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Abstract: The electronic nose is an increasingly useful tool in many fields and applications. Our
thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal
gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices.
Obviously, a wise choice of the nanomaterial is crucial for the device’s performance and should
therefore be carefully considered. Here we show how the addition of different amounts of Au
(between 1 and 5 wt%) on Cu2O–SnO2 nanospheres affects the thermal electronic nose performance.
Interestingly, the best performance is not achieved with the material offering the highest intrinsic
selectivity. This confirms the importance of specific studies, since the performance of chemoresistive
gas sensors does not linearly affect the performance of the electronic nose. By optimizing the amount
of Au, the device achieved a perfect classification of the tested gases (acetone, ethanol, and toluene)
and a good concentration estimation (with a mean absolute percentage error around 16%). These
performances, combined with potentially smaller dimensions of less than 0.5 mm2, make this thermal
electronic nose an ideal candidate for numerous applications, such as in the agri-food, environmental,
and biomedical sectors.

Keywords: semiconductor gas sensor; tin oxide; copper oxide; gold; nanocomposite; thermal
electronic nose; VOCs

1. Introduction

Growing urbanization and awareness of how air quality affects human health make
gas sensors increasingly important in the environmental field [1,2]. Furthermore, these
devices are transversal and can be used in many fields, for example to non-invasively assess
the freshness of food products [3] or for early medical screening through breath analysis [4].

Semiconductor gas sensors (usually based on metal oxides) are among the most
studied in the world due to their advantages, such as simplicity of fabrication and use and
the resulting low cost [5,6]. Such a gas sensor transforms the chemical reactions that occur
on its surface into an increase/decrease of charge carriers, i.e., into an easily processable
electrical signal. The resistance of the metal oxide increases or decreases depending on the
presence of oxidizing or reducing gases that capture or release electrons, which contribute
to the electrical signal [7].

The latest generation of devices, based on nanostructured materials, takes advantage
of the large specific surface area and excellent gas diffusivity within the material, which
improve the sensing properties [8,9]. Unfortunately, the selectivity of chemoresistive
gas sensors is limited, and therefore the nanomaterial must be thoroughly investigated
and tuned to the specific desired application, depending on the gases to be detected
and possible interferents. For example, to discriminate between patients who may have
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diabetes from healthy people (for rapid pre-screenings that reduce health care costs), it
is necessary to accurately detect very low concentrations (hundreds of ppb) of acetone
in the presence of other VOCs like ethanol and toluene [10,11]. To tune the properties
of sensing materials, the most common and successful methods in recent years have
been the coupling of a second metal oxide to the nanomaterial [12,13] or the addition
of noble metals on their surface [14–16]. As demonstrated by Barsan’s group with in
operando experiments, the interface between two p- and n-type metal oxides leads to
the formation of p-n junctions, increases the number of chemical reactions and leads to
improved performance and higher selectivity [12]. Surface functionalization with noble
metal nanoparticles exploits their catalytic activity [17] to increase the response and decrease
the working temperature [18]. Obviously, the functionalization must be targeted towards
the application, since different metals have different effects on the performance [19], and
the effect of gold nanoparticles on different metal oxides is different [20]. Recently, two
metals are also used simultaneously [21]. Using both of these methods synergistically
amplifies their effects [22,23].

We first synthesized porous tin oxide (pr-SnO2) spheres by ultrasonic spray pyrolysis
using polymethyl methacrylate (PMMA) microspheres as a template in order to increase
the specific surface area and the sensor response [24]. We then added Cu2O so that
the interface between the two oxides affects the carrier density in order to improve the
device performance [25], Finally, we added different amounts of Au to study the catalytic
activity of VOC oxidation (acetone, ethanol, and toluene) and the influence on the sensor
performance [26]. In this way we found that the maximum selectivity (2.34, acetone over
ethanol) is obtained with the sample containing 3.0% Au.

Using an array of sensors in a so-called electronic nose mimics the mammalian nose
(where signals from many different receptors are processed together by the brain) and
allows for greatly improved selectivity [27]. A traditional electronic nose is composed
of sensors made of different materials, in order to maximize the variance between their
responses and the information fed to the machine learning algorithms that act as the brain
of the system [28].

In this work, we use different nanomaterials (porous Cu2O–SnO2 spheres with differ-
ent amounts of Au added) to simulate thermal electronic noses [29], i.e., we combine the
device response at different temperatures. This innovative type of electronic nose uses a
single material that works at different temperatures, instead of different materials. In this
way, the entire device can be realized in less than 0.25 mm2 with standard deposition and
lithography techniques used in microelectronics [30].

