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eLife Assessment
This important study provides a new perspective on how human immunity shapes the antigenic 
evolution of pathogens. By combining theory and simulation the authors make a compelling case 
for the importance of eco- evolutionary interactions in population- level virus- host dynamics, which 
arise due to coupling between the dynamics of immune memories and viral variants. Although the 
work does not propose improved data- driven viral forecasting methods, it makes a conceptual 
contribution that advances the field's understanding of this problem's intrinsic difficulty.

Abstract As pathogens spread in a population of hosts, immunity is built up, and the pool of 
susceptible individuals are depleted. This generates selective pressure, to which many human RNA 
viruses, such as influenza virus or SARS- CoV- 2, respond with rapid antigenic evolution and frequent 
emergence of immune evasive variants. However, the host’s immune systems adapt, and older 
immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. 
If variant growth dynamics and reshaping of host- immunity operate on comparable time scales, viral 
adaptation is determined by eco- evolutionary interactions that are not captured by models of rapid 
evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interac-
tion between an evolving viral population in a dynamic but immunologically diverse host population. 
We show that depending on strain cross- immunity, heterogeneity of the host population, and dura-
bility of immune responses, escape variants initially grow exponentially, but lose their growth advan-
tage before reaching high frequencies. Their subsequent dynamics follows an anomalous random 
walk determined by future escape variants and results in variant trajectories that are unpredictable. 
This model can explain the apparent contradiction between the clearly adaptive nature of antigenic 
evolution and the quasi- neutral dynamics of high- frequency variants observed for influenza viruses.

Introduction
Many human RNA viruses adapt rapidly to evade pre- existing immunity and re- infect humans multiple 
times over their lifetime. The most prominent examples of this evolution are influenza virus and SARS- 
CoV- 2 (Roemer et al., 2023; Petrova and Russell, 2018), for which the changing virus population is 
surveilled in great detail and vaccines are updated regularly. To improve the match between the virus 
population and the vaccine, several groups are working on predictive models to anticipate the vari-
ants that dominate future viral populations (Morris et al., 2018; Meijers et al., 2023).

A common framework to model the rapid evolutionary dynamics of RNA viruses is to consider a 
population located away from the fitness optimum and with many accessible beneficial mutations 
(Tsimring et al., 1996). In this setting, clones compete to accumulate beneficial mutations as quickly 
as possible. In a process called selective sweep, successful variants expand and tend to be the ances-
tors of the future population while less successful mutants eventually disappear. The resulting fitness 
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distribution is a wave traveling along the fitness axis, the so- called traveling fitness waves Rouzine 
et  al., 2003; Desai and Fisher, 2007; Neher, 2013. As the pathogen circulates, hosts develop 
immunity which leads to a ‘deterioration of the environment’ for the pathogen which approximately 
balances the increase in average fitness due to adaptation.

The traveling wave framework has been extensively used in this context as it allows for a straight-
forward ways to approach the prediction problem: each variant is assumed to have a fixed fitness 
relative to other variants, and inferring the fitness of all competing variants should allow prediction of 
the future composition of the population. Indeed, current methods typically infer the instantaneous 
growth advantage of a strain based on past and present circulation and then project this growth 
advantage forward in time Luksza and Lässig, 2014; Neher et al., 2014; Huddleston et al., 2020. 
While future mutations can reshuffle the relative fitness of lineages and thereby limit predictability, 
in these models a lineage that is most fit at any given time is most likely to dominate in the long run.

One short- coming of the traveling wave approach is the lack of explicit representation of the 
epidemiological dynamics and of the host’s immunity. Indeed, fitness is only an effective parame-
ters that summarize the complex interplay between viral antigenic properties and the hosts’ immune 
systems. As such, it cannot explicitly describe important phenomena such as the build- up of host 
immunity to new variants, variant- specific immunity, or the interaction between strains through 
antigenic cross- reactivity. Taking the hosts’ immunity and viral cross- immunity into account has the 
potential to strongly improve predictions Meijers et al., 2023 or explain why prediction is difficult 
(Barrat- Charlaix et al., 2021).

The interaction between epidemiological dynamics and hosts’ immunity are often modeled using 
generalizations of the Susceptible- Infected- Recovered model (SIR) to include multiple viral strains 
Gupta et al., 1998; Gog and Grenfell, 2002. In this setting, the natural question is that of the ulti-
mate fate of the pathogen: will it go extinct, diversify to the point of speciation, or reach the so- called 
Red Queen State where new strains continuously replace old ones Yan et al., 2019; Marchi et al., 
2021; Chardès et al., 2023; Rouzine and Rozhnova, 2018. To remain tractable, these studies typi-
cally approximate population immunity as a low- dimensional landscape in which the viral population 
evolves and ignores the complex heterogeneity in the immunity of different individuals. Furthermore, 
immunity is often assumed to be long- lived, and evolution of the pathogen in a stable low dimensional 
landscape gives rise to traveling waves.

Here, we study how novel variants of a virus shape the host population’s immunity, which in turn 
changes their own growth dynamics. To do so, we use a multi- strain SIR model combining immune 
waning and heterogeneous immunity of the hosts. Such heterogeneity has been demonstrated for 
influenza virus in individuals of different ages Lee et al., 2019; Welsh et al., 2023. We show that 
this model generically leads to a situation where novel immune evasive variants emerge. In a homo-
geneous population of hosts, this leads to a succession of selective sweeps where novel variants 
compete against each other and replace previously circulating variants. However, in a heteroge-
neous population with a more rapid waning of immunity, initially growing variants lose their selective 
advantage before reaching fixation due to immunological adjustment of the host population. The 
phenomenology of our epidemiological model is reminiscent of ecological systems such as consumer- 
resource models, where adaptation by one species shifts the global equilibrium and distribution of 
other species but does not necessarily result in a selective sweep Good et al., 2018. In these systems, 
adaptation can usually not be modeled by a fixed fitness parameter for each strain but rather depends 
on the composition of the population Tikhonov and Monasson, 2018.

Strain dynamics in our model differ qualitatively from what is expected in the traveling wave 
scenario. While adaptive mutations are highly overrepresented in genetic diversity, they cease having 
a growth advantage when reaching intermediate frequencies, a process we call ‘expiring fitness.’ 
Once the fitness effect of a mutation has expired, its frequency randomly changes up or down as 
subsequent adaptive mutations occur on the same or on different genomic backgrounds.

This resemblance to neutral evolution could have important consequences for predictability of viral 
evolution. It is interesting to relate this to the recent observations that the evolution of influenza is not 
as predictable as one would expect from typical models Huddleston et al., 2020; Barrat- Charlaix 
et al., 2021. In particular, we observed in Barrat- Charlaix et al., 2021 that the frequency trajectories 
of mutants of A/H3N2 influenza show features that are expected in neutral evolution but hard to 
explain in a traveling wave framework.

https://doi.org/10.7554/eLife.97350
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Results
Multi-strain SIR model
We describe the interaction of several viral strains and host immunity using a Susceptible/Infected 
compartmental model, similar to those used in Gog and Grenfell, 2002; Yan et al., 2019. In the most 
general form, the model describes  N   variants of the virus labeled  a ∈ {1 . . .N}  circulating among  M   
groups of hosts with distinct exposure histories labeled  i ∈ {1 . . .M}  (immune groups). These groups 
could be different age cohorts or could be geographically separated. For each group  i , we define 
compartments  I

a
i   and  S

a
i   as, respectively, the number of individuals of this group infected or suscep-

tible to strain  a . We assume that the total population of hosts is 1 so that we always have  0 ≤ Ia
i , S

a
i ≤ 1 , 

and values of  I
a
i   and  S

a
i   can be interpreted as fractions of the host population.

As with usual compartmental models, we assume that the dynamics are driven by the interaction of 
susceptible and infected hosts, leading to infections and gains of immunity. The rate at which hosts of 
group  i  susceptible to variant  a  are infected by  a  is  αSa

i
∑M

j=1 CijIa
j  . Here,  α  is an overall infection rate 

while  Cij  represents the probability of an encounter between individuals of groups  i  and  j . Thus, the 
above rate takes into account infections with strains  a  caused by hosts of all groups. Considering that 
infected hosts recover at rate  δ , we can thus write the dynamics for  I

a
i  :

 
İa
i = αSa

i

M∑
j=1

CijIa
j − δIa

i .
  

(1)

When a host of group  i  is infected by strain  b , it gains immunity against the infecting strain  b , but 
also to other strains  a  with probability  0 ≤ Kab

i ≤ 1 . Thus,  S
a
i   decreases at a rate proportional to  K

ab
i   

and to the number of hosts infected by  b  for every strain  b . Since susceptibles to  a  are depleted by 
infections from other strains, the dynamics of all strains are coupled. This coupling is determined by 
the matrices  Ki  of dimension  N × N  , which in general differ between groups  i  with different prior 
exposure history. Additionally, the waning of immunity at a rate  γ  causes immune hosts to re- enter the 
susceptible compartment. We can now write the dynamics of  S

a
i   as

 
Ṡa

i = −α

N∑
b=1

M∑
j=1

Sa
i Kab

i CijIb
j + γ(1− Sa

i ),
  

(2)

where the first term accounts for immunity gains (or loss of susceptibility) due to infections or cross- 
immunity while the second represents immune waning. This model introduced by Gog and Grenfell, 
2002 assumes that immunity builds up through exposure and not only through infection. This explains 
that the change in  S

a
i   is simply proportional to  S

a
i · Ib

j  , regardless of the susceptibility of hosts to 
strain  b . Alternative models that require infection for acquisition of immunity have qualitatively similar 
dynamics, but are mathematically more complex (Appendix 1.5). We also represented loss of suscep-
tibility to  a  due to exposure to  a  using a trivial cross- immunity term  K

aa
i = 1 .

An important property of our model is that the probability of generating cross- immunity can differ 
between groups. The motivation is that strains  a  and  b  may be perceived as antigenically different by 
some immune systems, leading to a low  K

ab
i  , but as highly similar by others, leading to  K

ab
i ≃ 1 . Such a 

heterogeneous response by different immune systems has been observed experimentally in the case 
of influenza: in Lee et al., 2019; Welsh et al., 2023 for instance, it was found that a given mutation in 
an influenza strain may allow escape from the antibodies of some individuals, i.e., low  K

ab
i  , while it had 

little effect on the serum of other individuals, i.e., high  K
ab
i  . Heterogeneous immune response could 

be caused by varying histories of strain exposure for different individuals, for instance, due to differ-
ences in age or geographical region. If immune groups correspond to age cohorts, mixing between 
groups is rapid, and we can simplify the connectivity between groups to  Cij = 1/M  . If immune groups 
are shaped by geographic differences in exposure, the connectivity would be close to 1 on the diag-
onal ( 1− Cii ≪ 1 ) while off- diagonal terms would be small ( Cij ≪ 1  for  i ̸= j ).

