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Abstract: Metformin is a commonly used drug for treating type 2 diabetes. Metformin is an inexpen-
sive drug with low/no side effects and is well tolerated in human patients of different ages. Recent
therapeutic strategies for human disease have considered the benefits of drug repurposing. This
includes the use of the anti-diabetic drug metformin. Accordingly, the anti-inflammatory, anti-cancer,
anti-viral, neuroprotective, and cardioprotective potentials of metformin have deemed it a suitable
candidate for treating a plethora of human diseases. As results from preclinical studies using cellular
and animal model systems appear promising, clinical trials with metformin in the context of non-
diabetes-related illnesses have been started. Here, we aim to provide a comprehensive overview of
the therapeutic potential of metformin in different animal models of human disease and its suggested
relationship to epigenetics and ailments with epigenetic components.
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1. Introduction

Originally, drug repurposing (also known as drug repositioning, redirecting, or repro-
filing) was described as a process of discovering new applications for drugs outside of the
realm for which they were originally developed [1]. Today, the concept of drug repurposing
has broadened to include active substances that have failed clinical phase development
and drugs withdrawn from the market [1]. Ideally, any drug that is a candidate for repur-
posing has undergone clinical drug development as well as safety and toxicity studies.
However, drug repurposing may also occur during clinical trials. A notable example is
the drug repurposing of Viagra (Sildenafil) [2]. Originally, Sildenafil was explored for the
treatment of angina pectoris due to its potential and selectivity in inhibiting phosphodi-
esterase 5 (PDE5) [2]. The drug proved less promising as a therapeutic agent for angina.
During clinical trials, however, PDE5 inhibition was recognized as a novel approach to
erectile dysfunction (ED). After 21 separate clinical trials, Viagra was approved for the
treatment of ED. In years to follow, Viagra was also approved by the U.S. Food and Drug
Administration (U.S. FDA, Silver Spring, MD, USA) for the treatment of pulmonary arterial
hypertension [3]. The vitality of repurposed drugs has become even more evident during
the COVID-19 pandemic, where drugs from diverse classes were explored for COVID-19
treatment [4]. These examples, among others, underscore the multifaceted nature of drugs
and their application to conditions outside of the scope of their intended purpose.

Like other drugs, the therapeutic potential of the anti-diabetic drug metformin extends
beyond its initial intended use. Currently, it is estimated that metformin is prescribed
to over 150 million people worldwide and is considered an essential drug, as recorded
on the World Health Organization Model List of Essential Medicines [5]. Despite a lack
of consensus on the exact mechanism(s) by which metformin acts, its pleiotropic action
on biochemical pathways has piqued scientific curiosity. As a result, there is a rapidly
expanding body of literature surrounding metformin’s therapeutic effects in animal models
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of human disease, ranging from potential application in cardiovascular diseases and viral
infections to neurological and neurodevelopmental disorders. This review delves into the
origin, discovery, and early clinical applications of metformin, charting its path from an
ancient herbal remedy to a drug with the potential to treat an array of human diseases.

2. Metformin: A Brief Overview
2.1. Origin, Synthesis, and First Clinical Application

The chemical origin of metformin has been traced to guanidine derivatives extracted
from the medicinal plant Galega officinalis (also known as Spanish sainfoin, professor
weed, French lilac, goat’s rue, or Italian fitch) in medieval Europe. While the guani-
dine compounds, galegine and synthalin, of Galega officinalis were reported to have a
glucose-lowering effect, their acute potency impeded their use in diabetes treatment [6].
By then, experiments conducted on rabbits demonstrated the glucose-lowering effects of
guanidine [7]. Subsequent studies showed that biguanides formed by the fusion of two
guanidines were less toxic than the mono- and di-guanidines. Based on these findings, Irish
chemists Werner and Bell pioneered the synthesis of metformin [8]. Despite its availability,
it took another 36 years until French clinician Jean Stern demonstrated the effectiveness of
metformin in treating adult-onset diabetes [9]. The first clinically approved application of
metformin in the context of diabetes management was recorded in Europe within the same
year as Sterne’s findings. Meanwhile, the U.S. FDA approved the clinical application of
metformin for type 2 diabetes (T2D) in 1994 (https://www.accessdata.fda.gov/drugsatfda_
docs/nda/98/020357s010_appltr_medr_chemr_EA.pdf, accessed on 3 November 2024).