The aim of this study is to understand which nanomaterial (porous Cu2O–SnO2
nanospheres with different amounts of Au) is the best for the realization of a thermal
electronic nose for the detection, discrimination, and quantification of acetone, ethanol, and
toluene. A further aim is to possibly understand whether the intrinsic selectivity of the
material used as a sensor is reflected in the performance of the electronic nose.

2. Materials and Methods
2.1. Synthesis of Porous Au–Cu2O–SnO2 Nanospheres

Porous Cu2O–SnO2 nanospheres were synthesized by ultrasonic spray pyrolysis,
as previously reported in detail [24–26]. An amount of 40 cm3 of aqueous dispersion
containing home-made PMMA microspheres (average size 70 nm) [31] was mixed with
60 cm3 of an aqueous SnCl4 solution (0.05 mol dm−3) containing appropriate amounts of
CuCl2 and HAuCl4 [24]. The resulting solutions were ultrasonicated to mists and then
introduced into an electric furnace at 1100 ◦C under an air flow of 1500 sccm to evaporate
the water.

The resulting products are SnO2 powders containing Cu2O and an amount of Au that
was adjusted from 1.0 to 5.0 wt% (Figure S1). The obtained powders were labeled from pr1
to pr5, where the number represents the wt% of Au in the porous Cu2O–SnO2 nanospheres.
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2.2. Sensors Fabrication and Gas Detection Tests

Each powder was mixed with α-terpineol to form a paste that was then screen-printed
onto a pair of interdigitated Pt electrodes spaced approximately 200 µm apart on an alumina
substrate (Figure S2), and the devices were dried at 100 ◦C. The sensors were then calcined
at 550 ◦C for 5 h in ambient air. The dynamic resistance of the sensors was measured using
a DAQ 970A data acquisition system (Keysight Technologies, Santa Rosa, CA, USA).

The sensors were subjected to different concentrations (2.5, 5, 10, 20, 50, and 100 ppm)
of three different VOCs (acetone, ethanol, and toluene), at temperatures between 300 and
500 ◦C in steps of 50 ◦C. Each concentration was set by mixing the target gas with dry
air, maintaining the total flow at 100 sccm. The sensor response was defined as Ra/Rg,
where Ra is the sensor resistance in air and Rg is the resistance in the presence of the VOC.
The selectivity between two gases was defined as Resp(A)/Resp(B), where Resp(A) is
the response to gas A and Resp(B) is the response to gas B. The overall selectivity of the
sensor is the selectivity between the target gas (acetone) and the interferent with the highest
response [32].

2.3. Thermal Electronic Nose

This innovative approach, developed by us on the basis of the pioneering work of
Sysoev [33], replaces the use of different materials (including metal oxides, conductive
polymers, graphene, carbon nanotubes, and 2D materials) with a simple thermal gradient.
Since the response of a thermal oxide changes a lot with the working temperature, due
to the many reactions that occur on its surface, the same material working at different
temperatures can be as effective as sensors composed of different materials [34]. Moreover,
this approach allows us to test the performances simply by simulating the thermal electronic
nose, as in this case: testing the sensor at different temperatures and combining their
responses before building the real prototype. The sensor response was calculated at each
working temperature, obtaining a “thermal fingerprint”, then transformed into a point in
the 5-dimensional space [35]. Principal component analysis (PCA) was used to reduce the
dimensionality of the 5-dimensional space and visualize how the points from the different
gases relate to each other [36]. Linear discriminant analysis (LDA) was used to maximize
inter-class variance and minimize intra-class variance, in order to distinguish classes (in this
case gases) [37,38]. A support vector machine (SVM) was used as a classifier to distinguish
individual VOCs [39,40]. A linear kernel was used to ensure that the limited data did not
result in overfitting [41]. These algorithms were used to evaluate how well the electronic
nose can distinguish different gases [42,43]. Finally, a regression in the 5-dimensional space
through an SVM was used to estimate the concentration of each gas. The mean absolute
percentage error (MAPE) was used as a metric to evaluate the performance of each sensor.

3. Results and Discussion

The dynamic resistance of the Cu2O–SnO2 based sensors was measured at various
concentrations and temperatures for different VOCs. Figure 1 shows, as an example, the
dynamic resistance obtained with the sample pr3, i.e., with 3% Au. As expected, the
resistance in air of the sensor decreases with increasing working temperature. Furthermore,
the gas injection resistance decreases more and more as the concentration increases from
2.5 to 100 ppm.

