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Abstract: The fatigue failure of a structure may occur under a multiaxial vibration environment; it is
necessary to establish a better multiaxial fatigue life prediction model to predict the fatigue life of the
structure. This study proposes a new model (MWYT) by introducing the maximum absolute shear
stress into the WYT model. The feasibility of the MWYT model is verified by using the multiaxial
fatigue experimental data of 304 stainless steel, Q235B steel, 7075-T651 aluminum alloy and S355J0
steel. Further, finite element vibration simulations are performed on a typical parallel hydraulic pipe
structure, and the vibration simulation results of the pipe structure are verified through the vibration
experiment. Finally, the MWYT model is used to predict the fatigue lives of the pipe structure under
random excitation and pulsation excitation, respectively, and the fatigue life of the pipe structure
under the combined loading from random excitation and pulsation excitation is predicted based on
Miner’s rule. By comparing with the design life of the aircraft, the predicted life of the pipe structure
meets the service requirements for it.

Keywords: multiaxial fatigue; aircraft hydraulic pipe; power spectral density; critical plane theory;
fatigue life prediction

1. Introduction

With the continuous developments of various industries, many metallic materials are
widely used in automobiles, aircraft, and marine ships and other industries to manufacture
various structural components [1–3]. While fatigue and reliability problems of structures
have gradually been exposed under multiaxial loading [4–8], some structural components
such as hydraulic pipeline systems, flaps and engine shafts are subjected to proportional and
nonproportional multiaxial loadings, which may cause structural failure due to multiaxial
fatigue [9–11]. According to the damage mechanism of multiaxial fatigue, the fatigue
life of an structure is not only affected by the material properties and the magnitude
of the external loading, but also by the loading path of the external loading and the
intensity of the material’s response to different loading paths [12,13]. Considering the
failure behaviors of materials under various loadings, multiaxial fatigue theoretical models
have been developed [14–18].

After decades of research, some multiaxial fatigue life prediction models have been
proposed by scholars in the field of fatigue. Several typical models are as follows. Smith
et al. [19] proposed a multiaxial fatigue model, using the product of the maximum normal
stress and normal strain amplitude on the plane, where the maximum amplitude of the
normal strain is located to establish a multiaxial fatigue life model. Fatemi et al. [20] believed
that the maximum shear strain controlled the crack initiation process, and the normal stress
should be introduced in the damage parameters to consider the additional strengthening
phenomenon of the nonproportional loading cycle. In addition, they proposed the use of
the amplitude of the shear strain and the maximum normal stress on the critical plane as
the fatigue damage parameters. Shang et al. [21] considered that the maximum amplitude
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of the shear strain and the range of the normal strain on the critical plane are important
damage parameters, then combined the amplitude of the shear strain and the range of the
normal strain into an equivalent parameter and proposed a fatigue model independent of
loading paths. The models proposed in Refs. [19–21] did not simultaneously consider the
influences of the shear and normal strains, shear and normal stresses on fatigue damage,
all of which have poorer prediction effects on specimens under constant amplitude loading
with non-zero mean normal and shear stresses [22,23]. In order to fully consider the
influences of various variables on the critical plane for fatigue damage, Wang et al. [22] took
the plane with the maximum amplitude of the shear strain as the critical plane, and then
proposed a new multiaxial fatigue model (WYT). The amplitude of the shear strain, range
of the normal strain, maximum shear and maximum normal stresses were introduced into
the WYT model so that it could consider the influences of strains and stresses on fatigue
damage. However, some studies have shown that both positive and negative mean shear
stresses on the critical plane reduce the specimen life under constant amplitude loading
with non-zero mean normal and shear stresses [23–25], which was not considered in the
WYT model. If the WYT model is modified, its life prediction effect on the specimen may
be further improved. Therefore, a modified multiaxial fatigue model is proposed based on
the existing model in this study, and applied to the fatigue life prediction of the aircraft
hydraulic pipe structure.