Invasion of an adaptive variant
Hosts’ immune heterogeneity and strain cross- immunity play two different roles in the model. The 
latter allows the model to reach a non- trivial equilibrium where multiple strains co- exist, while the 
former affects the convergence to the equilibrium.

https://doi.org/10.7554/eLife.97350
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To illustrate this, we design a simple scenario with only two strains: a wild- type and a variant. 
Accordingly, indices  (a, b)  describing strains will take values  {wt, v} . We consider that the two strains 
share the same infectivity rate  α , which amounts to say that they would have the same reproductive 
rate in a fully naive population. The case where the two strains differ in intrinsic fitness is explored in 
detail in Appendix 1.7. In brief, as long as the difference in intrinsic fitness is not too large compared 
to cross- immunity effects, the qualitative results given below hold, while larger intrinsic fitness differ-
ences lead to more classical dynamics like selective sweeps.

In the first version of this scenario, we will only consider one immune group, that is  M = 1 . We can 
thus skip the indices  i, j ∈ {1 . . .M} , and we only have one cross- immunity matrix  K  that we parame-
trize as

 

K =


1 b

f 1


 ,

  
(3)

with  0 ≤ b, f ≤ 1  .  b  quantifies the amount of ‘backward’-immunity to the wild- type caused by the 
variant: a large  b  means that it is likely that an infection by the variant causes immunity to the wild- 
type. Conversely,  f   quantifies the ‘forward’-immunity: infections by the wild- type causing immunity to 
the variant. If  f = b = 1 , the two strains are antigenically indistinguishable, and thus essentially iden-
tical for the model. Conversely, if  f = b = 0 , the two strains are completely distinct and do not interact 
through cross- immunity.

The dynamical equations now take a simplified form:

 

Ṡa = −αSa ∑
b∈{wt,v}

KabIb + γ(1− Sa),

İa = (αSa − δ)Ia.   

(4)

We can immediately derive the equilibrium state for this simplified case. We first define the repro-
ductive number of strain  a  as  Ra = αSa/δ .  Ia  grows when  Ra > 1  and declines when  Ra < 1 . The equi-
librium susceptibility is, therefore,  Sa = δ/α , such that  Ra = 1 . On the other hand, the equilibrium 
prevalence is determined by the inverse of the cross- immunity matrix  K :

 
Ia
eq = γ

δ

(
1− δ

α

)(
K−11⃗

)
a
,
  

(5)

with  ⃗1   being the vector  [1; 1] . The order of magnitude of the prevalence is given by the ratio of the 
rate of waning  γ(1− δ/α)  and the recovery rate  δ . In the following, we frequently use values  α = 3  and 

 γ = 5 · 10−3
  in units of inverse generations  δ , i.e., we set  δ = 1 . At equilibrium, this corresponds to a 

fraction of  ∼ 0.003  of the host population being infected at any time. If generation time is a week, 
which is roughly the case for respiratory viruses such as influenza virus or SARS- CoV- 2, the fraction of 
hosts infected in any year is  ∼ 0.15 , which is of similar magnitude as empirical estimates for influenza 
(Kucharski et al., 2018).

It is also straightforward to compute the fraction of infections caused by the variant at equilibrium, 
thereafter referred to as the frequency of the variant. We find that this frequency is

 
β = 1− f

(1− b) + (1− f)
.
  

(6)

In the case where  b = f  , the variant will ultimately settle at frequency 1/2. This includes the case 
where  b = f = 0 , where the two strains are completely independent and do not interact. On the 
contrary if  b ̸= f  , the final frequency of the variant can in principle be anywhere between 0 and 1. For 
example if  b > f  , the variant is more likely to cause immunity to the wild- type than the wild- type is to 
cause immunity to the variant. In this case,  β > 1/2  and the variant will be the dominant variant.

We are primarily interested in an ‘invasion’ scenario where only the wild- type is initially present in 
the population, that is  Iv = 0  at  t < 0 . Cross- immunity with the resident strain reduces the fraction of 
hosts susceptible to the variant below one even though it has not circulated yet. But the number of 
susceptible hosts is always larger than the equilibrium value  δ/α  unless  f = 1 , As a result, the growth 
rate of the variant is initially positive and given by

https://doi.org/10.7554/eLife.97350
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s(t = 0) = (1− f)(α− δ)

δ + f(α− δ)   
(7)

The variant thus increases initially exponentially until it has become sufficiently frequent that it 
starts having a substantial effect on the immunity landscape, before eventually settling into an equi-
librium with the wild- type. The details of the equilibrium reached by the system in the absence of 
additional mutant variants is given in Appendix 1.1. Figure 1 explores different scenarios numerically.

The top row of Figure 1 shows the dynamics of the model after the introduction of the variant in a 
homogeneous population ( M = 1 ). As expected, the number of infections by the variant initially rises 
while the number of susceptibles  Sv  decreases. However, as  Sv  goes below the critical value  δ/α ,  Iv  

One immune group

M=10 immune groups
Fast mixing

M=10 immune groups
Slow mixing

Figure 1. Invasion of animmune escape mutant. Top row: one immune group, Middle row:  M = 10  immune groups and fast mixing  Cij = 1/M   and 

Bottom row  M = 10  immune groups and slow mixing  Cij = 1/10M  . Other parameters are the same for all rows: in units of  δ , we set  α = 3  and 

 γ = 5 · 10−3
 , and  f = 0.65 ,  b = 0.8 ,  ε = 0.01 . For both rows, graphs represent: Left: number of hosts infectious with the wild- type and the variant; 

Middle: number of hosts susceptible to the wild- type and the variant, with the equilibrium value  δ/α  as a gray line; Right: fraction of the infections due 
to the variant. The thick gray line shows the expected equilibrium frequency  β  in the case with one immune group, given in Equation 6. The dashed 
line shows the trajectory of a constant fitness logistic growth with the same initial growth rate.

https://doi.org/10.7554/eLife.97350
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starts to decline and then oscillates around the equilibrium value before finally converging to it. The 
mathematical properties of these oscillations are discussed in Appendix 1.8.

However, these strong and slowly damped oscillations are not what is observed in circulating 
viruses. For instance, in the first oscillation in the specific example of Figure 1, the prevalence of the 
wild- type  Iwt  goes down to microscopic levels and the frequency of the variant approaches one, see 
Figure 1. During stochastic circulation in a finite population of hosts the wild- type would likely be lost. 
The theoretical equilibrium that is reached at long times is thus not very relevant, and what would be 
actually observed in reality is a selective sweep by the variant.

Oscillations are the consequence of the rapid rise of the variant followed by an overshoot. This 
effect is mitigated by immunological heterogeneity, as shown in the following example with  M = 10  
groups. For group  i = 1 , the cross- immunity matrix  K1  takes the same form as in the previous scenario, 
given by Equation 3. However, for other groups, we assume that the two strains are virtually identical, 
with the cross- immunity having the form

 

Ki>1 =


 1 1− ε

1− ε 1


 ,

  
(8)

where  ε ≪ 1 . Our reasoning is that we expect an adaptive variant to escape the existing immunity for 
part of the host population, here immune group 1, while having little effect on the rest of the hosts.

One consequence of many groups that are indifferent to the variant is that globally the excess 
susceptibility to the variant is lower. If mixing is rapid, the initial growth rate of the variant is smaller 
by a factor of  M   compared to the one- group case. If mixing is slow, the initial growth of the variant is 
as rapid as in the one- group case, but then spreads only slowly across groups. Globally, the frequency 
of the variant thus never reaches values close to one and population- wide oscillations are reduced.

The central and bottom rows of Figure 1 show the result of the invasion for  M   groups, respectively, 
for the rapid and slow mixing cases. In both scenarios, the initial number of hosts susceptible to the 
variant are now closer to  δ/α . When mixing is fast, the frequency of the variant initially resembles 
a standard selective sweep (dashed line in Figure  1) before saturating, while dynamics are more 
complicated for the slow mixing case. Either way, the main effect of the immune groups is that the 
overshoot past the equilibrium is much smaller and the dampening of the oscillations stronger. As a 
result, the frequency of the variant approaches its equilibrium value without effectively sweeping to 
fixation before.

Notably, the equilibrium frequency in the above examples does not depend on  M   and Equation 6 
remains valid for  ε = 0 . This invariance is a consequence of the fact that for  ε = 0 , the variant and wild- 
type strains are completely equivalent in immune groups  i > 1  and equilibrium is only determined by 
cross- immunity in group  i = 1  (Appendix 1.4). For small  ε  the equilibrium shifts slightly, but Equation 
6 remains a good approximation.

While this simple two- strain model predicts that the two strains come to an equilibrium at frequency 

 β , their frequency will of course continue to change due to the emergence of additional strains, which 
we will discuss below.

Even though the variant has a clear growth rate advantage when it appears, this does not result in it 
replacing the wild- type. This contrasts with the typical ‘selective sweep’ that occurs when the growth 
rate advantage stays constant, which is illustrated as a dashed line in the figure. We refer to frequency 
trajectories of a variant that at first rise exponentially before settling at an intermediate frequency as 
partial sweeps. As we will discuss below, such partial sweeps can lead to qualitatively different evolu-
tionary dynamics and its predictability.

If the initial growth is due to higher susceptibility, it is misleading to think of it as an intrinsic 
fitness advantage of the variant. Instead, the initial growth is the result of an imbalance in the immune 
state of the host population, which gradually disappears as the variant becomes more frequent, 
as shown in the central panels of Figure  1. In this sense, our model is comparable to ecological 
systems where interaction between organisms cannot be fully explained using a fixed scalar fitness 
for each strain but rather depends on the composition of the viral and host population. In particular, 
the stalling of frequency increase gives rise to the partial sweep is reminiscent of consumer resource 
models Tikhonov and Monasson, 2018; Good et al., 2018, highlighting the link between ecological 
and epidemiological models. An important consequence of these dynamics is that predicting the 

https://doi.org/10.7554/eLife.97350
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equilibrium frequency reached by the variant and its ultimate fate is hard from the observation of a 
partial frequency trajectory.

Ultimate fate of the invading variant
In the invasion scenario discussed above, dynamics stop after the initial variant has reached an equi-
librium frequency. However, as the viral population evolves, new adaptive mutants can appear. In the 
framework of the SIR model, a new strain translates into extending the cross- immunity matrix by one 
row and one column. Each new variant will perform its own partial sweep, and saturate at frequencies 

 β2,β3, . . .  sampled from some distribution  Pβ . This process is shown in panel A of Figure 2, using the 
SIR model to simulate up to  N = 7  variants. For the sake of illustration, it shows a simple scenario 
where the initial variant appears at time 0 in a homogeneous wild- type population, and subsequent 
mutants appear at regular time intervals. Simulations are performed using  M = 10  immune groups, 
resulting in a slight overshoot of the equilibrium frequency for each trajectory.