2.2. Metformin Administration and Dosage

As the preferred therapy for T2D, metformin is typically prescribed at a maximum
dosage of about 2000–2500 mg/day and is orally ingested as immediate- or extended-release
tablets or solutions (Figure 1). The extended-release solution of metformin hydrochloride,
Riomet ER, was only approved for clinical use by the FDA five years ago. Until then,
metformin in solution was only available as an immediate-release form. Riomet ER is
prescribed in combination with adjustments to diet and exercise for adults and children
(≥10 years) [10]. Although metformin has been widely prescribed since being approved by
the FDA, some side effects have been associated with different formulations of the drug. In
a retrospective chart review of 471 patients, data were gathered from selected 310 patients
who received extended-release metformin and 158 patients who received immediate-release
metformin. The patients who were included in this study had an average of 56 years of
age with a mean body mass index of 33 kg/m2 (considered to be overweight), while also
having diabetes. In these patients, the populations who experienced gastrointestinal (GI)
side effects were close, with 11.94% and 11.39% GI side effects associated with metformin
extended-release or metformin immediate-release formulations, respectively [11].

2.3. Pharmacokinetics and Pharmacodynamics of Metformin

Following ingestion, metformin is widely distributed in cells of our body through or-
ganic cation transporters (OCT). At intestinal pH, metformin exists as a cationic hydrophilic
base and possesses physiochemical properties that hinder its passive diffusion across cell
membranes [13]. While metformin absorption is believed to be primarily through plasma
membrane monoamine transporters (PMAT) of enterocytes, studies have suggested a role
for OCT1 and OCT3 in this process. The post-absorption plasma concentration levels of
metformin range from 54 to 4133 ng/mL, but individuals with OCT1 variants have lower
plasma concentrations [14].

https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/020357s010_appltr_medr_chemr_EA.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/020357s010_appltr_medr_chemr_EA.pdf
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Figure 1. Overview of metformin chemical structure, clinical use, and pharmacokinetics. Chemi-
cally, metformin is a biguanide (1,1-dimethylbiguanide) used in the treatment/management of type 2
diabetes, gestational diabetes, and polycystic ovary syndrome. Metformin is administered orally in
immediate- or extended-release form. Between 40–60% of metformin enters systemic circulation and
is eliminated from the body in about 6.2 h. For pre-clinical studies in animal models, 250 mg/kg/day
in mice corresponds to 20 mg/kg/day in humans [10,12]. Illustration created in BioRender.com.

Metformin enters hepatocytes through OCT1 and OCT3 transporters [15,16]. It is gen-
erally accepted that metformin antagonizes the 5′-AMP-activated protein kinase (AMPK) to
impact cellular energy stress. It inhibits complex I of the mitochondrial electron transport
chain, decreases adenosine triphosphate (ATP) production, and increases the AMP/ATP
ratio, which is detected by the AMPK. Metformin-induced AMPK activation diminishes
acetyl-CoA carboxylase (ACC) activity, promotes fatty acid oxidation, and hinders lipogenic
enzyme expression [17]. Through AMPK activation, metformin also inhibits the mechanis-
tic target of rapamycin (mTOR) complex 1 (mTORC1) signaling [18]. Conversely, studies
also suggest that metformin exerts its effects through an AMPK-independent mechanism,
inhibiting phosphatidylinositol 3-kinase/Akt/mTOR (PI3K/AKT/mTOR) pathways [19].

About 90% of absorbed metformin is eliminated within the first 24 h following oral
administration, with a plasma clearance half-life of approximately 6.2 h. Meanwhile, the
removal half-life of metformin in the blood is roughly 17.6 h [20]. Although metformin
is not metabolized, several organs are involved in its elimination from the human body.
Excretion of metformin from the liver is facilitated by organic cation antiporter multidrug
and toxin extrusion (MATE) 1 [21]. Similarly, the elimination of metformin is also facilitated
by the kidneys. Metformin uptake from circulation happens via OCT2 in renal epithelial
cells, followed by secretion into the tubular lumen through MATE1 and MATE2 [22,23].

3. Current Clinical Applications of Metformin in Human Disease

The anti-hyperglycemic effects of metformin in humans have led to its application in
T2D. However, metformin has also been applied in the context of other human conditions
with metabolic syndromes/diseases, such as polycystic ovary syndrome (PCOS) and non-
alcoholic fatty liver disease (NAFLD). Table 1 summarizes the currently approved and
prescribed applications of metformin and the relevant biological pathways involved.
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Table 1. Currently approved and prescribed applications of metformin with relevant biological
pathways.

Human Disease Effect of Metformin Biological Pathway Involved

Type II diabetes (T2D)
Reduced hepatic gluconeogenesis [24] Inhibition of mitochondrial respiratory chain

complex I [25]
Reduced intestinal glucose absorption [26] AMPK phosphorylation and activation [27]

Increased glucose uptake and utilization [28]

Polycystic ovary syndrome (PCOS)
Increased menstrual cyclicity and induces ovulation [29]

Reduction of androgen production by inhibition of
mitochondrial complex I [30] PI3K/AKT and

upregulation of SHBG and HNF-4α [31]
Improves the underlying insulin resistance and promotes

weight loss [32]

Non-alcoholic fatty liver diseases (NAFLD)

Reduced body weight and markers of insulin
resistance [33] ApoA5 [34] and inhibition of SCD1 expression [35]

Reduced accumulated hepatocyte and plasma
triglycerides [34]

4. Current Applications of Metformin in Animal Models of Human Disease

In recent years, studies have suggested a potential role for metformin as a potential
therapeutic strategy for a range of human diseases. Arguably, escalation in research into
the application of metformin in cardiovascular diseases, cancer, neurological diseases, and
COVID-19 may be accredited to its anti-inflammatory, anti-cancer, neuroprotective, and
cardioprotective effects [36–39]. However, the biological mechanism(s) by which metformin
exerts its effects remains controversial.