As an important part of the aircraft, hydraulic pipes are simultaneously subjected to
multiaxial random excitation and pulsation excitation [9], which may easily cause multiaxial
fatigues of pipe structures; thus, aircraft designers are particularly concerned about pipe
structure problems. There are some multiaxial fatigue experimental data available in
Refs. [24,26–28], which can be used to verify the life prediction effect of the proposed
multiaxial fatigue model on the specimen. Furthermore, using the modified multiaxial
fatigue model to predict the fatigue life of the hydraulic pipe structure is a significant
engineering application.

2. Determination of the Critical Plane

Under multiaxial strain-controlled loading, a point strain state at the thin-walled tube
is expressed by [29,30]:

ε =

 εx
γxy

2 0
γyx

2 −υe f f εx 0
0 0 −υe f f εx

 (1)

where εx and γxy are the normal and shear strains, respectively, and γxy = γyx; υe f f is the

effective Poisson’s ratio, and υe f f = 0.5 − (0.5−υe)∆σeq,a
E∆εeq,a

[29,30]. Among them, υe, E, ∆σeq,a

and ∆εeq,a are the elastic Poisson’s ratio, elastic modulus, equivalent stress amplitude, and
equivalent strain amplitude, respectively.

Assuming that the axial and shear strains are sine waves, then

εx(t) = εx,a sin ωt + εx,m (2)

γxy(t) = γxy,a sin(ωt − φ) + γxy,m (3)

where φ is the phase angle between the axial and shear strains. εx,a and γxy,a are the
amplitudes of the axial and shear strains, respectively. εx,m and γxy,m are the mean values
of the axial and shear strains, respectively.

The amplitudes of the shear and normal strains on the plane with the maximum shear
strain which makes an angle θc with the thin-walled tube axis can be expressed as [31]:

∆γmax

2
= εx,a

{[
λ cos(2θc) cos φ − (1 + υe f f ) sin(2θc)

]2
+ [λ cos(2θc) sin φ]2

}0.5
(4)
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∆εn

2
=

εx,a

2

{[
2(1 + υe f f ) cos2 θc + λ sin(2θc) cos φ − 2υe f f

]2
+ [λ sin(2θc) sin φ]2

}0.5
(5)

where

θc =
1
4

tan−1

[
2λ(1 + υe f f ) cos φ

(1 + υe f f )
2 − λ2

]
(6)

λ =
γxy,a

εx,a
(7)

The plane with the maximum amplitude of the shear strain is considered to be the
critical plane when two or more planes have the same maximum amplitude of the shear
strain, by taking the plane with the maximum range of the normal strain as the critical
plane. Refs. [23,32,33] show the calculation process of different variables on each plane.

3. The Modified WYT Model and Its Application
3.1. A Modified Multiaxial Fatigue Model

In order to fully consider the influences of strains and stresses on the plane on fatigue
damage, Wang et al. [22] took the plane with the maximum amplitude of the shear strain
as the critical plane, and then proposed a multiaxial fatigue model (WYT). The normal
strain range ∆εn, maximum shear strain amplitude ∆γmax/2, normal stress correction factor
σn,max/σ′

f and shear stress correction factor τmax/τ′
f are introduced into the WYT model

to consider the influences of strains and stresses. The expression of the WYT model is as
follows [22]:

∆γmax

2

(
1 +

τmax

τ′
f

)
+ ∆εn

(
1 +

σn,max

σ′
f

)
= f

(
N f

)
(8)

where τmax and σn,max are the maximum shear and maximum normal stresses on the critical
plane, respectively; N f is the fatigue life; τ′

f and σ′
f are the shear fatigue strength coefficient

and fatigue strength coefficient, respectively.
Some studies have shown that whether the mean shear stress on the critical plane

is positive or negative, it reduces the life of the specimen [23–25]. The WYT model did
not consider this influence, so this study modifies the WYT model through changing the
maximum stress τmax in the WYT model to the maximum absolute shear stress |τ|max, i.e.,

∆γmax

2

(
1 +

|τ|max
τ′

f

)
+ ∆εn

(
1 +

σn,max

σ′
f

)
= f

(
N f

)
(9)

where |τ|max is the maximum absolute shear stress on the critical plane.
In this study, the modified model Equation (9) is called the MWYT model.