Here, we focus on the mutation or set of mutations  A  that defines the initial variant. The initial 
growth rate advantage given by  A  eventually disappears, meaning that after some times we can 
consider it as neutral. As subsequent mutants appear, they either do so on the background of the wild- 
type, in which case they do not carry  A , or on the background of the initial variant in which case they 

Figure 2. Dynamics of partial sweeps and subsequentfixation. (A) Simulation of Susceptible- Infected- Recovered (SIR) Equation 1 & Equation 2 with 
additional strains appearing at regular time intervals. The fraction of infections (frequency) caused by each strain is shown as a function of time. The 
first strain to appear at  t = 0  is the variant of interest, and curves are shown in shades of red if they appear on the background of this variant, and of 
blue if they appear on the background of the wild- type. (B) Same as A but with frequencies stacked vertically. The black line delimiting the red and blue 
areas represents the frequency at which the mutations defining the original variant are found. (C) Three realizations of the random walk of Equation 9, 
all starting at  x ≃ 0.5 . Two instances converge rapidly to frequencies 0 and 1, corresponding to apparent selective sweeps, while the remaining one 
oscillates for a longer time. (D) Representation of a partial sweep using the expiring fitness parametrization of Equation 11. The frequency  x  of the 
variant is shown as a blue line saturating at value  β  (gray line). The thin dashed line shows a selective sweep with constant fitness advantage  s0 . The 
fitness  s  is a red dashed line, using the right- axis.

https://doi.org/10.7554/eLife.97350
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do carry  A . If we suppose that recombination is negligible, the frequency of  A  increases or decreases 
as each new variant undergoes its own partial sweep. This process is shown in panel B of Figure 2, 
with shades of red (resp. blue) indicating a variant carrying  A  (resp. not carrying  A ). The thick line in 
between the red and blue surfaces indicate the frequency at which mutation  A  is found, and in prac-
tice moves up and down randomly.

The scenario illustrated in Figure 2 suggests that many aspects of the variant dynamics can be 
approximated by a simple abstraction: if  x  is the frequency of a mutation  A , a new variant has a 
probability  x  to appear on the background of  A  and thus carry  A , and a probability  1− x  to not carry 
 A . If new mutants emerge well separated in time with rate  ρ , meaning that they reach equilibrium 
before the next variant emerges, and if new variants have a similar cross- immunity with all existing 
variants (see Appendix 1.6), the dynamics of  x(t)  are described by a particular random walk: in each 
time interval  dt , a partial sweep of amplitude  β  occurs with probability  ρdt · Pβ(β) , changing  x  in the 
following way:

 

x(t + dt) = x(t) +∆x, where ∆x =




−βx with probability (1− x),

β(1− x) with probability x.
  

(9)

For example, if a new mutant appearing in the background of  A  does a partial sweep of amplitude 

 β , the frequency of  A  among the fraction of strains  (1− β)  not concerned by the sweep will still be  x , 
and its frequency among the fraction  β  of strains concerned by the sweep will be 1. Overall, this gives 
a frequency change of  ∆x = (1− x)β . A similar reasoning gives us the frequency change when the new 
mutant appears on the wild- type background. Finally, if no sweep occurs in the time interval  dt , that 
is with probability  1− ρdt ,  x  remains unchanged. The resulting frequency dynamics of mutations have 
many similarities to the effect of ‘genetic draft’, that is the frequency dynamics of neutral mutations 
due to linked selective sweeps (Gillespie, 2000).

Examples of trajectories from the random walk are shown on panel C of Figure  2, all initially 
starting around  x0 ≃ 1/2 . Two trajectories converge monotonically to 0 and 1. This is a consequence 
of one interesting property of Equation 9: the probability for  ∆x  to be positive increases with  x , but 
the magnitude of the upward steps decreases as  1− x , and symmetrically with downward steps. This 
leads to trajectories leading almost exponentially to 0 and 1: it can in fact be shown that trajectories 
that always go downwards or upwards represent a finite and relatively large fraction of all possible 
trajectories (see Appendix 2.4). On the other hand, steps away from the closest boundary are unlikely 
but much larger, resulting in ‘jack- pot’ events (Hallatschek, 2018). This can be seen in the blue trajec-
tory in Figure 2, which oscillates for a longer time.

It is also interesting to look at the moments of the step size  ∆x . The first two are easily computed, 
and we find

 

⟨∆x⟩ = 0

⟨∆x2⟩ = ρ⟨β2⟩Pβ
x(1− x).  

(10)

The first moment being 0 means that for the random walk, increasingly probable but small steps 
towards the closest boundary (0 or 1) are exactly compensated by rarer but larger steps away from 
the boundary. Importantly, this means that on average, the trajectory of mutation  A  is not biased 
toward either fixation or loss, regardless of the frequency that the initial partial sweep brought it to. 
For instance, a mutation seen at frequency  x0  should on average stay at this frequency, which means 
in practice that in a finite population, it has a chance  x0  to reach 1 and fix, and a chance  1− x0  to reach 
0 and vanish.

On the other hand, the second moment resembles neutral drift Kimura, 1964: in neutral evolu-
tion, allele frequency also undergoes a zero- average random walk with the second moment having 
the form  x(1− x)/N   with  N   being the population size. Therefore, this model would predict an ‘effec-
tive population size’ as  N

−1
e = ρ⟨β2⟩Pβ  completely independent of the size of the viral population. 

However, there are important differences to neutral drift: in neutral evolution, higher moments of 
order  k > 2  decay as  N1−k  and are thus negligible in large populations, whereas here they are inde-
pendent of  N   and scale as  ⟨β

k⟩Pβ . Depending on higher moments of  Pβ , allele dynamics will deviate 
qualitatively from neutral behavior.

https://doi.org/10.7554/eLife.97350
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Abstraction as ‘expiring’ fitness advantage
In general, the dynamics of the SIR model proposed in Equations 1&2 depend on the interactions 
between  N   strains through an  N × N   cross- immunity matrix. While this model is useful to give a mech-
anistic explanation of partial sweeps, it is in general impractical to analyze and numerically simulate 
for many variants. The random walk model introduced above is simple to analyze and simulate, but 
assumes that variants rise to their equilibrium frequency instantaneously.

To explore the consequences of partial sweeps over broader parameter ranges, we propose an 
empirical model that has the same qualitative properties as the over- damped SIR, namely a growth 
rate that decreases as a strain becomes more frequent and partial sweep trajectories, but is simpler 
to analyze and simulate on a large scale. In this effective model, the growth rate  s  of the variant is 
not explicitly set by the susceptibility dynamics in the host population, but instead decays at a rate 
proportional to the frequency  x  of the variant:

 ẋ = sx(1− x) and ṡ = −xs.  (11)

The dynamic of  x  in the first equation is simply given by the usual logistic growth with fitness  s . To 
mimic increasing immunity against the invading variant, the growth advantage  s  decreases proportion-
ally to the abundance of the variant (second part of Equation 11). The initial value of  s0  is connected 
to the invasion rate of the SIR models given in Equation 38.

The dynamics of this new model are represented in panel D of Figure 2, with an initial frequency 

 x0 ≪ 1  and an initial growth rate  s0 = 0.05 . The initial growth of  x  is identical to a classical selective 
sweep of fitness  s0  (represented as a dashed line). However, its fitness advantage gradually ‘expires,’ 
as shown by the red line in the figure. As the variant progressively ‘runs out of steam,’ its frequency 
finally saturates at a value  β  given by (Appendix 2.2)

 β = 1− e−s0/.  (12)

This final value  β  depends only on the ratio between the initial fitness advantage  s0  and the rate 
of fitness decay  ν . For a large enough  s0 ,  β  can be arbitrarily close to 1, meaning that this model still 
accommodates for full selective sweeps as a special case. In the general case,  x  reaches its final value 

 β < 1  and remains there forever unless other variants appear.
It is important to state that the main aim of this effective model is to qualitatively reproduce the 

phenomenology of the SIR, and in particular the partial sweeps, while being is easier to simulate. It 
recapitulates the salient feature of invading immune evasive variants: (i) initial exponential growth, 
and (ii) eventual saturation at an intermediate frequency. We can thus use it to analyze the long- term 
consequences of the random walk dynamics of Figure 2. However, we do not expect the frequency 
of the variant  x  to have quantitatively equivalent dynamics in the two models. In particular, due to its 
simplicity, this model does not show the complex oscillatory behavior of the SIR model. Appendix 1.9 
discusses in more detail the links between the parameters of the two models and the fundamental 
differences. While we can express the rate  ν  at which the growth rate declines in terms of the param-
eters of the simplest SIR models, for models with many groups or with oscillatory dynamics, the decay 
rate of the growth advantage should be interpreted as an effective parameter that captures a generic 
effect of reduced growth with increasing circulation.

Consequences for predictability and population dynamics
Accurate prediction of dominant viral variants of the future could improve the choice of antigens in 
vaccines against rapidly evolving viruses. Specifically, if a potentially adaptive mutation is observed in 
a viral population, one would want to know if the corresponding variants will grow in frequency, and 
if yes to what point? The typical traveling wave framework would predict that fast- growing variants 
should keep on growing until an even fitter one appears. This way of thinking about the prediction 
problem has shown mixed results. In the case of A/H3N2 influenza, for instance, we showed that there 
are few signatures that suggest fit variants grow in frequency consistently (Barrat- Charlaix et  al., 
2021).

In Figure 3, we reproduce some of our results of Barrat- Charlaix et al., 2021 and extend them to 
SARS- CoV- 2. To quantify predictability, we ask the following question: given the state of a viral popu-
lation at times  0, 1, . . . , t , what can we say about variant frequencies at times  t + 1, . . . ? We performed 
a retrospective analysis of viral evolution and identified all amino- acid mutations that were observed 

https://doi.org/10.7554/eLife.97350
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to grow from frequency 0 to an arbitrary threshold  x⋆ . Adaptive beneficial mutations should in prin-
ciple be overrepresented in this group and if they provide a persistent fitness advantage, we would 
expect them on average to keep on growing beyond  x⋆ . Figure 3 shows these trajectories for the 
amino acid substitutions in the HA protein of A/H3N2 influenza, using data from 2000–2023,, and the 
SARS- CoV- 2 genome using data from 2020–2023. Panels on the left show all trajectories that reached 
 x⋆ = 0.4 , with their average displayed in black. The panels on the right show the average trajectory for 
different threshold values  x⋆  between 0.1 and 0.8.

While the dynamics of the variants of the two viruses can not be compared directly due to vastly 
different sampling intensities and different rates of adaptation, the qualitative patterns differ strikingly. 