The sensor response was calculated for each concentration of each VOC at all five
temperatures. Figure 2 shows an example of the calculated responses for sensor pr1.

Although the figure provides a lot of information, it is difficult to spot clear patterns.
Toluene always gives a lower response than the other gases, while the ratio between the
response to acetone and ethanol varies with both temperature and gas concentration. This
is particularly evident for selectivity: for example, the selectivity between acetone and
ethanol at 450 ◦C is 1.6 at 2.5 ppm (shortest black bars), while it decreases to 1.05 at 100
ppm (longest dark blue bars). The one clear and constant trend is that the response always
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increases with increasing gas concentration. It is therefore evident that averaging is needed
to obtain an idea of the overall trend and compare the sensors and the working conditions.
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To calculate the intrinsic selectivity of the various materials used as sensors, the
response of each material was averaged over all concentrations and at all temperatures.
Figure 3a shows the average responses obtained, where it is clear that toluene always gives
the lowest response.

Nanomaterials 2025, 15, x FOR PEER REVIEW 5 of 13 
 

 

Figure 2. Response of sensor pr1 to various concentrations of the three VOCs at different working 

temperatures. 

To calculate the intrinsic selectivity of the various materials used as sensors, the re-

sponse of each material was averaged over all concentrations and at all temperatures. Fig-

ure 3a shows the average responses obtained, where it is clear that toluene always gives 

the lowest response. 

Instead, the response to acetone and ethanol is not univocal: the nanocomposites with 

1, 2, 3 wt% of Au are more sensitive to acetone, while those with 4, 5 wt% of Au are more 

sensitive to ethanol. The most selective material is the Cu2O–SnO2 with 3 wt% of Au (pr3) 

which has a selectivity of 1.63 for acetone compared to ethanol. 

 

Figure 3. (a) Response and (b) Selectivity of samples with various amounts of Au. The color in (b) 

is related to the gas to which the sensor is most sensitive. 

The results in Figure 3b seem to indicate that pr3 is the best material to fabricate an 

acetone sensor or an electronic nose, but the situation is more complicated. Figure S3 

shows the selectivity of the various nanomaterials as a function of the working tempera-

ture and the gas concentration. The numbers in the figure express the ratio between the 

response to acetone and that to ethanol. If the number is greater than 1, it is the selectivity; 

otherwise, it is the reciprocal of the selectivity, since the material is, in that case, more 

sensitive to ethanol. 

On the right, the average response of each material for each gas is calculated, as well 

as the relative selectivity. It is noted that the greatest response for all gases comes from 

the pr3 sensor, which is therefore the most sensitive. Furthermore, as already seen, the pr3 

sensor is also the most selective, with a selectivity value of 1.63. 

However, it is evident that the trend changes depending on the temperature and gas 

concentration. Only the pr2 sensor has a unique selectivity for acetone (all values are 

greater than 1), while the others have a selectivity that oscillates between acetone and eth-

anol. The pr3 sensor has a selectivity for acetone that decreases as the temperature in-

creases and, at 500 °C, it becomes selective for ethanol. In the other sensors, the situation 

varies even at the same temperature, making the situation more complex. However, what 

appears confusing in Figure S3, is very useful for the realization of an electronic nose, 

since the different behaviors that a material has at different temperatures provide valuable 

information to the algorithms. 

A simple method to visualize the selectivity of a sensor is to plot the thermal finger-

prints related to the various gases. Figure 4 shows, as an example, the fingerprints related 

to the various concentrations of the three VOCs tested with the pr3 sensor. The different 

trend of the response as a function of temperature for the different gases is evident: the 

response to toluene is maximum at 300 °C, and then decreases monotonically; the 

Figure 3. (a) Response and (b) Selectivity of samples with various amounts of Au. The color in (b) is
related to the gas to which the sensor is most sensitive.



Nanomaterials 2024, 14, 2052 5 of 12

Instead, the response to acetone and ethanol is not univocal: the nanocomposites with
1, 2, 3 wt% of Au are more sensitive to acetone, while those with 4, 5 wt% of Au are more
sensitive to ethanol. The most selective material is the Cu2O–SnO2 with 3 wt% of Au (pr3)
which has a selectivity of 1.63 for acetone compared to ethanol.