3.2. Experimental Data Verification
3.2.1. Experimental Data Selection

To verify the prediction effects of the MWYT model on different material specimens,
this study selects multiaxial fatigue experimental data of four materials [24,26–28]. Mean-
while, the life prediction effects of the MWYT model on various materials are compared
with those of the SDG and WYT models. Here, the SDG model means the multiaxial fatigue
model proposed by Shang [21]. The multiaxial fatigue experimental data of 304 steel are
taken from Ref. [26] and the loading paths are shown in Figure 1a–f; the multiaxial fatigue
experimental data of Q235B steel are taken from Ref. [27] and the loading paths are shown
in Figure 1a–c,f; the multiaxial fatigue experimental data of 7075-T651 aluminum alloy are
taken from Ref. [24] and the loading paths are shown in Figure 1a,b,g–m; the multiaxial
fatigue experimental data of S355J0 steel are taken from Ref. [28] and the loading paths are
shown in Figure 1g–i,n–p.
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In Figure 1, (a,n) are axial loading; (b,o) are torsional loading; (c,p) are proportional 
loading. For all of them, φ = 0°; (d–f) are non-proportional loading, φ = 90° in paths (d,f), 
φ = 45° in path (e); (g) is axial loading with non-zero mean normal stress; (h) is torsional 
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Figure 1. Loading paths. (a,n) are axial loading; (b,o) are torsional loading; (c,p) are proportional
loading. For of them, φ = 0◦; (d–f) are non-proportional loading, φ = 90◦ in paths (d,f), φ = 45◦ in
path (e); (g) is axial loading with not-zero mean normal stress; (h) is torsional loading with non-zero
mean shear stress; (i) is proportional loading with non-zero mean normal and shear stresses, φ = 0◦;
(j–m) are non-proportional loading with non-zero mean normal and shear stresses. φ is 30◦, 45◦, 90◦

and 180◦ respectively. Among them, (a–f) are strain controlled loading, (g–p) are stress controlled
loading.

The detailed experimental processes of four materials were described, respectively, in
Refs. [24,26–28]. The fatigue properties of these materials are shown in Table 1.

Table 1. Material parameters.

Properties 304 [26] Q235B [27] 7075-T651 [24] S355J0 [28]

E (GPa) 183 204 71.7 213
G (GPa) 82.8 81.4 27.5 81.3

υ 0.117 0.3 0.306 0.31
σy (MPa) 325 269 501 355
σ′

f (MPa) 1000 407.59 1235 880
ε′f 0.171 0.8091 0.243 0.126
b −0.114 −0.0424 −0.138 −0.095
c −0.402 −0.5827 −0.71 −0.448

τ′
f (MPa) 709 398.13 797 508

3.2.2. Fatigue Life Prediction of Four Material Specimens

The mechanical parameters of each material are shown in Table 1. Based on the
multiaxial fatigue experimental data in Refs. [24,26–28], the fatigue life of each material
specimen under constant amplitude loading is predicted by using the SDG, WYT and
MWYT models, respectively, and the prediction results are shown in Figures 2–4.
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Figure 2. Predicted results of the SDG model for four material specimens. (a) 304, (b) Q235B,
(c) 7075-T651, (d) S355J0.

According to Figure 2, we can see that the SDG model has better prediction effect
on 304, with only a few data points outside the three times error band. Meanwhile, the
prediction results of the SDG model for Q235 are all within the three times error band,
and are mainly concentrated within the two times error band. However, the SDG model
has poorer prediction effects on 7075-T651 and S355J0, with nearly half of the data points
outside the three times error band.