H3N2/HA

SARS- CoV- 2

Figure 3. Retrospective analysis of predictability of viral evolution: frequency trajectories of all amino acid substitutions that are observed to rise from 
frequency 0 to  x⋆  for Top: influenza virus A/H3N2 from 2000 to 2023, and Bottom: SARS- CoV- 2 from 2020 to 2023. Left: all trajectories for  x⋆ = 0.4 , 
with blue ones ultimately vanishing and red ones ultimately fixing. The average of all trajectories is shown as a thick black line. Right: showing only the 
average trajectories for different values of  x⋆  (gray lines).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Example of mutation frequency trajectories that are increasing up to a frequency of 0.5 for H3N2/HA influenza and the expiring 
fitness model.

https://doi.org/10.7554/eLife.97350
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In the case of influenza, trajectories of seemingly adaptive mutations show little inertia and on average 
hover around  x⋆  instead of growing. This surprising result is in line with the study in Barrat- Charlaix 
et al., 2021 which used data from the period 2000–2018. On the other hand, trajectories of SARS- 
CoV- 2 mutations show a much smoother behavior with steady growth beyond  x⋆ . On longer times-
cales, however, we observe a systematic decrease in frequency: this is explained by the particular 
initial dynamics of SARS- CoV- 2, where new variants arose at a rapid pace and replaced old ones. This 
process is often called clonal interference and reduces long- term predictability.

In our setting of eco- evolutionary adaptation, the random walk model predicts that the probability 
of fixation of an immune evasive variant is given by the final frequency  β  of its initial partial sweep. 
Subsequent allele dynamics and diversity are governed by an anomalous coalescent process driven by 
the random walk defined in Equation 9, leading to little predictability of evolution. This abstraction 
should hold when partial sweeps are instant and do not overlap, meaning that the rate  ρ  at which new 
variants emerge is small compared to their initial growth rate  s0 .

To explore the behavior of our partial sweep model in a more general setting, we simulate the 
evolutionary dynamics of a population under a Wright- Fisher model with expiring fitness dynamics. 
Simulations involve a population of  N   viruses with a genotype where each position can be in one of 
two possible states  σi ∈ {0, 1} . Fitness effects  si  are associated with mutations at each position, and 
the total fitness of a virus is given by  F =

∑
i σisi . At each generation, viruses with a fitness  F  expand 

by a factor  e F , and the next generation is constructed by sampling  N   individuals from the previous 
one. Following Equation 11, mutational effects  si  decrease by an amount  νxi · si , where  xi  is the 
frequency at which mutation  i  is found in the population.

We simulate the emergence of adaptive variants in the following way. At a constant rate  ρ , we pick 
one sequence position  i  that has no polymorphism and set the fitness effect of the corresponding 
mutation to an initial value  si , with an amplitude drawn from probability distribution  Ps  and the sign 
chosen such that the mutation is adaptive. In practice, we use an exponential distribution  Ps ∝ e−s/s0 , 
meaning that the typical magnitude of initial fitness effects are described by only one parameter  s0 . 
The corresponding distribution of partial sweep size is described Appendix 2.3. At the same time, 
we introduce the corresponding mutant in the population at a low frequency, picking its background 
genotype from a random existing strain. The behavior of the model is determined by (i) the distribu-
tion  Pβ  of partial sweeps size depending on  ν/s0 , and (ii) the ratio of the variant emergence rate and 
their growth rate  ρ/s0 , which determines how often sweeps overlap and interact. The probability of 
two sweeps overlapping is defined in Appendix 2, Equation 42.

We use this simulation to address the question of predictability: given the state of the population at 
generations  0, 1, . . . , t , can we predict its state at future times  t + 1, . . . ? Specifically, we ask whether we 
can predict the frequency  x(t +∆t)  of a variant  A , given it is at frequency  x  at time  t , as we did previ-
ously for the influenza virus Barrat- Charlaix et al., 2021, see Figure 3. The dynamics of isolated selec-
tive sweeps ( ρ/s0 ≪ 1 ,  ν/s0 ≪ 1 ) should be perfectly predictable: after an initial stochastic phase when 
the variant is very rare, its frequency grows monotonically to fixation. This predictability decreases 
with increasing  ρ/s0  due to clonal interference (Schiffels et al., 2011; Strelkowa and Lässig, 2012), 
for example when an adaptive variant is outcompeted by an even more adaptive one. We also expects 
predictability to decrease with increasing  ν/s0  since sweeps are then partial and their ultimate fixation 
is determined by subsequent variants with dynamics that resemble a random walk.

To quantify these effects, we select from a long simulation all rising frequency trajectories of adap-
tive mutations that cross an arbitrary threshold  x∗ . The results are shown in panel A of Figure 4, where 
we show the average  x(t)  of rising frequency trajectories after crossing the threshold  x∗ = 0.5 . We use 
three rates of fitness decay:  ν ∈ [0, s0/3, s0, 3s0]  and low clonal interference  ρ/s0 = 0.05 . The case  ν = 0  
corresponds to a classical traveling wave scenario with constant fitness effects, and, as expected, 
is the most predictable: the average trajectory rises well above 0.5. For larger values of  ν/s0 , corre-
sponding to a quicker decay of fitness, predictability gradually declines and becomes negligible for 
 ν/s ≫ 1 . Note that this matches quite well with the predictions from the random walk model where the 
average change in frequency  ⟨∆x⟩  is null.

To explore parameter space more systematically, we quantify predictability as the probability of 
fixation  pfix  of rising variants that cross threshold  x∗ . In a perfectly predictable scenario with well- 
separated selective sweeps,  pfix  should be close to 1 regardless of  x∗ , while it should be equal to  x∗  in 
an unpredictable setting such as neutral evolution.

https://doi.org/10.7554/eLife.97350


 Research article Computational and Systems Biology | Evolutionary Biology

Barrat- Charlaix and Neher. eLife 2024;13:RP97350. DOI: https:// doi. org/ 10. 7554/ eLife. 97350  12 of 33

In panels B, C, and D of Figure 4, the probability of fixations are shown for three values of  ρ/s0  and 
four values of  ν/s0 . Clonal interference increases when going from left to right among these panels 
(increasing  ρ/s0 ), while the intensity of fitness decay increases when going from blue to red curves 
(increasing  ν ). Increasing either  ρ/s0  or  ν/s0  reduces  pfix  towards the dashed diagonal corresponding 
to  pfix = x∗ . However, as observed previously (Barrat- Charlaix et al., 2021), in the classic scenario 
with stable fitness effects  ν/s0 = 0  considerable predictability remains even in cases of strong interfer-
ence (blue curve in panel D and Figure 4—figure supplement 1). The strong interference setting is 
explored in more detail in Appendix 2.1 up to values  ρ/s0 ≃ 30 , using similar simulations but without 
expiring fitness  ν = 0 . Figure 4—figure supplement 1 shows that even in these cases of strong inter-
ference,  pfix  remains significantly above the diagonal.

Finally, we use our simulation to investigate typical levels of diversity in the population and the time 
to the most recent common ancestor. One quantity that can easily be estimated from the random walk 
model is the average pairwise coalescence time  T2 , that is the typical times separating two random 

Figure 4. Simulations under the Wright- Fisher model with expiring fitness. (A) Average frequency dynamics of immune escape mutations that are found 
to cross the frequency threshold  x∗ = 0.5 , for four different rates of fitness decay. If the growth advantage is lost rapidly (high  ν/s0 ), the trajectories 
crossing  x∗  have little inertia, while stable growth advantage (small  ν/s0 ) leads to steadily increasing frequencies. (B, C, D) Ultimate probability of 

 pfix(x)  of trajectories found crossing frequency threshold  x . Each panel corresponds to a different rate of emergence of immune escape variants, with 
four rates of fitness decay per panel. Increased clonal interference  ρ/s0  and fitness decay  ν/s0  both result in a gradual loss of predictability. We use 

 s0 = 0.03 . (E) Time to most recent common ancestor  TMRCA  for the simulated population, as a function of the prediction obtained using the random 
walk  Ne = 1/ρ⟨β2⟩ . Points correspond to different choices of parameters  ρ  and  Pβ , and a darker color indicates a higher probability of overlap as 
computed in Appendix 2.2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Probability of fixation of mutation Probability of fixation of mutations  pfix(x)  of mutation frequency trajectories found crossing 
the frequency threshold  x .

https://doi.org/10.7554/eLife.97350
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strains from their most recent common ancestor (MRCA). In Appendix 2.5, we show that under the 
random walk approximation  T2 = 1/ρ⟨β2⟩Pβ , which in neutral models of evolution would correspond 
to the effective population size  Ne . A more detailed analysis of the coalescent process reveals that 
the random walk approximation corresponds to the so- called  Λ - coalescent Schweinsberg, 2000; 
Berestycki, 2009.

In panel E of Figure 4, the average time to the common ancestor of pairs of strains in the popula-
tion is plotted as a function of  T2  predicted by the random walk model. Each point in the figure corre-
sponds to one simulation of long duration with a given distribution of partial sweep size  Pβ  and a given 

 ρ  setting  T2 , with darker color indicating a higher probability of overlap as computed in Appendix 
2.2. We find a good agreement between the empirical time to MRCA and the estimation from the 
random walk, at least as long as the probability of overlap between successive partial sweeps is small 
(indicated by shading). With increasing overlaps, coalescence slows down, and diversity increases: 
points in darker shades of red tend to have a larger time to MRCA than what is expected from the 
distribution of  β . This is expected intuitively: if another adaptive variant emerges before the previous 
one has reached its final frequency, it has a lower probability of landing on the same background and 
thus tends to be in competition with the first variant. This leads to a smaller effective  β  which slows 
the dynamics.

Discussion
Evolutionary adaptation is often pictured as an optimization problem in a static environment. In many 
cases, however, this environment is changed by the presence of the evolving species, for example, 
because a host population develops immunity or a dynamic ecology. Here, we have explored the 
consequences of such eco- evolutionary dynamics in a case of host- pathogen co- evolution where 
different variants of a pathogen shape each other’s environment through generation of cross- immunity.

Influenza virus evolution has been the subject of intense research with efforts to predict the compo-
sition of future viral populations (Bush et al., 1999; Luksza and Lässig, 2014; Neher et al., 2014; 
Huddleston et  al., 2020). The A/H3N2 subtype in particular undergoes rapid antigenic change 
through frequent substitutions in prominent epitopes on its surface proteins (Smith et  al., 2004; 
Bhatt et al., 2011; Neher et al., 2016; Kistler and Bedford, 2023). Given the clear signal of adap-
tive evolution, one might expect A/H3N2 to be predictable in the sense that variants that grow keep 
growing. Yet, it has been difficult to find convincing signals of fit, antigenically novel, variants that 
consistently grow and replace their competitors (Barrat- Charlaix et al., 2021; Huddleston et al., 
2020). In contrast, SARS- CoV- 2 evolution has been consistently predictable in the sense that dynamics 
are well modeled by exponentially growing variants that compete for a common pool of susceptible 
hosts. However, even in this case, taking into account the immune adaptation of hosts leads to a 
better description of variant dynamics Meijers et al., 2023.

We have shown that depending on (i) the heterogeneity of immunity in the population, (ii) the 
asymmetry between backward and forward cross- immune recognition, and (iii) waning or turn- over 
of immunity, the immune escape can either lead to dynamics dominated by selective sweeps, or to 
one were escape mutations have an initial growth advantage that dissipates before the variant fixes. 
The former scenario is observed when initial growth is fast, backward immunity high, and waning slow 
compared to variant dynamics. In this case, new variants can rise to high frequency driven by their own 
advantage and fix. Immunological heterogeneity slows down the initial rise, allowing for population 
immunity to respond and adjust before the variant has been fixed.