4.1. Metformin and Cardiovascular Diseases

Evidence of the potential cardioprotective effect of metformin is suggested by the
inhibition of inflammation, cellular apoptosis, and autophagosome formation in the context
of ischemia/reperfusion (I/R) injury associated with acute myocardial infarction (AMI) [40].
AMI results from insufficient blood flow (ischemia) to the myocardium and causes loss of
viable heart tissue. Within minutes of the ischemic insult, irreversible damage to cardiomy-
ocytes occurs due to the unavailability of oxygen and nutrients. Although the treatment of
AMI involves the improvement of blood flow to the ischemic myocardium, this reperfu-
sion leads to further injury by the formation of reactive oxygen species (ROS), neutrophil
invasion, and calcium overload [41]. In vivo animal models of I/R injury suggest that
intracellular processes, such as autophagy, are increased in AMI. While autophagy may
trigger cell survival pathways, defective autophagy is detrimental [42]. Within the first
minutes of AMI, autophagy has a protective effect against oxidative stress in cardiomy-
ocytes. However, prolonged autophagy may result in cell death [43]. Thus, the modulation
of the spike in AMI-associated autophagy has been considered a therapeutic approach to
reperfusion injury treatment.

In one study, AMI was induced in male GFP-LC3 transgenic mice by ligation of the
left coronary artery. Mice were observed 0.5, 4, and 24 h after following ligation. In
another group of mice, autophagy was manipulated by the administration of bafilomycin
(lysosomal inhibitor) 30 min prior to coronary ligation [44]. The results suggest that
protective autophagy commences in the ischemic region within 30 min after coronary
ligation and reaches its maximum at the 4 h mark. However, this protective autophagy
drastically declines after 24 h. Meanwhile, bafilomycin accelerated the ischemic death of
cardiomyocytes [44]. The results from another study suggest that cell death caused by
excessive autophagy, or autosis, is induced by I/R in the heart of mice [45]. The researchers
also found that selective suppression of autosis reduces I/R injury in cardiomyocytes [45].

Studies have shown that metformin improves cardiac function and reduces I/R injury
in humans and mice [46,47]. To modulate the effect of autosis in AMI, research has further
explored the cardioprotective potential of metformin. In one study, mice injected with
metformin prior to ischemia induced by surgical ligation of the left coronary artery had
reduced infarct size and creatine kinase (an indirect marker of muscle damage) [40]. The
study found that metformin exerts its cardioprotective effects by inhibiting autophago-
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some formation induced by I/R injury to protect cardiomyocytes from apoptosis and
inflammation. In doing so, metformin restores autophagosome processing while hindering
autophagosome formation [40]. Similar results have been found experimentally by several
groups [48,49]. The cardioprotective role of metformin in other biological pathways has
also been supported in other studies using rats and mice. For instance, research suggests
that metformin attenuates mitochondrial irregular function, mitochondrial dynamic imbal-
ance, and apoptosis subsequent to I/R injury [50,51]. Further, the cardioprotective effect
of metformin is also suggested to be mediated by AMPK phosphorylation and decreased
NOX4 gene expression [52]. Collectively, these preclinical studies support the potential use
of metformin in the treatment of AMI and other cardiovascular diseases.

4.2. Metformin and Cancer

The anti-cancer effect of metformin is characterized by its impact on cell proliferation
and survival pathways frequently perturbed in cancer, including the AMPK and PI3K/AKT
pathways. Considering that the global prevalence of T2D continues to rise and that people
with T2D are at greater risk for malignancies of the liver, uterus, breast, pancreas, and colon,
research into the application of metformin in the context of cancer remains relevant [53,54].
Studies suggest that metformin, through the inhibition of neoplastic cell metabolism and
inflammation within the tumor microenvironment, may reduce the prevalence of certain
forms of cancer [55–57]. Under normal physiological conditions, the PI3K/AKT signaling
pathway regulates proliferation, cell cycle, and apoptosis. As dysregulation of PI3K/AKT
signaling is featured in tumorigenesis and proliferation of cancer cell proliferation, drugs
targeting PI3K/AKT signalling, its downstream, or its upstream components have been
attractive therapeutic avenues [58]. In this regard, metformin inhibits tumor progression
and promotes cell cycle arrest by disrupting the PI3K/AKT pathway in endometrial,
colorectal, and prostate cancers [58].