Based on Figure 3, the prediction results of the WYT model for 304 are all within the
three times error band, and the prediction results for Q235B are all within the two times
error band. The WYT model also has better prediction effect on 7075-T651, and most of
the prediction results are within the three times error band. However, the WYT model
has poorer prediction effect on S355J0, and some data points are outside the three times
error band.
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Figure 3. Predicted results of the WYT model for four material specimens. (a) 304, (b) Q235B,
(c) 7075-T651, (d) S355J0.

From Figure 4, the prediction results of the MWYT model for 304 are all within the
three times error band, and the prediction results for Q235B are all within the two times
error band. The MWYT model also has better prediction effects on 7075-T651 and S355J0,
and most of the prediction results of the two materials are within the three times error
band.

This study counts the distributions of each model’s prediction results for four materials
in the error bands, as shown in Table 2. From Table 2, the prediction effects of the MWYT
model for four materials are better than those of the SDG and WYT models.

For 304 and Q235B, the mean shear and mean normal stresses on all loading paths
are zero, and the lives of the specimens are not influenced by mean stresses. Therefore,
the WYT and MWYT models have the same effect on the life prediction of 304 and Q235B.
Meanwhile, the SDG model also has better prediction effects on the two materials.

Since the mean stresses of the 7075-T651 and S355J0 specimens under constant am-
plitude loading are not zero, the lives of the specimens are influenced by mean stresses.
Furthermore, the maximum shear stress τmax and the maximum absolute shear stress |τ|max
on the critical plane are sometimes not equal, so the prediction effects of the WYT and the
MWYT models for the 7075-T651 and S355J0 specimens are different. Studies have shown
that whether the mean shear stress on the critical plane is positive or negative, it reduces
the life of the specimen [23–25]. The MWYT model considers this influencing factor, so its
prediction effects on 7075-T651 and S355J0 are better than those of the WYT models. The
SDG model only considers the influences of the normal and shear strains on the critical
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plane on fatigue damage, but does not consider the influences of the mean normal and
shear stresses, and it has poorer prediction effects on 7075-T651 and S355J0.
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Figure 4. Predicted results of the MWYT model for four material specimens. (a) 304, (b) Q235B,
(c) 7075-T651, (d) S355J0.

Table 2. Distribution of the prediction results within the error bands for each material by using the
SDG, WYT and MWYT models.

Scatter Band Models
Materials

304 Q235B 7075-T651 S355J0

±3
SDG 82.86% 100% 57.69% 46.67%
WYT 100% 100% 75% 60%

MWYT 100% 100% 82.69% 83.33%

±2
SDG 68.57% 96% 36.54% 36.67%
WYT 88.57% 100% 48.08% 30%

MWYT 88.57% 100% 57.69% 56.67%

Based on the above analysis, the order of the effects of the three models on fatigue life
prediction for various materials is as follows: MWYT, WYT and SDG.

4. Fatigue Life Prediction of the Parallel Aircraft Hydraulic Pipe Structure Under
Combined Loading

As an important part of the aircraft, hydraulic pipes are often subjected to random
excitation from the engine and pulsation excitation from the hydraulic oil, both of which
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cause pipe vibration. The vibration fatigue problems of pipes have always been the focus
of aircraft engineers. Therefore, predicting the fatigue life of the aircraft hydraulic pipe
structure has certain engineering significance. In this section, the MWYT model is used
to predict the fatigue life of a typical parallel hydraulic pipe structure under combined
loading.

The structure of the hydraulic pipe structure is shown in Figure 5. The density of the
hydraulic oil is 850 kg/m3, and the material mechanical parameters of each pipe component
are shown in Table 3. The pipe structure is simultaneously subjected to random excitation
from the engine and pulsation excitation from the hydraulic oil. The power spectrum
density (PSD) of the acceleration is shown in Figure 6a, and the pulsation function of the
hydraulic oil is shown in Figure 6b.
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Table 3. Material properties of the pipe components.

