitellogenesis, and G2/M for the germ cell cycle [25–28,61]. Currently, re-
search on female insect reproductive development mainly focuses on vitellogenesis [58,62],
with less emphasis on oogenesis and the germ cell cycle. Investigating the differential regu-
latory effects of ILPs on oogenesis and vitellogenesis in female C. septempunctata will deepen
our understanding of the regulatory mechanisms underlying insect ovarian development.

ILPs regulate the reproduction of insects primarily through insulin pathways [4,17,20].
In this study, silencing CsILP1 led to significant downregulation of downstream genes InR,
IRS, Pi3k-R, Pi3k-C, and AKT. Silencing CsILP2 resulted in significant downregulation of
IRS, Pi3k-R, and AKT genes, while InR and Pi3k-C were not significantly affected. This
suggests that CsILP1 and CsILP2 differentially affect the mRNA expression level of genes
in the insulin pathway, and their specific mode of action in female reproduction remains
to be further investigated. In the insulin pathway, the specific binding of ILPs and InR
is a key transmembrane signal. InR is a receptor tyrosine kinase. The structures and
functions of InRs vary in insects [60,63–65]. In N. lugens (Stål), two types of InRs, InR1
and InR2, have been found to play opposite roles in ovarian development regulation [65].
InR1 and InR2 have also been found in T. castaneum regulating reproductive development
through different mechanisms [64]. In D. melanogaster, a leucine-rich repeat G protein-
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coupled receptor (LGR), a homolog of relaxin receptor, mediates the regulation of DmILP8
in female reproduction [14,47,49]. Therefore, further explorations to clarify the interaction
between different ILPs and different receptors are expected to deepen our understanding
of the insulin pathway. Furthermore, genes in the insulin pathway can also regulate insect
reproduction by interacting with other hormone pathways or nutrition pathways, such
as the target of rapamycin (TOR) nutritional pathway and JH pathway [66–69]. Further
exploration of the interaction mechanisms among the insulin pathway, JH pathway, and
TOR pathway in regulating insect reproduction is of great significance for elucidating the
endocrine regulation of insect reproduction.

In this study, CsILP1 and CsILP2 were cloned from C. septempunctata, and their expres-
sion patterns and roles in ovarian development and fecundity were investigated. These
results clarified the role of CsILP1 and CsILP2 in female C. septempunctata reproduction,
providing a basis for further studies on the molecular mechanisms involved. In the wild, C.
septempunctata obtain nutrition from various small insects. Therefore, a deeper investiga-
tion into the interactions between the insulin pathway, TOR nutrient pathway and the JH
pathway in reproductive regulation is of significant scientific importance for enhancing the
application efficiency of releasing C. septempunctata in fields.
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