The correlation between metformin administration and reduced risk of carcinogenesis
has long been observed [59]. Now, researchers are actively trying to counteract carcino-
genesis with metformin, and initial success can be attributed to several causes. Firstly, the
inhibition of the respiratory complex leads to an increased production of ROS, which in turn
can trigger DNA damage in the affected cells. In this way, metformin directly contributes
to an increased apoptosis rate [60]. Inhibition of complex I also strongly interferes with
the energy balance of the cell. Cancer cells that rely solely on ATP production for their
metabolism cannot compensate for the sudden loss of ATP and also undergo apoptosis [60].

Due to the resulting shift in the AMP/ATP ratio, the central signal transduction
molecule AMPK is phosphorylated and thus activated by the known tumour suppressor
LKB1, which in turn results in a range of downstream effects. The antiproliferative effects
of LKB1 are mainly based on the inhibition of global protein and lipid synthesis, arrest of
cell growth and cell cycle progression, and reduced angiogenesis. AMPK plays a major
role in the energy regulation of the cell and brings all anabolic processes of the cell, such as
protein or lipid synthesis, to a standstill and consequently stops cell growth [61].

A crucial pathway is PI3K/AKT/mTOR signal transduction, which is often dereg-
ulated in human malignancies [62]. The ultimate activation of mTOR in a healthy cell
leads to increased activation of various key proteins of the translational machinery, such
as eukaryotic translation initiation factor 4 gamma 1 (eIF4G) and S6 kinases [60,62]. In
addition, mTOR plays a major role in the negative feedback loop of insulin signalling. If this
signal is suppressed, the sensitivity of the cell to insulin stimulation increases, which again
counterbalances the energy status. Metformin also directly suppresses mTOR signalling
via the inactivation of Rag GTPases and the upregulation of regulated in development and
DNA damage responses 1 (REDD1) [60,61].

The mTOR kinase is only one of the many downstream molecules of the key enzyme
AMPK. Extremely relevant in the context of brain tumours is its influence on the tumour
suppressor p53, which is frequently mutated, especially in glioblastomas [60]. By acti-
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vating AMPK, metformin also ensures increased autophagy and apoptosis rates via this
mediator [60].

Metformin affects a number of signalling pathways with important roles in the further
differentiation of cancer stem cells. By suppressing the sonic hedgehog (Shh) pathway at
both transcriptional and translational levels, processes such as epithelial-to-mesenchymal
transition (EMT) or neovascularisation are significantly reduced, as shown in in vitro
experiments with pancreatic carcinoma cells [63]. In non-small cell-lung cancer cell lines, an
active reversal of the EMT process by metformin could even be proven, as demonstrated by
EMT marker (E-cadherin, vimentin) levels. A reduced ability of the cells towards migration
was also demonstrated, which can be attributed to the presumed connection between TGFβ
and migration or metastasis of the cancer cells. This effect is probably achieved primarily
through the interaction of metformin with TGFβ1, preventing heterodimerisation with
TGFβR2 and, thus, the successful metastasis of the cancer cells [64].

4.3. Metformin, COVID-19, and Other Viruses

Studies suggest that metformin disrupts various stages of the viral life cycle and
impacts the host cell’s lipid metabolism to exert its antiviral effect. The antiviral mechanism
is proposed as an activation of AMPK in the early stages of infection by some viruses,
resulting in a reduction of intracellular lipids [65]. In recent years, the effect of metformin
in viral contexts, including DNA viruses (human papillomavirus, herpes simplex virus, Ka-
posi’s sarcoma-associated herpesvirus, and hepatitis B virus) and RNA viruses (Rotavirus,
Dengue, Zika, yellow fever, severe acute respiratory syndrome coronavirus-2, hepatitis
C, influenza A, and human immunodeficiency viruses) has been explored. However, the
precise mechanism(s) by which metformin applies its antiviral effect is yet to be defined.
For instance, metformin has been suggested to inhibit the replication of DNA viruses by
inhibiting the repression of viral transcription genes [65]. The effect of metformin on viral
infection has been covered in different articles [66–68].