Name Material ρ (kg/cm3) E (GPa) υ σy (MPa) σu (MPa)

Connector 0Cr15Ni5Cu4Nb 7800 190 0.24 200 ≥930
Bracket 0Cr18Ni9 7850 199 0.3 205 520

High-pressure pipe
0Cr21Ni6Mn9N 7810 190 0.27 365 735Oil return pipe

Oil suction pipe 1Cr18Ni10Ti 7900 204 0.3 235 632
Buffer bottle 0Cr15Ni5Cu4Nb 7800 190 0.24 200 ≥930

Bolt 30CrMnSiA 7750 196 0.3 835 1080
Clamp 1Cr18Ni9Ti 8030 206 0.3 200 550

4.1. Simulation of the Pipe Structure Under Random Excitation and Pulsation Excitation
4.1.1. Random Vibration Simulation of the Pipe Structure

The finite element model is established on the pipe structure shown in Figure 7. The
random acceleration excitation with its acceleration PSD shown in Figure 6a is applied to
the pipe structure in the Z direction. The stress cloud diagram obtained from the simulation
is shown in Figure 8, and the maximum stress value and stress cloud diagram of each of the
same material components are extracted as shown in Table 4 (the maximum stress points
are numbered A1-A6). According to Table 4, the maximum 3σ stress of each component
does not exceed the yield strength of the material, and which means that no strength failure
will occur.
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Table 4. Maximum 3σ stress and its location of each component under random excitation.

Name Maximum 3σ Stress
(MPa) Stress Cloud Diagram
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4.1.2. Pulsation Excitation Simulation of the Pipe Structure

Since the oil in the return pipe or suction pipe is quasi-static, and the oil pressure is
less than 2 MPa, the fluid–structure coupling is ignored. The pulsation excitation function
with a mean pressure of 28 MPa is set for the oil in the two high-pressure pipes, as shown
in Figure 6b. The simulated cloud diagram is shown in Figure 9, and the extracted stress
cloud diagram and maximum stress of the same material component are shown in Table 5
(the maximum stress points are numbered B1-B6).

According to Table 5, the maximum stress of each component does not exceed the
yield strength of the material, which does not cause the strength failure of the structure. The
stresses of the two high-pressure pipes are obviously higher than those of other components,
which are also consistent with the actual stress conditions of the pipe structure.
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4.2. Experimental Comparison Validation
4.2.1. Random Excitation Experiment

(1) Experiment description

The physical connection of the random excitation experiment is shown in Figure 10.
The pipes are fixed on the shaking table through the fixture, and the high-pressure pipe is
connected with the hydraulic pump. The acceleration PSD applied during the experiment
is shown in Figure 6a. The strain gauges are set at the three measurement points shown in
Figure 11.
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(2) Comparison of experiment and simulation

The strain response signal of measurement point 2 is obtained as shown in Figure 12.
Since the experimental random strain signal is shown in the time domain, it is not conducive
to compare with the frequency domain simulation results. Strain signals in the experimental
stage are converted into the frequency domain by fast Fourier transform (FFT). Strain PSD
at the same location is extracted by simulation and compared with it, as shown in Figure 13.

Based on Figure 13, the experimental results from measurement point 2 show that the
pipe structure has vibration peaks near four frequency points: 140 Hz, 184 Hz, 240 Hz to
270 Hz and 425 Hz. The simulation results show vibration peaks near four frequency points:
125 Hz, 178 Hz, 246 Hz and 378 Hz. The relative error between each pair of frequency
points is within 20%.

The strain PSD root mean square (RMS) value of measurement point 2 is compared
with the simulation results as shown in Table 6; it can be seen that the simulation results
are close to the experimental results. Among them, the maximum error is 20.8%, within the
engineering allowable range.
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Figure 12. Strain signal acquisition at pipe measurement point 2. (a) Axial strain signal. (b) Circum-
ferential strain signal.
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Figure 13. Comparison of strain PSD for experiment and simulation at measurement point 2. (a) FFT
signal of experimental axial strain. (b) Simulated axial strain PSD. (c) FFT signal of experimental
circumferential strain. (d) Simulated circumferential strain PSD.