This process of partial sweeps reconciles two seemingly contradicting observations: HA evolution 
in human influenza A virus is clearly driven by adaptive immune escape and most substitutions are 
clustered in epitope regions (Bhatt et al., 2013). On the other hand, most substitutions does not 
sweep to fixation but tends to meander in a quasi- neutral fashion (Barrat- Charlaix et al., 2021). In the 
partial sweep scenario proposed here, diversity is dominated by immune escape mutations that are 
rapidly brought to macroscopic frequency by their initial growth advantage, but their ultimate fate is 
determined mostly by subsequent mutations.

In any real- world scenario, there will be a variety of mutations, including some mutations that 
perform complete selective sweeps, either because they escape immunity of a large fraction of the 
population ( M   small), because they generate robust immunity against previous strains (‘back- boost’ 
Fonville et  al., 2014), or because of the increase in the intrinsic transmissibility of the virus (for 

https://doi.org/10.7554/eLife.97350
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example reverting a previous escape mutation that had a deleterious effect on transmissibility). The 
degree to which partial sweeps matter will vary from virus to virus and will change over time. Recently 
emerged viruses circulate in a homogeneous immune landscape and adapt to the new host for some 
time, consistent with rapid and complete sweeps of variants in SARS- CoV- 2. Similarly, the influenza 
virus A/H1N1pdm, which emerged in humans in 2009, exhibited more consistent trajectory dynamics 
than A/H3N2 (Barrat- Charlaix et al., 2021).

More generally, qualitative features of the partial sweep dynamics investigated here are expected 
to exist in any system where the environment responds to evolutionary changes on time scales compa-
rable to the time it takes for the adaptive variants to take over, leading to eco- evolutionary dynamics 
(Pelletier et al., 2009). In ecological systems involving eukaryotes, it is the evolutionary part of this 
interaction that is thought of as slow, while ecology is fast. In the cases of rapidly adapting RNA 
viruses in human populations with long- lived immunological memory, models often assume that viral 
adaptation is fast while hosts have long- lasting memory. The most complex and least predictable 
dynamics are expected when the evolutionary and ecological time scales are similar and different 
host- pathogen systems will fall on different points along this axis.

Materials and methods
Code availability

•	 Figures in the main text can be reproduced using a set of notebooks at https://github.com/ 
PierreBarrat/ExpiringFitnessFigures (copy archived at Barrat, 2024a).

•	 Code for the simulations of the SIR model is available at https://github.com/PierreBarrat/ 
PartialSweepSIR.jl (copy archived at Barrat, 2024b).

•	 Code for the population dynamics simulation is available at https://github.com/PierreBarrat/ 
WrightFisher.jl (copy archived at Barrat, 2024c).

•	 Code to generate empirical frequency trajectories and their averages is available as scripts ‘ 
flu_ fixation. py’ and ‘ sc2_ fixation. py’ in https://github.com/nextstrain/flu_frequencies on branch 
‘fixation’ (Neher, 2024).
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Appendix 1
SIR model
Equilibrium of the SIR model with one immune group
To help us compute the equilibrium reached by the SIR model, we introduce additional notation: the 
vectors  ⃗S = [S1, . . . , SN]  and  ⃗I = [I1, . . . , IN]  will, respectively, represent the compartments of hosts 
susceptible and infectious to each strain; the matrix  K  describes the cross- immunity; the vector  ⃗1   is 
a vector of dimension  N   whose elements are all equal to 1.

We derive the equilibrium state for Equations 1&2. For each strain,  a , equilibrium for  Ia  is reached 
when  Sa = δ/α . We thus have  S⃗eq = δ/α1⃗  . Introducing this in the equation for the derivative of  Sa , we 
obtain the following equilibrium:

 

S⃗eq = δ

α
1⃗,

I⃗eq = γ

δ

(
1− δ

α

)
K−11⃗.

  

(13)

An interesting remark is that at equilibrium,  I   is of order  γ/δ ≪ 1 . Note that the structure of  K  
makes it invertible in most cases. Indeed, we impose  Kaa = 1  and  0 ≤ Kab < 1  for  a ̸= b .

Equilibrium for two viruses with one immune group
We consider the case where two viruses are present, called wild- type (wt) and mutant (m). The cross- 
immunity is represented by a  2× 2  matrix

 

K =


1 b

f 1


 ,

  
(14)

As shown in the previous section, the equilibrium is given by

 

Swt = Sm = δ

α

I⃗ = γ

δ

(
1− δ

α

)
K1⃗,

  

(15)

where  ⃗I   stands for  [Iwt, Im]  and  ⃗1   for  [1, 1] . It is straightforward to invert the cross- immunity matrix, 
and we obtain

 

Iwt = γ(1− δα−1)
δ(1− bf)

(1− b)

Im = γ(1− δα−1)
δ(1− bf)

(1− f).
  

(16)

Note that without cross- immunity, the number of infected by either virus would be  
γ(1−δα−1)

δ  . 
Positive values of  b  and  f   thus have the effect of lowering the equilibrium values of  Im  and  Iwt  with 
respect to the absence of cross- immunity.

It is interesting to compute the fraction of infections due to the mutant at equilibrium. This is 
easily derived from the relations above:

 

Im

Iwt + Im = 1− f
2− b − f

.
  

(17)

A few observations can be made:
•	 if  b = 1  and  f < 1 , then the wild- type vanishes at equilibrium and the mutant reaches frequency 

1. In this case, the presence of the mutant alone is enough to keep  Swt  to its threshold value 

 R
−1
0  , making it impossible for the wild- type to grow.

•	 Inversely, if  f = 1 , then the mutant stays at frequency 0.
•	 If  b, f < 1 , the mutant will reach a finite frequency  x , with  x > 0.5  if  b > f   and  x < 0.5  if  b < f  .

https://doi.org/10.7554/eLife.97350
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Equilibrium without the mutant
We first derive the equilibrium situation before the mutant virus is introduced in the case with only 
one immune group. We remind that in this case there is only one cross- immunity matrix which has 
the form

 

K=


1 b

f 1


,

  

where  b  is the immunity to the wild- type caused by an infection with the mutant, and  f   the reverse.
Since the mutant is absent from the host population, we assume  Im = 0 . The equilibrium values 

for  Swt  and  Iwt  are easily obtained from the dynamical equations:

 

Swt = δ/α = R−1
0

Iwt = γ

δ
(1− Swt).

  

(18)

We then set the derivative of  Sm  to 0:

 

− αfSmIwt + γ(1− Sm) = 0

→ Sm = 1
1 + f(R0 − 1)

= δ

δ + f(α− δ)
> δ

α
= Swt.

  

(19)

Since we assume  f < 1 , the initial number of susceptibles to the mutant will be larger than  δ/α , 
allowing the initial growth of the mutant. Using the dynamical equation for  Im , the initial growth rate 
of the mutant can be written as

 
İm(t = 0) = αSm − δ = δ

(
α

δ + f(α− δ)
− 1

)
.
  

(20)

If  f = 0 , the growth rate is  α− δ , i.e., the one expected in a fully naive population. If  f = 1  however, 
the growth rate is 0 as the wild- type confers perfect immunity to the mutant.

The equations above generalize to more immune groups. Cross- immunity matrices  Ki  now 
depend on parameters  fi  and  bi , and the initial number of susceptibles in immune group  i  is given by

 
Sm

i = δ

δ + fi(α− δ)
.
  

(21)

In a given immune group  i , the mutant growth rate is proportional to  S
m
i − δ/α . The growth rate 

of the mutant will thus be initially faster in immune groups for which it is antigenically different, i.e., 

 fi < 1 , than in groups where it is similar to the wild- type, i.e.,  fi ≃ 1 .
In the case of a well- mixed population, that is  Cij = 1/M  , we can write the growth of the infections 

by the mutant  I
m =

∑
i Im

i   as an exponential growth with a time- dependent rate. In this case, the 
overall growth rate is given by the derivative of  I

m =
∑

i Im
i  :

 
İm =

(
α

M

M∑
i=1

Sa
i − δ

)
Im

  
(22)

In particular, using the invasion scenario from the main text with  ε = 0  (i.e. fi = 1 ) in  M − 1  group 
and an arbitrary value  f   in group 1, we obtain the following growth rate at  t = 0 :

 
İm = δ

M

(
α

δ + f(α− δ)
− 1

)
Im.

  
(23)

That is, the initial growth rate for  M   groups is  M   times smaller than the one in the single group 
case.
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In the case of a non- well- mixed population, i.e., arbitrary  Cij , it is not possible to write a pseudo- 
exponential growth rate as in Equation 22. However, it is clear that the initial growth rate will also be 
smaller than in the single group case since the mutant initially only grows in group  i = 1 .

Equilibrium with  M  immune groups
For  M   immune groups and arbitrary cross- immunity matrices  Ki , the equilibrium frequency of the 
two strains is not easy to compute. However, it is possible to give an analytical expression in the 
regime of fast mixing  Cij = M−1

  and when the two strains differ immunologically for only one group, 
i.e., for matrices.

 

K1 =


1 b

f 1


 and Kj =


1 1

1 1


 for j > 1.

  

Note that this corresponds to the situation studied in the main text with fast mixing and  ε → 0 . 
We show here that in this case, the equilibrium frequency for all immune groups is the same as the 
one obtained for only one immune group with matrix  K1 . In other words, the expression for  β  in 
Equation 6 is still valid.

To prove this, we assume the following form for the solution of the dynamical equations:

 
∀i ∈ {1 . . .M}, ∀a, Sa

i = M δ

α

Ia
i

Ia and
Ia
i
Ii

= Ia

I
= νa,

  
(24)

where the index  a  runs over all strains (here wild- type and mutant), and where we have defined the 
infectious levels for group  i , for strain  a  and globally:

 
Ii =

∑
a

Ia
i , Ia =

∑
i

Ia
i , I =

∑
i,a

Ia
i .

  

Note that the second equation in Equation S24 means that the frequency  νq  of strain  a  is the 
same across all immune groups and consequently also globally.

We now show that injecting these expressions of  S  and  I   in the dynamical system and solving 
for  νa  gives the expected result. First, note that with this choice of  S

a
i  , the derivative of  I

a
i   given by 

equation Equation 1 immediately vanishes. We thus concentrate on  ̇S
a
i   given by Equation 2. For any 

immune group  i  and strain  a , we have

 
Ṡa

i = 0 = −δ
Ia
i

Ia

∑
b

Kab
i Ib + γ

(
1− M δ

α

Ia
i

Ia

)
.
  

where we have used  Cij = 1/M   and  I
b =

∑
j Ib

j   to remove the sum on immune groups. Multiplying this 
equation by  νa = Ia/I  , we obtain

 
−δIa

i
∑

b
Kab

i νb − γ

(
νa − M δ

α

Ia
i
I

)
= 0.