The results in Figure 3b seem to indicate that pr3 is the best material to fabricate an
acetone sensor or an electronic nose, but the situation is more complicated. Figure S3 shows
the selectivity of the various nanomaterials as a function of the working temperature and
the gas concentration. The numbers in the figure express the ratio between the response to
acetone and that to ethanol. If the number is greater than 1, it is the selectivity; otherwise, it
is the reciprocal of the selectivity, since the material is, in that case, more sensitive to ethanol.

On the right, the average response of each material for each gas is calculated, as well
as the relative selectivity. It is noted that the greatest response for all gases comes from
the pr3 sensor, which is therefore the most sensitive. Furthermore, as already seen, the pr3
sensor is also the most selective, with a selectivity value of 1.63.

However, it is evident that the trend changes depending on the temperature and gas
concentration. Only the pr2 sensor has a unique selectivity for acetone (all values are
greater than 1), while the others have a selectivity that oscillates between acetone and
ethanol. The pr3 sensor has a selectivity for acetone that decreases as the temperature
increases and, at 500 ◦C, it becomes selective for ethanol. In the other sensors, the situation
varies even at the same temperature, making the situation more complex. However, what
appears confusing in Figure S3, is very useful for the realization of an electronic nose,
since the different behaviors that a material has at different temperatures provide valuable
information to the algorithms.

A simple method to visualize the selectivity of a sensor is to plot the thermal finger-
prints related to the various gases. Figure 4 shows, as an example, the fingerprints related
to the various concentrations of the three VOCs tested with the pr3 sensor. The different
trend of the response as a function of temperature for the different gases is evident: the
response to toluene is maximum at 300 ◦C, and then decreases monotonically; the response
to acetone has a maximum at 250 ◦C; and the response to ethanol has its maximum at 400
◦C. These different behaviors, or in other words, the correlations between the responses at
the different temperatures, contain the information that is processed by the algorithms to
distinguish the gases and subsequently estimate their concentration. In fact, the thermal
fingerprints shift upwards as the gas concentration increases, but maintain the same shape,
typical of that gas.
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working temperature and concentration.

The fingerprints in Figure 4 are shown on different scales to better appreciate their
trends, but in Figure S4 they are reported on the same scale, so as to be able to compare
their absolute intensity. It is evident here that the response to toluene is the lowest, while
that to acetone is usually the highest, even though at high temperatures it is comparable to
that of ethanol. The intensity of the fingerprint response is important, but the shape of the
fingerprints themselves is more important.
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Another way to qualitatively see the selectivity of a sensor (commonly used in scientific
papers) is to compare the radar plots in Figure 5. The greater the difference in the radar
plots for the different VOCs are, the more we expect the sensor to be intrinsically selective.
Unfortunately, this method is only effective in the simplest cases (few gases and very
different fingerprints) because the human eye is not as good at this task as a mathematical
algorithm. Looking at Figure 5, we can see that pr3 seems more selective than pr1 or pr2,
but it is not easy to go into more detail.
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The five axes in each radar plot report the response values at different temperatures.

For this reason, each thermal fingerprint in Figure 4 was transformed into a five-
dimensional point and processed with classification and regression algorithms. Initially, a
principal component analysis of the data was performed to reduce the dimensionality and
verify how the data from the various gases are related to each other. Figure 6a–e shows
plots of the first two principal components obtained with the data of the five sensors. It
can be seen that, in all the panels, the points related to each gas lie on fairly straight lines.
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The lines always start from a common area on the left (when the concentration is low, all
gases are similar to air) and then fan out in different directions at higher concentrations.
It is therefore clear, in a qualitative way, that the thermal electronic nose will have fewer
problems distinguishing gases at higher concentrations. Unfortunately, these very long
lines make it impossible to use untrained classification algorithms. In fact, they are based on
the distance between the points, and the low-concentration points of ethanol and acetone
are closer to the toluene points than to the high-concentration points of acetone and ethanol,
so they would be confused by this type of algorithm. However, this arrangement of the
points will be useful in the next regression step.
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Figure 6f shows the percentage of variance explained by the principal components for
the various sensors. The sensors behave very similarly, with PC1 explaining 95–98%, PC2
demonstrating 1.4–4.8%, and the other PCs explaining less than 0.25% each. This means
that the plots in Figure 6 show almost all the variance of the data in the five-dimensional
space, and thus explain the relationships between the points very well. Furthermore, they
indicate that the sensor responses at different temperatures are highly correlated with each
other, as expected.