The data analysis processes of measurement points 1 and 3 are similar to that of
measurement point 2. Due to the limited length, they are not described in detail here.
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Table 6. Comparison of simulation strain data and experimental data at measurement point 2.

Directions Experimental RMS
Values (µε)

Simulation RMS
Values (µε) Relative Errors

Axial 57.37 45.42 20.8%
Circumferential 39.51 32.23 18.43%

4.2.2. Pulsation Excitation Experiment

(1) Experiment description

During the experiment, a mobile oil truck is used to input the pulsating pressure oil
into the high-pressure pipe. Passing through the high-pressure pipe, the oil flows through
the tee connector, and then returns to the oil tank through the switch acting as the load,
as shown in Figure 14. The return pipe and suction pipe are filled with static oil. The oil
pulsation excitation function of the experimental plunger pump is shown in Figure 6b.
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Axial and circumferential strain gauges are installed at the three locations in the pipe
system model shown in Figure 15.
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(2) Comparison of the experiment and the simulation

The experimental data show that the circumferential strain is more obvious than the
axial strain. The time domain signal collected by the strain gauge at measurement point 2
is shown in Figure 16, and the finite element simulation calculation results at measurement
point 2 are extracted and compared with the experiment, as shown in Figures 17 and 18.
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As shown in Figures 17 and 18, the simulation results of measurement point 2 are
in good agreement with the experimental data. In the axial direction, the mean value of
the experimental strain data is 163.3 µε, and the mean value of the simulation strain data
is 166.1 µε, and the relative error between the two is within 2%. In the circumferential
direction, the mean value of the experimental strain data is 380.8 µε, and the mean value of
the simulation strain data is 375.8 µε, and the relative error between the two is within 1.5%.

The data analysis processes of measurement points 1 and 3 are similar to that of
measurement point 2. Due to the limited length, they are not described in detail here.



Materials 2024, 17, 6154 16 of 21

There are some reasons for the errors between the simulation results and experimental
results, such as the fact that the directions of the strain gauges may not be completely
axial and circumferential, while the simulation extraction results are exactly along the
axial and circumferential directions of the pipe. There are frictions among the contacted
components in the vibration experiment, while in the simulation, the contacts among the
components are all set as binding, and the binding contact assumed by the simulation
makes the constraints between the contact surfaces tighter than in reality. There are also
dimensional errors between the experimental model and the simulation model. The errors
of each measurement point in the vibration experiment are basically within 20%, and the
effectiveness of the simulation method is verified.

4.3. Fatigue Life Prediction of the Pipe Structure

By comparing the experimental results with the simulation results, it is proved that
the simulation of the hydraulic pipe structure is feasible. According to Tables 4 and 5, the
fatigue failure of the pipe structure does not occur whether under random excitation or
pulsation excitation. In this section, the fatigue life of the pipe structure is predicted by the
MWYT model. The fatigue parameters of each material are shown in Table 7.

Table 7. Material fatigue parameters of each component.

Name Material σ’
f (MPa) ε’

f b c τ’
f (MPa)

Connector 0Cr15Ni5Cu4Nb 1416 0.27 −0.09 −0.56 818
Bracket 0Cr18Ni9 880 0.4 −0.09 −0.56 508

High-pressure pipe
Oil return pipe 0Cr21Ni6Mn9N 1164 0.3 −0.09 −0.56 672

Oil suction pipe 1Cr18Ni10Ti 1039 0.35 −0.09 −0.56 600
Bolt 30CrMnSiA 1612 0.25 −0.09 −0.56 931

Clamp 1Cr18Ni9Ti 927 0.38 −0.09 −0.56 535
Based on the Muralidharan–Manson method in Ref. [34], the fatigue parameters of each material are estimated.