5. Dysregulated Brain Metabolism Is an Avenue for Application of Metformin in
Neurological Disorders

The human brain relies almost exclusively on glucose as its source of energy under normal
circumstances [69]. The adult brain is exceptional as it consumes approximately 20% of the
glucose available to the body while only accounting for 2% of the body weight [69,70]. Glucose is
used to produce ATP, a high-energy molecule, by undergoing glycolysis, the tricarboxylic acid
(TCA) cycle, and oxidative phosphorylation. ATP is used to manage action potentials, synaptic
transmission, and other cellular functions [71]. Glucose needs to be highly regulated to ensure
proper brain health, as dysregulation of glucose metabolism has been associated with disease
processes. Glucose enters the brain via glucose transporters (GLUTs), specifically GLUT1 and
GLUT3 [69]. GLUT1 ensures adequate glucose transport to glial cells of the brain, whereas GLUT3
is responsible for providing glucose to neurons since it has a faster rate of transport [69]. These
glucose transporters act independently of insulin, ensuring a continuous supply of glucose to
the brain [72]. GLUT1 and GLUT3 have even been demonstrated to be upregulated in the brain
when glucose is low, allowing the brain to use the limited glucose [72]. There are times when
glucose may not be as readily available to the brain to be used as an energy source. This situation
commonly arises during times of fasting, and ketones help fulfill the energy requirements of the
brain while glucose is not accessible. Free fatty acids can be processed into ketone bodies, which
can cross the blood–brain barrier (BBB) and be used as a replacement energy source in the brain
during an extremely fasting state [70]. They can cross the BBB via monocarboxylate transporters
(MCTs), which become upregulated during times of fasting [73]. Ketone bodies can be broken
down in the same process as glucose, but enter at the stage of Acetyl-CoA incorporation [73].

As mentioned earlier, the brain consumes ~20% of the glucose available to the body [69].
Since glucose has such a critical function in the maintenance of brain function, we can appreciate
how damaging a drop in glucose metabolism would be for the human brain. Even experiencing
hypoglycemia for a short period of time can have detrimental consequences for our brain, such



Pharmaceuticals 2024, 17, 1601 7 of 24

as in the case of a stroke. However, stroke is not the only time that there is a mismanagement of
glucose. Many neurodegenerative diseases have also been noted to have problems surrounding
the availability of glucose for the brain. For example, Alzheimer’s disease (AD) is a condition that
is shown to be associated with a decreased ability to process and metabolize glucose, leading to
increased glucose concentrations in the brain [74]. GLUT3 levels in AD are much lower compared to
healthy controls, preventing glucose uptake in the brain and, therefore, decreasing the ability of the
brain to perform optimally [74]. Interestingly, T2D mellitus (T2DM) increases the risk of developing
AD, proposing a further link between glucose metabolism regulation and brain impairment [75].
T2DM has been shown to result in changes in brain structure and cognitive impairment [76]. Specific
brain areas such as the hippocampus, basal ganglia, and the orbitofrontal cortex proved to have
significantly smaller sizes in those patients with T2DM compared to controls, though total brain
volume and grey matter areas were also significantly decreased [76]. In terms of brain function,
memory, speed processing, and executive function were all drastically reduced in T2DM individuals
compared to controls [77]. In comparison to AD and T2DM, where decreased metabolism is the
source of the impairment, Parkinson’s disease (PD) results from hypermetabolism issues in the
external pallidum and hypometabolism throughout the cortex [78]. PD is characterised by movement
abnormalities, including resting tremor, rigidity, postural imbalances, and bradykinesia [79]. The
mitochondria in PD are noted to be altered, specifically in the electron transport chain (ETC) [79].
According to Mizuno et al., complex I of the ETC contained more than one impaired subunit in PD
individuals and also had reduced function compared to controls [80]. Therefore, this once again
demonstrates that mitochondrial function involved in glucose processing can have devastating
impacts on the brain and the individual overall.

Given that metformin is suggested to cross the BBB (unassisted) and that neurometabolic
impairments are featured in some neurological conditions, metformin proves to be an appealing
candidate for the treatment and/or management of neurological conditions. While the three
OCT subtypes (OCT1, OCT2, and OCT3) have been reportedly present in the mammalian brain,
studies suggest that OCT1 and OCT2 specifically function to permit the entry of metformin into
the brain [81]. However, in vivo and in vitro experiments detailing the lack of expression of OCT
in mouse, rat, or human brain microvessels challenge the presence of OCTs in all mammals [82].
The physiochemical properties of metformin (small hydrophilic molecule, pKa 12.4 and positively
charged at physiological pH, and molecular weight of 129 Dalton) suggest that its transport is
driven by rapid passive diffusion (Figure 2) [83]. BBB permeability studies in an in vitro co-culture
model of BBB suggest that OCT1 is the primary transporter used to transport metformin across
the BBB [83].
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cells (astrocytes, microglia, pericytes, and neurons), and tight junctional proteins. Endothelial cells
of the neurovascular unit possess OCT1 transporters, which metformin can use to pass through
the BBB. The physicochemical properties of metformin (small, hydrophilic, and positively charged
molecule) suggest that metformin may use OCT for transporting across the BBB [83,84]. CLDN:
claudins, OCLDN: occlusins, JAM: junction adhesion molecules, OCT: organic cation transporters,
PC: permeability coefficient. Illustration created with BioRender.com.