  

We now eliminate  I
a
i   by using the expression  I

a
i = Iiν

a
 :

 

δIiν
a ∑

b
Kab

i νb − γ

(
1− M δ

α

Ii
I

)
νa = 0,

δIi
∑

b
Kab

i νb − γ

(
1− M δ

α

Ii
I

)
= 0

.

  

Note that this last expression is true for all strains  a . Considering any two strains  a  and  b , we can 
thus write

https://doi.org/10.7554/eLife.97350


 Research article Computational and Systems Biology | Evolutionary Biology

Barrat- Charlaix and Neher. eLife 2024;13:RP97350. DOI: https:// doi. org/ 10. 7554/ eLife. 97350  21 of 33

 

δIi
∑

c
Kac

i νc − γ

(
1− M δ

α

Ii
I

)
= 0,

δIi
∑

c
Kbc

i νc − γ

(
1− M δ

α

Ii
I

)
= 0,

⇒ ∀a, b
∑

c
(Kac

i − Kbc
i )νc = 0,

  

where the last expression is obtained by subtracting the two previous ones. First, we see that for 
 i > 1  any frequency vector  ν  is a solution since  K

ab
i = 1  for all  a, b . For  i = 1  and defining  ν

m = β  and 

 ν
wt = 1− β  and using the expression for  K1 , we obtain

 

(1− f)(1− β) + (b − 1)β = 0

⇒ β = 1− f
(1− b) + (1− f)   

as claimed.
This result is not completely trivial and should be commented. In this setting, the mutant escapes 

immunity built by the wild- type for a fraction  1/M   of the population, and yet it reaches the same 
frequency as in the case with one immune group. This can be rationalized as follows: for immune 
groups  i > 1 , the cross- immunity matrix is such that the wild- type and mutant strains are completely 
equivalent. If immune group 1 was not here, the mutant could thus equilibrate at any frequency 
between 0 and 1. Since it was initially introduced at a very low frequency, it would remain marginal 
in immune groups  i > 1 . However, since its ‘natural’ equilibrium frequency in group  i = 1  is  β  and 
since the groups are connected, equilibrium is reached when the mutant reaches frequency  β  in all 
groups.

Note that if we take the situation of the main text with

 

Ki =


1 ε

ε 1




  

and  ε > 0 , the expressions above do not hold. However, if  ε ≪ 1 , the perturbation is small, and we 
expect an equilibrium frequency close to β, which is the case in Figure 1.

Realistic modeling of the host’s immune state
The SIR model proposed in the main text relies on the assumption of immunity acquisition through 
exposure. This explains terms like  −α

∑
b SaKabIb

  in the derivative of  Sa : acquiring immunity to  a  
through cross- immunity  Kab  requires a combination of prior susceptibility and exposure to strain  b . 
Importantly, this does not depend on the immune state of the hosts with respect to strain  b .

A more realistic representation would be one where acquiring immunity to strain  a  from exposure 
to  b  requires being infected by  b . However, this would require keeping track of more precisely of the 
immune state of hosts, as we would need to separate hosts into two groups, namely

•	 hosts who are susceptible to both  a  and  b , and can thus acquire immunity to  a  through infec-
tion by  b ;

•	 hosts who are susceptible to  a  but immune to  b , and can no longer acquire immunity to  a  
through infection by  b .

To test whether our results are robust to such changes in hypothesis, we write a simple SIR model with 
two strains  a  and  b  where cross- immunity is only activated through infection rather than exposure. 
To properly track the immune status of the hosts, we introduce the groups  Ra  and  Rb , respectively 
representing hosts immune to only  a  or only  b , and  Rab  representing hosts immune to both  a  and 
 b . The compartment  R0 = 1− Ra − Rb − Rab  groups hosts susceptible to both strains. It is simpler in 
this case to write the dynamics in terms of compartments  I   and  R , rather than  I   and  S  as in the main 
text. For simplicity, we do not use immune groups here. The dynamics involve two equations for the 
infected:
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Ia = α(1− Ra − Rab)Ia − δIa,

Ib = α(1− Rb − Rab)Ib − δIb,  
(25)

and three for the immune:

 

Ra = α(1− Kba)R0Ia − γRa,

Rb = α(1− Kab)R0Ib − γRb,

Rab = αR0(KbaIa + KabIb) + α(RaIb + RbIa)− γRab.  

(26)

In Appendix 1—figure 1, we show both that the dynamical and equilibrium properties of this 
model are qualitatively the same as the one from the main text. On the left panel, we show that the 
dynamics of this new model do not differ qualitatively from the model of the main text. In particular, 
in the invasion scenario, the frequency of the variant converges to some equilibrium value after some 
oscillations. On the right, we show that this equilibrium value  β  is different but relatively close to the 
one from the main text.

Appendix 1—figure 1. Comparison of SIR model implementations. Left: Dynamics of the frequency of the variant 
for the Susceptible- Infected- Recovered (SIR) model from Equations 25; 26 using the invasion scenario from the 
main text. Two  2× 2  cross- immunity matrices are used, with off- diagonal parameters  f   and  b  chosen to give the 
same equilibrium. The gray line represents the equilibrium that would be obtained using the model of the main 
text. Right: Equilibrium frequency  β  for this new SIR model ( y - axis) versus the  β  from the main text ( x - axis). Each 
point corresponds to a given pair  (f, b) .

Change in frequency when adding subsequent strains
This section shows that under certain condition adding a new variant to the SIR model does not 
change the relative frequencies of previous variants. This is an important condition for the random 
walk of the main text to be valid.

Here is a quick summary of the results proved below. Adding a variant to the SIR model involves 
adding a column  ⃗b   and a row  ⃗f   to the cross- immunity matrix, which can be given by two vectors. If 
these vectors only depend on one parameter, i.e.,  ⃗b = b · 1⃗   and  ⃗f = f · 1⃗  , then the relative frequency 
of previous strains is unchanged in the new equilibrium. What this means in practice is that the new 
strain must be at an equal ‘antigenic distance’ from all previous strains. A possible interpretation is 
an antigenic space of infinite dimensions: all mutations explore an antigenic region which is new.

We start from an initial situation where there are  N   variants with an  N × N   cross- immunity matrix 
 K . At equilibrium, the number of hosts infected by each virus  a ∈ {1 . . .N}  is given by the elements 
of the vector  I   that can be computed from the cross- immunity matrix and parameters of the model:
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I = γ(1− δ/α)

γ + δ
K−11⃗N,

  
(27)

where  ⃗1N   is a vector containing only 1’s and of length  N  . The relative frequency of the variant  a  with 
respect to variant  b  is simply defined as

 
fab = Ia

Ia + Ib
.
  

(28)

We assume that the initial population has reached equilibrium.
We now add a new virus to this population, with index  N + 1 . The new cross- immunity matrix  ̃K  

is now written as

 

K̃ =


K b⃗

f 1


 ,

  
(29)

where  ⃗b   and  ⃗f   are two vectors of length  N  . This is a general way to write that the backward cross- 
immunity to variant  a  caused by an infection with the new variant  N + 1  is  ba . Inversely, the forward 
cross- immunity to variant  N + 1  caused by an infection with an old variant  a  is  fa .

This new cross- immunity matrix will of course result in a new equilibrium for the number of 
infected hosts, given by the vector  ̃I  :

 
Ĩ = γ(1− δ/α)

γ + δ
K̃−11⃗N+1.w

  

The question we ask here is whether the relative frequency of two variants  1 ≤ a, b ≤ N   is changed 
by the addition of the new variant. In other words, we want to know whether the equality below 
holds:

 

Ia
Ia + Ib

?= Ĩa

Ĩa + Ĩb
.
  

Below, we prove this equality under a condition for cross- immunity of the new variant  ⃗b   and  ⃗f  :

 b⃗ = b · 1⃗N and f⃗ = f · 1⃗N,  (30)

where  0 < b, f < 1  are scalars. This amounts to say that cross- immunity is the same between the new 
variant  N + 1  and any old variant  a , i.e., that the new variant is at an equal antigenic distance from 
all previous variants.

To prove the equality, we perform the computation  ̃K−11⃗N+1.  To do that, we make use of the 
following formula for inverting a block matrix:

 


A B

C D


−1 =


A−1 + A−1BΛCA−1 −A−1BΛ

−ΛCA−1 Λ


 ,

  

where we defined 
 
Λ =

(
D − CA−1B

)−1

 
. The following identities map to our problem:

 A = K, B = b⃗, C = F⃗⊺, D = 1.  

We immediately see that 
 
Λ =

(
1− f⃗⊺K−1b⃗

)−1

 
 reduces to a scalar that we note  λ  for more clarity. 

We also define the other scalar value  µ = 1⃗⊺NK−11⃗N  . A few manipulations give us the following for 

 ̃K−1 :

 

K̃−1 =


K−1 + λK−1b⃗ · f⃗⊤K−1 −λk−1b⃗

−λ⃗f⊤K−1 λ
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Multiplying this by  ⃗1N+1  results in

 

Ĩ = K̃−11⃗N+1

=



(

K−1 + λK−1b⃗ · f⃗ TK−1
)
1⃗N − λK−1b⃗

� �� �
size N

;−λ⃗f TK−11⃗N + λ� �� �
scalar




=
[
I + bfµλI − bλI ;λ(1− µf)

]

=
[
(1− bλ + bfλµ)I;λ(1− µf)

]

,

  

where we used the equalities  K−1b⃗ = bK−11⃗N = bI  .
This result essentially shows that after adding the new variant, the fraction of hosts infected by 

the previous variants if simply multiplied by a scalar value  1− bλ(1− fµ) . This implies that the relative 
frequencies of the original variants are conserved when adding a new one.

Case with intrinsic fitness effects
In the SIR model of the main text, we assume that the transmission rate  α  is the same for the 
different strains. It is also interesting to investigate the case where this transmission rate varies. 
Here, we study a simple extension of the SIR model without immune groups where there are two 
variants – mutant and wild- type – with respective transmission rates  α

wt = αϕwt
  and  α

m = αϕm
 . The 

quantities  ϕ
wt,ϕm ∈ [δ/α,∞]  can be interpreted as intrinsic fitness values for the two strains. Note 

that if  ϕ
a < δ/α , the strain  a  cannot grow even in a fully susceptible population. The cross- immunity 

is as usual defined by matrix  K  with off- diagonal terms  f   and  b .
The equations of motion are now

 

Ṡa = −αSa ∑
b∈{wt,m}

ϕbKabIb + γ(1− Sa)

İa = αϕaSaIa − δIa.   

(31)

Computing the equilibrium, we immediately obtain

 

Sa = δ

αϕa

I = γ

δ
· G−1h⃗,

  

(32)

where we have defined the following quantities:

 

ha = αϕa − δ

αϕa , G =


 1 bs

fs−1 1


 , s = ϕm

ϕwt .
  