To visually indicate the position of each critical point (maximum stress point), the
critical point positions in Tables 4 and 5 are marked in the pipe model as shown in Figure 19.
It is known that each critical point does not coincide, the life of each critical point is predicted
for safety reasons, and the minimum life is considered as the final life of the pipe structure.
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4.3.1. Fatigue Life Prediction of the Pipe Structure Under Random Excitation

Under variable amplitude loading, the fatigue damage is shown as follows [35]:

Dr =
n

∑
i=1

1
N f i

(10)

where n and N f i are the number of cycles and the fatigue life corresponding to the i-th
cycle, respectively.

Fatigue life is

Tr =
∆tr

Dr
(11)

where ∆tr is the duration of the time domain response spectral of the stress or strain.
When predicting the life of the specimen under random vibration loading in the

frequency domain, if the stress and strain time histories of the critical point are unknown,
first the stress and strain PSDs at the critical point are extracted, and then the stress–strain
time history is obtained by IFFT. Second, the stress–strain time histories on different planes
are obtained by coordinate transformation, and then the shear strain is counted by the cycle
counting method, considering the plane with the maximum amplitude of the shear strain
as the critical plane. Finally, the four-channel multiaxial cycle counting method [36] is used
to count the variables on the critical plane and predict the fatigue life of the specimen using
the MWYT model. The calculation process can also be found in Ref. [36].

The stress cloud diagrams of each component in Figure 19 have marked the locations
of the maximum stress points and numbered the critical points. This section uses the
MWYT model to predict the fatigue life of each component. Due to the limited length,
only the stress PSDs in the X and Y directions at point A1 of the connector (seeing Table 4)
are drawn in Figure 20. The sampling frequency is set to six times the highest excitation
frequency (2000 Hz), and the sampling points total 120,000. By using the inverse fast
Fourier transform (IFFT), the response time histories over 10 s are obtained in Figure 21.
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The life prediction methods of the other component critical points are the same as that
of point A1, so they are not described in detail here. The fatigue life of each component
critical point is shown in Table 8. Among them, the minimum life of the critical point is
2.16 × 104 h. It has been pointed out that the design service life of a military fighter aircraft
is about 5000 h [37], so the predicted lives of all components can meet the requirements
under random excitation.

Table 8. Fatigue lives of critical points under random excitation.

Critical Points Damages Lives (h)

A1 1.5 × 10−13 1.86 × 1010

A2 6.67 × 10−9 4.17 × 105

A3 1.78 × 10−16 1.56 × 1013

A4 1.38 × 10−10 2.02 × 107

A5 1.12 × 10−22 2.48 × 1019

A6 1.29 × 10−7 2.16 × 104

B1 2.84 × 10−16 9.79 × 1012

B2 7.91 × 10−11 3.51 × 107

B3 1.39 × 10−23 2.00 × 1020

B4 1.64 × 10−13 1.70 × 1010

B5 5.81 × 10−24 4.79 × 1020

B6 6.30 × 10−8 4.41 × 104

4.3.2. Fatigue Life Prediction of the Pipe Structure Under Pulsation Excitation

Under constant amplitude loading, the fatigue damage is shown as follows [35]:

Dp =
m
N f

(12)

where N f and m are the fatigue life and the number of cycles of the constant amplitude
signal, respectively.

Fatigue life is

Tp =
∆tp

Dp
(13)

where ∆tp is the duration of the time domain response spectral of the stress or strain.
For predicting the life of the specimen under constant amplitude loading in the time

domain, the stress–strain time histories on different planes are obtained by coordinate trans-
formation, and then the shear strain is counted by the cycle counting method, considering
the plane with the maximum amplitude of the shear strain as the critical plane. Finally, the
four-channel multiaxial cycle counting method [36] is used to count the variables on the
critical plane, and the fatigue life of the specimen is predicted by using the MWYT model.

This section uses the MWYT model to predict the fatigue life of each component
in Figure 19. Due to the limited length, only the stable stress responses in the X and Y
directions at point B1 are drawn in Figure 22.