6. Metformin and Neurological Disorders

The metabolic impairments associated with various neurological conditions have
made metformin an attractive potential therapy for the treatment of these diseases. Over
the years, research into the application of metformin in models of neurological diseases has
progressed, and the results of recent findings are summarized in Table 2.

Table 2. Applications of metformin in animal models of neurological diseases.

Neurological Condition Model Metformin Administration Results References

Alzheimer’s disease (AD) 3× Tg-AD mice (male, female)

200 mg/kg by intraperitoneal
injection (14 days) in drinking water

(4 mg/mL) starting at the age of
7–8 months for a period of 6 weeks.

Metformin restored neurogenesis and
spatial memory deficits of AD in

mice.
[85]

Parkinson’s disease (PD)

N-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine(MPTP)/p-

induced PD mouse model
(male, 16–18 weeks)

100 mg/kg (2 weeks) dissolved in
drinking water.

Metformin delayed astrocyte
senescence and prevented

neurodegeneration.
[86]

Temporal lobe epilepsy (TLE) Wistar rats (male, 180–200 g) 200 mg/kg by oral gavage.

Metformin improved TLE associated
cognitive impairment by inhibiting

neuroinflammation and
neurodegeneration. Metformin

inhibited TLE-associated microglial
and astroglial activation.

[87]

Huntington’s disease (HD) Caenorhabditis elegans 150 or 2000 µM in E. coli strain OP50
food source.

Metformin reduced
polyglutamine-induced toxicity. [88]

Amyotrophic lateral sclerosis
(ALS) and frontotemporal

dementia (FTD)
C9orf72 ALS/FTD BAC mice

5 mg/mL metformin in the drinking
water (for 3 months starting at

2 months of age, and for 4 months
starting at 6 months of age).

Metformin improves ALS/FTD
phenotypes. [89]

Multiple sclerosis (MS) C57/BL6 mice
250 mg/kg or 500 mg/kg in drinking
water (female, for 2.5 weeks starting

at 8 weeks of age).

Metformin increases oligodendrocyte
AMPK activation and

oligodendrocyte differentiation.
[90]

Fragile X syndrome (FXR) Fmr1−/y mice
200 mg/kg bodyweight/day

intraperitoneal injection (males,
10 days).

Metformin rescues phenotypes and
normalizes ERK signaling, eIF4E

phosphorylation and MMP-9
expression.

[91]

6.1. Metformin as a Potential Therapeutic Avenue for Neurodevelopmental Diseases

Although there are limited reports on the effects of metformin on neurodevelopmental
disorders, there have been increasing attempts in recent years to study the neuroprotective
properties of this anti-diabetic drug.

The aetiology of Rett syndrome (RTT), a rare neurodevelopmental disorder (discussed
later), is mainly based on de novo mutations of the methyl CpG binding protein 2 (MECP2)
gene, which encodes for a transcription factor mediating gene regulation [92]. In one study,
researchers observed aberrant mitochondrial activity and oxidative stress in a female mouse
model of RTT. Zuliani et al. conducted a study in 2020 in which they tested the effectiveness
of metformin in the context of deficient mitochondrial activity in the RTT mouse model [93].
The results suggested that aberrant mitochondrial biogenesis was fully restored, as mea-
sured by ATP levels in the brain and periphery. Furthermore, the levels of various proteins
involved in mitochondrial biogenesis and remodelling, which are classically only expressed
to a significantly reduced extent in RTT, were largely raised to control levels. These include
PGC-1alpha, which is activated as a direct target of metformin, as well as OPA1 and MFN2,
which play a key role in the dynamic remodelling process. Metformin stimulates the
antioxidant PGC-1α/Nrf2/HO-1 signalling pathway and significantly improved oxidative
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stress levels in female mice [93]. An in vivo study from our group demonstrated that
metformin significantly increases MECP2 transcripts in an isoform-specific manner. BDNF
(brain-derived neurotrophic factor), which especially influences hippocampal neurogenesis
as a growth factor, is also disturbed in its homogenesis in RTT and, similar to MECP2,
can be increased by metformin [94]. Our group further reported that metformin partially
relieves the inhibitory effect of the MeCP2 isoform, MeCP2E1, on the Mecp2 promoter in
Daoy medulloblastoma brain cells [95]. Together, these studies suggest a role for metformin
in ameliorating the effect of de novo mutations of the MECP2 gene.