(33)

The quantities  ha  can be interpreted as a scaled growth rate of each variant given a fully susceptible 
population, and the matrix  G  combines the cross- immunity and the ratio of fitness values  ϕ . Note 
that it is straightforward to generalize these equations to an arbitrary number of strains: the relevant 

quantity will be the scaled cross- immunity matrix defined by  G
ab = ϕb

ϕa Kab
 .

Inverting  G  and simplifying the equations a bit, we obtain

 

Iwt = γ

δ

αϕwt − δ

αϕwt · 1− bξ
1− bf

,

Im = γ

δ

αϕm − δ

αϕm · 1− fξ−1

1− bf
,
  

(34)

where we defined

 
ξ = αϕm − δ

αϕwt − δ
.
  (35)
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Note the interesting structure of Equations 34: for each variant, they involve a first term  
αϕa−δ
αϕa   

that depends only on the intrinsic growth rate of the mutant, and a second  
1−bξ
1−bf   that involves cross- 

immunity and relative growth rate through  ξ .
These equilibrium equations give us two conditions for the co- existence of the two variants,

 b < ξ−1 and f < ξ,  (36)

respectively, corresponding to  Iwt > 0  and  Im > 0 . We mention three interesting cases below.

•	 If the mutant has an intrinsic fitness disadvantage  ξ < 1 , it will only be able to invade if  f < ξ . 
Since  f   represents the probability that a host becomes immune to the mutant if infected by 
the wild- type, this means that the immune ‘niche’ of the mutant must be large enough when 
compared to  ξ .

•	 Invertly, if the mutant is fitter and  ξ > 1 , the mutant is always able to invade. The wild- type only 
survives if  b < ξ−1

 , meaning that the immunity to the wild- type caused by the mutant must be 
small enough.

•	 If one considers a situation without total cross- immunity, *i.e.,*  b = f = 1 , the only way a mutant 
invades is if  ξ > 1  meaning  ϕ

m > ϕwt
 , and the result is a full selective sweep.

Oscillations of the SIR model
The SI model from the main text tends to oscillate while returning to equilibrium. Here, we study this 
behavior in the simple case of one immune group ( M = 1 ) and two viruses (wild- type and variant).

The idea is to linearize the dynamical equations around the equilibrium. This gives us

 Ẋ = QX,  

where  X = [Swt, Sm, Iwt, Im]  and

 

Q =




−αγ/δ 0 −δ −δb

0 −αγ/δ −δf −δ

g1 0 0 0

0 g2 0 0




g1 = γ

δ
(α− δ) 1− b

1− bf
g2 = γ

δ
(α− δ) 1− f

1− bf
.

  

To quantify the convergence to equilibrium is the frequency of the oscillations, we need the 
eigenvalues of matrix  Q . For low enough  γ , we can prove that the four eigenvalues are

 

λ1 = −1
2
α

δ
γ ± i

(
γ(α− δ)− 1

4
α2γ2

δ2

)1/2

λ2 = −1
2
α

δ
γ ± i

(
γ(α− δ) (1− b)(1− f)

1− bf
− 1

4
α2γ2

δ2

)1/2

.
  

This is only valid if the terms in the square roots above are positive, which requires  γ  to be small 
enough. In our setting, we assume  γ ≪ α, δ , so this will always hold.

From the eigenvalues we can compute:

•	 The rate of convergence to equilibrium:  αγ/2δ . This means that convergence is slower for a 
smaller waning rate  γ .

•	 The two oscillation frequencies that appear:
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ωhigh =
√

γ(α− δ)
2π

,

ωlow = ωhigh

√
(1− b)(1− f)

1− bf
.
  

Note that since  (1− b)(1− f)/(1− bf) ≤ 1 , we always have  ωlow ≤ ωhigh . With the values of the main 
text  α = 3, δ = 1, γ = 5 · 10−3

  (units are inverse of generations), we obtain  ωhigh ≃ 0.016 . If one 
generation is 1 wk, this gives us a period  ω

−1
high ≃ 60w , that is approximately 1 y.

Link between parameters of the SIR and expiring fitness models
The effective expiring fitness model used in the second part of this work is characterized by the 
system of differential equations

 ẋ = sx(1− x) and ṡ = −νxs,  

where  x  is the frequency of the mutant strain. Here, we try to express the dynamics of the SIR model 
in this form to find a link between its parameters and the quantities  s  and  ν .

We first focus on the case with two strains and one immune group. The frequency of the mutant 
is  x = Im/(Im + Iwt) . Using the logit function  ψ(x) = log(x/(1− x))  and the dynamical equations of the 
SIR, we find

 t
ψ(x) = α(Sm − Swt),

  (37)

which allows us to define the fitness in the SIR case:  s = α(Sm − Swt) . At the beginning of the invasion, 
the initial growth rate is readily computed:

 
s(t = 0) = (1− f)(α− δ)

δ + f(α− δ)
δ,

  
(38)

which is the same as the initial growth rate of  Im . Note that if  f = 1 , the initial growth rate is 0.
We then compute the time derivative of  s  early in the invasion, when  Iwt, Swt

 , and  Sm  are close to 
their equilibrium values. In this case, a straightforward calculation gives

 

ṡ = −α(Iwt + Im) · α(Sm − bSwt) · x

≃ −α(Iwt + Im)xs,   
(39)

where the approximation is valid if  1− b ≪ 1 . This would give an expiry rate of fitness  ν = α(Iwt + Im)  
in the case of the SIR model.

These results can also be obtained in the case of immune groups. We then have the following 
expressions for  s  and  ν  at  t ≃ 0 :

 

s = α

M

M∑
i=1

(Sm
i − Swt

i )

ṡ = −α(Iwt + Im)x
M∑

i=1
(Sm

i − biSwt
i )

= −α(Iwt + Im)xs,   

(40)

where the second expression is again valid if  1− bi ≪ 1 .
Another question is that of the link between cross- immunity parameters  b  and  f   and the 

distribution of partial sweep sizes  β . The relation between cross- immunity and  β  given by Equation 
6 shows that the distribution of partial sweep size depends on the distribution of both  b  and  f  . As 
we do not have a prior on how  b  and  f   should be distributed, we explore the case where  1− f   and 
 1− b  are exponentially distributed. In other words, we define  ϵf = 1− f   and  ϵb = 1− b , with the 
following distributions

 P(ϵf) ∝ e−ϵf/λ and P(ϵb) ∝ e−ϵb/µ.  
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The expression of the partial sweep size becomes  beta = ϵf/(ϵb + ϵf) . Note that both  ϵ  should 
remain smaller than 1, which is not guaranteed with exponential distributions. However, this is not 
problematic if μ and  λ  take small enough values.

These assumptions allow us to compute the distribution of  beta :

 

P(β) = µ/λ
(µ
λ
β + (1− β))2

  

with support on the interval  0 ≤ β ≤ 1 . Appendix 1—figure 2 shows the various shapes that  P(β)  
then takes for different values of the  µ/λ  parameter. Note that if  µ > λ ,  b  tends to be higher than  f   
and  β  is biased towards one. If  µ = λ ,  P(β)  becomes uniform on the  [0, 1]  range.

Appendix 1—figure 2. Distribution of partial sweep size  β  if  1− f   and  1− b  are exponentially distributed with 
respective scales μ and  λ . Left: Probability distribution function  P(β)  for various values of  µ/λ . Right: Mean and 
standard deviation of  β  as a function of  µ/λ .

The exponential distribution away from one of  f   and  b  is a reasonable assumption, and allows 
analytical derivation of  P(β) . Of course, any other distribution of  f   and  b  could be considered. For 
this reason, we choose to use a Beta distribution for  Pβ  in the analysis of the main text, as it can 
accommaodate various shapes.
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Appendix 2
Expiring fitness model and random walk
Clonal interference
In non recombining genomes with a large mutation rate, the appearance of many adaptive mutations 
in close succession leads to clonal interference. In this regime, beneficial mutations present on 
different background compete for fixation, and the success of a mutation does not depend only on 
its fitness effect but also on the global state of the population. For this reason, clonal interference 
causes a decrease in predictability: dynamics are not deterministic but rather depend on the precise 
structure of which mutation appeared on which background. For instance, a beneficial mutation that 
increases in frequency can be outcompeted by a fitter one before it has the time to fix, making the 
extrapolation of frequency trajectories difficult.

We conduct simulations to quantify how much predictability decreases because of clonal 
interference, based on the ones of the main text. We study a large population of  N = 105  genomes 
of length  L , where each genome position  i  can be in either of two states  σi ∈ {0, 1} . Fitness effects 

 si ∈ R  are associated to each position, and the fitness of an individual is  F =
∑

i siσi . To simulate 
the adaptation of the population, we proceed in the following way: at a constant rate  ρ , we pick 
a position  i  that is non- polymorphic and set the fitness effect  si  by sampling its magnitude from 
distribution  Ps  and choosing its sign in a way that favors mutations (positive if  σi = 0  is more frequent, 
negative otherwise). At the same time, the corresponding mutation ( σi = 0  if  si < 0  and inversely) 
is introduced in the population at a small frequency  δf = 0.01 . We choose  Ps  to be an exponential 
distribution with scale  s0 = 0.02 , in agreement with findings on the distribution of fitness effects in 
Schiffels et al., 2011, Rice et al., 2015.

There is no fitness decay in this simulation, and the parameters  N  ,  s0 , and  δf   have numerical 
values such that neutral drift is mostly irrelevant to the dynamics of mutations. For example, without 
accounting for interference, the probability of fixation of a mutation of effect  s0  when it is introduced 
at frequency  δf   is  pfix(δf) ≃ 1− e−40

 . As a consequence, the two parameters governing the dynamics 
are the scale of fitness effects  s0  and the rate of introduction of beneficial mutations  ρ . The ratio of 
these two quantities represents the amount of clonal interference: at low  ρ/s0 , mutations are mostly 
independent, while at high  ρ/s0  they strongly interfere.

We measure the probability of fixation  pfix(x)  of mutations found in a frequency bin  [x − δx, x + δx]  
over a long simulation. We only consider mutations with increasing frequency, meaning that their 
frequency was below  x  at all times and at some point was measured in the frequency bin. Figure 4—
figure supplement 1 shows  pfix(x)  as a function of  x  for different values of  ρ/s0 . According to 
intuition, a low clonal interference value leads to easily predictable fixations: whatever the frequency 
 x  at which it is observed, a mutation that is increasing in frequency fixes with a very high probability. 
Increasing clonal interference clearly makes dynamics less predictable and closer to neutrality, with 

 pfix  approaching the diagonal line. However, even in a regime of strong interference, e.g., ρ/s0 = 32 , 
deviations from neutrality remain very clear.

Expiring fitness effects: Sweep size and probability of overlap
This section gives a few results about the expiring fitness equations from the main text. We rewrite 
the equations here for reference:

 ẋ = sx(1− x), ṡ = −νxs.  