This study takes the 10 s response time history of each variable, and uses the MWYT
model to predict the fatigue life of each component. The fatigue life of each component
critical point is shown in Table 9. Among them, the minimum life of the critical point is
6.19 × 1012 h. It has been pointed out that the design service life of military fighter aircraft
is about 5000 h [35], so the predicted lives of all components can meet the requirements
under pulsation excitation.
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Table 9. Fatigue lives of critical points under pulsation excitation.

Critical Points Damages Lives (h)

A1 4.85 × 10−33 5.73 × 1029

A2 2.77 × 10−24 1.00 × 1021

A3 1.88 × 10−23 1.47 × 1020

A4 1.02 × 10−29 2.73 × 1026

A5 7.67 × 10−31 3.63 × 1027

A6 2.18 × 10−23 1.27 × 1020

B1 1.58 × 10−26 1.76 × 1023

B2 4.49 × 10−16 6.19 × 1012

B3 6.04 × 10−22 4.60 × 1018

B4 9.69 × 10−29 2.87 × 1025

B5 5.15 × 10−26 5.39 × 1022

B6 5.18 × 10−23 5.37 × 1019

4.3.3. Fatigue Life Prediction of the Pipe Structure Under Combined Excitation

In Sections 4.3.1 and 4.3.2, the fatigue lives of the hydraulic piping structure under
random excitation and pulsation excitation are calculated, respectively. This section predicts
the fatigue life of the hydraulic piping structure under combined excitation of random and
pulsation. According to the linear damage accumulation rule [35], the fatigue life under
combined excitation is

Ttotal =
∆t

Dr + Dp
(14)

where ∆t is the stress response time length, ∆t = 10 s.
The fatigue life of the pipe structure under combined excitation is calculated according

to the data in Tables 8 and 9, as shown in Table 10. Among them, the minimum life of the
critical point is 2.15 × 104 h. It has been pointed out that the design service life of military
fighter aircraft is about 5000 h [35], so the predicted lives of all components can meet the
requirements under combined excitation.

Table 10. Fatigue lives of critical points under combined excitation.

Critical Points Damages Lives (h)

A1 1.50 × 10−13 1.85 × 1010

A2 6.67 × 10−9 4.16 × 105

A3 1.78 × 10−16 1.56 × 1013

A4 1.38 × 10−10 2.01 × 107

A5 1.12 × 10−22 2.48 × 1019

A6 1.29 × 10−7 2.15 × 104

B1 2.84 × 10−16 9.78 × 1012

B2 7.91 × 10−11 3.51 × 107

B3 6.18 × 10−22 4.50 × 1018

B4 1.64 × 10−13 1.69 × 1010

B5 5.86 × 10−24 4.74 × 1020

B6 6.30 × 10−8 4.41 × 104
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5. Conclusions

(1) The MWYT model is proposed by modifying the WYT model by changing the maxi-
mum shear stress τmax to the maximum absolute shear stress |τ|max. The life prediction
results on four material specimens show that the MWYT model has better effects than
the SDG and WYT models. Among them, the prediction results of the MWYT for 304
are all within the three times error band, and the prediction results for Q235B are all
within the two times error band, and most of the prediction results for 7075-T651 and
S355J0 are within the three times error band.

(2) The dynamic simulation of a typical parallel hydraulic pipe structure is performed
and compared with the experiment. By comparing the simulation strain results with
the measured strain data, the finite element simulation is proved. Meanwhile, the
simulation results show that the pipe structure does not undergo strength failure
under either random excitation or pulsation excitation.

(3) The fatigue lives of the pipe structure under random excitation and pulsation exci-
tation are predicted, respectively, and further, the fatigue life of the pipe structure
under combined loading of random and pulsation excitations is predicted based on
Miner’s rule. By comparing with the design life of the aircraft, the predicted life of
the hydraulic pipe structure meets the requirement.
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