In addition, the connection of the mTOR and downstream signaling pathways to RTT
have been studied in the context of patient brain tissues [96,97]. This includes fragile X
syndrome, a monogenetic disorder caused by the loss of the Fmr1 gene of the X chromo-
some that leads to social behaviour problems, learning difficulties, and developmental
delays, collectively known as ASD [98]. The loss-of-function mutation leads to hyperac-
tivation of the mTORC1 and ERK signalling pathways, both of which can be inhibited
by metformin [18]. Gantois et al. found that metformin indeed had a positive effect on
the phenotype not only at the molecular level (restoration of several dysregulated pro-
teins such as p-ERK, p-eIF4E, and MMP-9) but also at the functional level (improved
social deficits significantly) [91]. Clinical trials on the efficacy of metformin in relation to
fragile X syndrome have recently started. Initial case studies generally show a positive
trend, but they have been terminated [99,100]. Additional clinical trials are in progress:
https://clinicaltrials.gov/ct2/show/study/NCT03479476, accessed 3 November 2024; and
https://www.clinicaltrials.gov/ct2/show/NCT03862950, accessed 3 November 2024.

6.2. In Vivo and in Vitro Studies and Clinical Trials of Metformin Application in Brain-Related
Complications
6.2.1. Neurorepair and Neurogenesis

Metformin achieves its neuroprotective effects, besides others, through its ability
to stimulate endogenous mechanisms for neurorepair. By overstimulating neural stem
cells, an attempt is made to stimulate their proliferation and differentiation and thus
counteract the pathological demise of neurons and glial cells. As early as 2012, Wang
et al. postulated the connection between metformin and increased neurogenesis in the
adult forebrain. In in vivo experiments, the team showed that the number of Ki67+ neural
stem cells in the subventricular zone increased significantly after metformin administra-
tion. Hippocampal neurogenesis is also increased after metformin therapy, as demon-
strated by immunostaining against various newborn neuronal markers; however, the
neural stem cell pool remains unchanged [101]. This association has many applications:
metformin treatment led to increased executive functions in clinical trials of neurodegen-
erative diseases such as AD, although there was no improvement in the corresponding
biomarkers [102,103]. A phase three trial is currently underway to shed further light
on these effects (https://clinicaltrials.gov/ct2/show/NCT04098666?term=metformin&
cond=Alzheimer+Disease&draw=2&rank=1, accessed 3 November 2024). Treatment with
metformin-induced endogenous neurogenesis is also tempting in related diseases such as
PD, which is caused by direct destruction of dopaminergic neurons, although clinical data
are not yet available [104,105].

Another cause of premature neurodegeneration is radiation therapy for brain tumours.
Especially in children, radiation-induced damage to the hippocampus and white matter
leads to reduced neurogenesis, whereby the neural stem cell pool in areas such as the dental
gyrus does not recover on its own [106]. Ayoub et al. modelled this situation in a mouse
model and achieved a complete recovery of the stem cell pool after metformin treatment,
starting 1 day after radiation [106]. Similar results were observed in vivo in a model for
hypoxia/ischemia induced injury. Remarkably, metformin increases not only the relative
proportion of neuronal precursor cells but also the absolute number of cells [107].

Functionally, these effects of metformin can be determined by using various be-
havioural tests in mice. The most suitable tests are those involving memory. Memory

https://clinicaltrials.gov/ct2/show/study/NCT03479476
https://www.clinicaltrials.gov/ct2/show/NCT03862950
https://clinicaltrials.gov/ct2/show/NCT04098666?term=metformin&cond=Alzheimer+Disease&draw=2&rank=1
https://clinicaltrials.gov/ct2/show/NCT04098666?term=metformin&cond=Alzheimer+Disease&draw=2&rank=1
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formation is characterised by a high degree of neuroplasticity in the hippocampus, which
is why changes affecting the neurogenesis rate are directly reflected in the behaviour. Ay-
oub et al. conducted tests in a mouse model of radiation-induced damage, whereby all
deficits could be compensated for in a sex-specific manner by metformin treatment (post-
radiation) [106]. As early as 2012, Wang et al. demonstrated increased spatial memory after
metformin treatment, correlating with increased neurogenesis in the hippocampus [101,103].
Derkach et al. studied olfactory memory in rodents, achieving full recovery of olfactory
memory along with increased neuroblast proliferation by pre-emptive treatment with
metformin prior to radiation-induced injury [108].

6.2.2. Inflammation

In addition to increased neurogenesis, metformin also suppresses the development
of inflammation in the brain, which typically accompanies the degeneration of neurons.
The inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
suppresses the release of chemokines, which in turn prevents the activation of microglia
and astrocytes and reduces the release of proinflammatory cytokines (TNFα, IL-6, IL1β)
and ROS, respectively [109]. Hassan et al. demonstrated the beneficial effects of metformin
in sepsis-associated encephalopathy in rats. Metformin treatment significantly reduced the
measurable levels of proinflammatory cytokines such as high mobility group box 1 protein
(HMGB1) and improved sepsis-impaired BBB integrity by enhancing the expression of
significant tight junction proteins [110]. Taken together, these neuroprotective effects of
metformin provide broad protection against a range of diseases.