First, we prove the expression for the amplitude of the partial sweeps. We divide the equation for 
 ̇x  by the one for  ̇s  to obtain

 
dx
ds

= ν−1(x − 1).
  

This immediately gives us

 x(s) = 1 + λes/ν
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with a constant  λ . At  t = 0 , we have  s = s0  and  x = x0 ≪ 1 , while for  t → ∞  we have  s = 0  and  x = β  to 
be determined. From the  t = 0  case we obtain  λ = (x0 − 1)e−s0/ν , and from  t → ∞  we get  β = 1 + λ . 
Assuming  x0 ≪ 1 , we obtain the result of the main text:

 β = 1− e−s0/ν .  

We now try to find an expression for the probability that two partial sweeps overlap. First, we 
try to estimate the time it takes for one partial sweep to complete. While we could not solve the 
differential equations of the main text analytically, we can give an approximate expression for the 
time- dependent frequency  x  during the partial sweep:

 
x(t) ≃ x0β

x0 + (β − x0)e−st ,  

where  β  is a function of  s  and  ν  and  x0 = x(t = 0) . This is simply the expression of a logistic growth 
starting at  x0  and saturating at  β . From there, we compute the time  Tr(s)  it takes a partial sweep of 
initial fitness  s  to reach a frequency  rβ  with  x0β

−1 < r < 1 . We quickly find

 
Tr(s) = s−1 log

(
β

x0
r

1− r

)
.
  

We now consider that two consecutive partial sweeps of initial fitness values  s1  and  s2  overlap if 
the first one is not yet at frequency  rβ1  while the second one is already at  (1− r)β2 . In the figure of 
the main text, we use  r = 3/4 : an overlap occurs if the first sweep is not yet at  3/4  of its final value 
while the second one is already at  1/4  of its final value. Thus, for an overlap to occur, we need the 
time  τ   between the two partial sweeps to be smaller than  Tr(s1)− T1−r(s2) . For sweeps happening at 
rate  ρ , this has probability  1− exp

(
−ρ(Tr(s1)− T1−r(s2))

)
 . Since the two sweeps have random initial 

fitness effects, we find that the overall probability for two consecutive sweeps to overlap is

 
Pr(overlap) =

ˆ ∞

0
ds1ds2Ps(s1)Ps(s2)

{
1− e−ρ

(
Tr(s1)−T1−r(s2)

)}
.
  

This integrates over all possible pairs of sweep amplitudes (or initial fitnesses) and weighs them 
by the probability that the time between the two leads to an overlap. It is this quantity (computed 
numerically) that is used for the scale of the colorbar in panel E of Figure 4 of the main text.

Distribution of partial sweep size  β 
This section discusses the distribution of the size of partial sweeps  β  in the context of Equation 11 
of the main text as well as the choice of parameters for panel E of Figure 4.

A first interesting case is when fitness effects are exponentially distributed, with parameter  s0 :

 P(s) = s−1
0 e−s/s0 .  

This is the distribution we use in most of the population simulations. We compute the corresponding 
distribution of  β  in a straightforward way:

 

P(β < x) = P(s < −ν log(1− x))

= s−1
0

ˆ −ν log(1−x)

0
e−s/s0ds

= 1− (1− x)ν/s0 .   

Taking the derivative with respect to  x , we obtain

 P(β) ∝ (1− β)ν/s0−1.  

This distribution can accommodate various shape: for  ν/s0 > 1  it peaks at 0, and for  ν/s0 < 1  it 
peaks at 1. We can also compute the following formula for the moments of  β :
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⟨β⟩ = s0

s0 + ν
and ⟨β2⟩ = s0

s0 + ν

2s0
2s0 + ν

.
  

When investigating the coalescence time in the main text, we use a different distribution for 
fitness effects. In this case, we want a finer control over the second moment of  β , and we decide to 
sample  β  directly using a Beta distribution. The Beta distribution has a support over  [0, 1]  and can 
accommodate many different shapes. It is defined by two parameters  a  and  b :

 P(β) ∝ βa−1(1− β)b−1.  

In our case, it is more practical to parametrize it by its mean  m  and variance  v . For given  m  and 

 v < m(1− m)  we have

 
a =

(
m(1− m)

v
− 1

)
m, b =

(
m(1− m)

v
− 1

)
(1− m)

  

In the case of panel E of Figure 4 and in order to explore a wide range of distributions, we used 
three values of  m , and for each  m 

•	 a low variance  v = ε · m2  with  ε = 10−5 
•	 a high variance  v = m(1− m)/3 

For a given set of parameters defining a Beta distribution, we decide on the fitness effects by 
first sampling a  β  for each new adaptive mutation, and then computing  s  by using Equation 
12 from the main text. For each distribution  Pβ , the simulation is performed for 6 values of 
 ρ ∈ [0.003, 0.01, 0.018, 0.032, 0.056, 0.1] .

Random walk: Monotonous trajectories
Here, we compute the probability that in the random walk defined in the main text, a trajectory 
starting at  x0  converges straight to 0 without ever taking an upward step. While going to 0 requires 
an infinite amount of downward steps, the probability is still finite since the steps are increasingly 
likely to go down. For simplicity, we compute this for a fixed  β .

If the random walk always goes down, its position at time step  t  will be  xt = (1− β)tx0 . Since the 
probability of going down is  1− xt , the probability of always going down is

 
Pdown =

∞∏
t=0

(
1− (1− β)tx0

)
.
  

(41)

We simplify this expression by taking the logarithm and assuming that  (1− β)t ≪ 1  for  t ≥ 1 :

 Pdown ≃ (1− x0)ex0(1−β−1).  

Since the random walk is invariant by the change  x → 1− x , we can easily compute the probability 
of a trajectory always going up, and thus of a monotonous trajectory going straight to either 
boundary 0 or 1.

https://doi.org/10.7554/eLife.97350
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Appendix 2—figure 1. Probability of a strictly monotonous trajectory in the random walk of the main text, as a 
function of  β  (fixed) and the initial value  x0 . The ‘exact’ solution is obtained by numerically computing the product 
in Equation 41 up to  t = 100 .

The quality of the approximation is quite good, as can be seen from Appendix 2—figure 1. The 
same figure also shows that this probability is relatively high, even for  x0  far from either boundary.

Coalescent
Consider a partial sweep happening between generations  t  and  t + 1 , with probability  ρ . One 
individual  A  in generation  t  will then have  βN   children in generation  t + 1 . Any individual in generation 
 t + 1  has a probability  β  of having  A  as a direct ancestor, and a probability  1− β  of the opposite. If we 
consider  n  lineages at generation  t + 1  and look backward in time, the probability that at least  k  out 
of  n  have  A  as an ancestor is  β

k
 . Averaging over  Pβ , we find the probability of  k  specific lineages to 

have a common ancestor in the previous generation:

 qk = ρ⟨βk⟩.  

Another useful quantity is the probability  λn(k)  that given  n  lineages, a particular set of exactly 
 k  lineages merge one generation back. If a partial sweep of known amplitude  β  took place, this 
requires the set of  k  lineages to merge at this generation, with probability  β

k
 , and that the other 

 n − k  do not merge, with probability  (1− β)n−k
 .

 

λn(k) = ρ⟨βk(1− β)n−k⟩,

=
ˆ 1

0
βk(1− β)n−kP(β)dβ, =

ˆ 1

0
βk−2(1− β)n−k β

2P(β)
⟨β2⟩

dβ.
  

(42)

This turns out to be the definition of the  Λ - coalescent with  Λ(β) ∝ β2P(β) Schweinsberg, 2000, 
Berestycki, 2009. The  Λ - coalescent is a general model for genealogies of multiple mergers. We 
mention two interesting subcases:
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•	 if  P(β) = δ(β)  where  δ  is the Dirac distribution with all of the mass at 0, the only possible merge 
is  k = 2  and we recover the Kingman coalescent Berestycki, 2009. For this reason, we expect 
our coalescent to approach Kingman’s when  β ≪ 1 , which will be shown explicitely below.

•	 if  Λ(β)  is uniform in  [0, 1] , meaning  P(β) ∝ β−2
 , we obtain the Bolthausen- Sznitman coalescent 

Bolthausen and Sznitman, 1998, Berestycki, 2009, which is used to describe the genealogy 
of populations under strong selection Bolthausen and Sznitman, 1998, Brunet et al., 2007, 
Neher and Hallatschek, 2013.

Finally, we derive a few more properties of the partial sweep coalescent and show the explicit link to 
Kingman’s when  β ≪ 1 . Using the  λn(k) ’s, we can compute the times  Tn : the time during which exactly 
 n  lineages are present in parallel in the genealogy. If there are  n  lineages present, any coalescence 
will lower the number of lineages below  n . The time  Tn  is thus exponentially distributed with rate 
 ν(n) , where  ν(n)  is the total rate of coalescence given  n  lineages:

 
ν(n) =

n∑
k=2

ρ

(
n
k

)
λn(k).

  

Since we have  
∑n

k=0 ρ
(n

k
)
Λn(k) = ρ(1− β + β)n = ρ , we finally obtain

 
T−1

n = ρ
(
1− ⟨(1− β)n⟩ − n⟨β(1− β)n−1⟩

)
.
  (43)

With  n⟨β⟩ ≪ 1 , we now exactly recover the Kingman coalescent. For simplicity, we assume a 
constant  β  and expand  Tn  up to the second order in  nβ , to obtain

 
T−1

n = ρβ2 n(n − 1)
2

= n(n − 1)
2Ne

.
  

These are the times expected for the Kingman coalescent with population size  Ne = 1/ρβ2
 .

In the high  n  limit, we also obtain  Tn → ρ−1
 , since quantities of the type  (1− β)n  vanish. This is 

expected as coalescences only take place when a partial sweep happens, with rate  ρ . It is another 
qualitative difference with the Kingman coalescent: since  Tn ≥ ρ−1

  for all  n , one must wait a time 

 ∼ ρ−1
  to observe the first coalescence even in large trees. The shortest branches will thus always be 

of order  ρ
−1

 . In contrast, in the Kingman process, the shortest branches vanish when the number of 
lineages  n  increases. This difference is clearly visible when looking at terminal branches of trees in 
Appendix 2—figure 3.

Appendix 2—figure 2. Average coalescence times  ⟨Tn⟩  for a partial sweep coalescent with effective population 
size  Ne  and a Kingman coalescent with population size  Ne . For simplicity, a constant  β  is used: Left: a high value 

 β = 0.25 ; Right: a low value  β = 0.05 . For low  β , the two coalescent processes are very similar until a high  n . They 

considerably differ if  β  is larger. Note that for the partial sweep process,  Tn  never goes below  ρ
−1

 .
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Appendix 2—figure 3. Realizations of different coalescence processes for 30 lineages (leaves). Left: Partial sweep 

coalescent, with constant  β = 0.4  and  ρ = 0.00625  such that  Ne = (ρβ2)−1 = 1 000 . Right: Kingman coalescent 
with population size  N = Ne = 1 000 .

https://doi.org/10.7554/eLife.97350
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