Linear discriminant analysis (LDA) was used to measure how well the thermal elec-
tronic nose can distinguish the various VOCs. The panels in Figure 7a–e show the LDA
plots obtained with the responses of the five sensors. All the nanomaterials distinguish the



Nanomaterials 2024, 14, 2052 8 of 12

points in three separate clusters related to the three VOCs. The quantitative classification
obtained by the LDA is reported in Figure 7f. The percentage of correct classifications goes
from 78% up to 100% for the pr3 sensor and then drops to 94.4%. The data were also tested
with a support vector machine used as a classifier, with an accuracy of 100% for the pr3
and pr4 sensors.
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Figure 7. (a–e) LDA graphs obtained with the different sensors; (f) accuracy of each sensor calculated
with LDA and SVM.

Once classified, the points were fed to three 5D SVM regressors that estimated the gas
concentration. The panels in Figure 8a–e show the concentration estimated by the thermal
electronic nose as a function of the actual concentration injected into the measurement
chamber. The diagonals indicate the perfect estimate. Correctly classified measurements are
indicated as solid points, while incorrect ones are empty circles. In general, the points are
quite close to the diagonal, indicating a good accuracy of the electronic nose. At first glance,
it can be noticed that the pr3 and pr4 sensors show more accurate estimates, i.e., closer to
the diagonal. Points at the extremes of the measurement range tend to be further from the
diagonal, i.e., to have a larger error. This is understandable, since the electronic nose is less
trained at low and high concentrations. Furthermore, points at low concentrations actually
seem less accurate than those at high concentrations. This is due to three contributions:
(i) less training of the electronic nose, (ii) greater error in the sensor measurements since
it is closer to the limit of detection, and (iii) greater similarity of the thermal fingerprints
since the more diluted the gases are, the more they all resemble air. The mean absolute
percentage error (MAPE) calculated for each sensor is reported in Figure 8f. To account for
the lower training at the ends of the measurement range, the MAPE was also calculated
excluding the lowest and the highest concentration (this is reasonable, since electronic
noses are usually trained on a wider range than the one used in applications).
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Figure 8f reports the error for each sensor at each gas, and it is seen that the nanocom-
posites with higher amounts of Au (pr3, pr4, and pr5) perform better. The average error
is also calculated on the misclassified measurements, which have larger errors because a
wrong regressor is used. Despite this, the pr4 sensor has an error of 27.1%, 27.3%, and 20.8%
for toluene, acetone, and ethanol, respectively. It should be noted that the concentration is
a quantity that spans many orders of magnitude, so an error of 20–30% is useful in many
applications. Eliminating the measurements at the extremes of the measurement range, due
to limited training, the error of pr4 sensor is 15.0%, 17.4%, and 16.5% for toluene, acetone,
and ethanol, respectively.

In conclusion, the Cu2O–SnO2 sensor with 4 wt% of Au achieves a correct classification
in 100% of the cases with the SVM and provides the best estimate of the gas concentration.
This is in contrast to the measurement of the average intrinsic selectivity of the material
(in Figure 3a) and demonstrates that the fabrication of a thermal electronic nose should
be studied in more detail, not relying only on the intrinsic performance of the material
used as a sensor. The sensor’s performance (perfect classification of acetone, ethanol, and
toluene with an average concentration error of about 16%), together with its potentially
micrometric dimensions, make this type of electronic nose ideal for several applications,
including rapid screening for diabetes detection.

4. Conclusions

Different chemoresistive gas sensors based on porous Cu2O–SnO2 nanospheres have
been fabricated by adding different amounts of Au (from 1 to 5 wt%). The sensors have
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been used to fabricate thermal electronic noses (i.e., electronic noses that use different
temperatures instead of different materials) to distinguish acetone, ethanol, and toluene
and estimate their concentrations. Although the sensor with the highest intrinsic selectivity
is the one with 3 wt% Au, the best performance as an electronic nose is achieved by
the sensor with 4 wt% Au, with a classification accuracy of 100% and an error on the
concentration estimation around 16%. These performances, combined with the possibility
of fabricating the device in less than one square millimeter, make the thermal electronic
nose based on porous Cu2O–SnO2 nanospheres with 4 wt% Au an ideal candidate for
portable, integrable, and wearable devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano14242052/s1, Figure S1: XRD spectra of the Cu-SnO2 powders
with different amounts of Au; Figure S2: Relationship between response to acetone and response to
ethanol as a function of material, temperature and gas concentration. On the right, average response
to various VOCs and average selectivity; Figure S3: Thermal fingerprints obtained with pr3 sensor
for the three VOCs at different concentrations. Figure S4. Thermal fingerprints obtained with pr3
sensor for the three VOCs at different concentrations
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