6.3. Proposed Mechanisms of Metformin Action in the Brain

An accumulating body of evidence suggests that metformin may regulate synaptic
transmission and plasticity (Figure 3) [111]. After treating acute hippocampal slices from
male C57BJ/6 mice with varying concentrations of metformin, researchers found that
metformin increased the miniature excitatory postsynaptic currents (mEPSC) frequency.
However, neither the frequency nor the level of miniature inhibitory postsynaptic cur-
rents (mIPC) were changed following metformin treatment [112]. This contrasting effect
in mEPSC and mIPCs led researchers to conclude that glutamatergic transmission is en-
hanced in hippocampal CA1 pyramidal neurons, while GABAergic transmission is not
altered [112]. Further, intrathecal treatment with metformin repressed the frequency of
spontaneous excitatory postsynaptic currents (sEPSC) in neurons of the spinal dorsal horn
of male Sprague–Dawley rats [113]. Moreover, studies in a fragile X syndrome mouse
model suggest that metformin ameliorated the aberrant synaptic release and the Munc18-1
accumulation in Fmr1-KO neurons and inhibited the translation of synaptic proteins in
presynapses [114]. In AD mice, chronic metformin treatment restored spatial memory, long-
term potentiation expression, dendritic spine density, and surface GluA1 trafficking [115].
Together, these studies indicate that metformin exerts varying effects on presynaptic neu-
rons.

It is generally accepted that glial cells, such as astrocytes and microglia, play key roles
in neuroinflammatory cascades of neurodegenerative diseases; the role of metformin in
astrocytes and microglia in the context of neuroinflammation has thus been investigated.
Studies in primary cultures of rat astrocytes revealed that metformin reduced the release
of cytokines, among other effects [116]. The results from other investigations suggest that
metformin attenuates epilepsy-induced microglial activation and inhibits astrogliosis in a
rat model of temporal lobe epilepsy [87]. Further, the metformin-modulated inflammatory
response in hypothalamic astrocytes of an immunocompromised mouse model induces
expression of transcription factors known to regulate the inflammatory response [117].
Despite the many studies on the effect of metformin in the brain, a validated mechanism of
metformin’s neurological action is yet to be fully established.
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Figure 3. Proposed mechanism of metformin action in neurons and astrocytes of the mammalian
brain. Metformin entry into excitatory pre- and post-synaptic neurons, as well as astrocytes, may
be mediated by OCT. In excitatory pre-synaptic neurons, metformin may increase glutamate (Glu)
release while mitigating reactive astrogliosis and the release of pro-inflammatory cytokines from
astrocytes. In post-synaptic neurons, metformin may alter the expression of synaptic markers (such as
PSD95), inhibit complex I of the mitochondrial electron transport chain, inhibit mTORC1, and mediate
AMPK-dependent activation of FoxO3a. Metformin-mediated activation of FoxO3a may promote the
insertion of GABA receptors at the post-synaptic membrane as an indirect effect of the drug, involving
inhibitory presynaptic neurons. Adapted from Bak et al., 2006 and Li et al., 2022 with additional
information extracted from Barini et al., 2016, Oner et al., 2024, Yoval-Sanchez et al., 2022, Fan et al.,
2019 [111,118–123]. Abbreviations: AMPK: 5′ adenosine monophosphate (AMP)-activated protein
kinase; FoxO3a: forkhead box O3a; GAD: glutamate decarboxylase; mTORC1: mechanistic target
of rapamycin complex; PSD95: postsynaptic density protein 95; SNAP25: synaptosomal associated
protein 25. Illustration created with BioRender.com.

7. Metformin and Epigenetics
7.1. A Brief Overview of Epigenetics

Direct genetic changes in our DNA sequence are responsible for many disorders and
diseases. However, alterations in the expression of our genes are another way in which
diseases can present, including neurodevelopmental conditions. Many brain-related condi-
tions are associated with changes in epigenetics, including autism spectrum disorder (ASD),
fetal alcohol spectrum disorders (FASD), Angelman syndrome, Rett syndrome, Prader–
Willi syndrome, and others [124–126]. Common methods for controlling gene expression
include methylation of the DNA, histone modifications, and the use of microRNA (miRNA).
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Another difference between DNA modifications and epigenetic changes is the fact that the
latter can be reversible. Problems arise when epigenetic control is altered [127]. MeCP2 is
one example of this troublesome scenario, which will be explained in detail below. Other
neurodevelopmental conditions have been linked to epigenetics, including those listed
above, though some neurodegenerative disorders are also known to have epigenetic causes,
such as HD, PD, and AD [128].

7.1.1. Rett Syndrome and Epigenetics

Rett syndrome is one of the most notable conditions in young children in which the
control of gene expression is critically altered due to a mutation in the MECP2 gene. The
protein encoded by this gene, MeCP2, binds to methylated CpG sites in the DNA and
contributes to repressing or activating gene expression and resisting the effects of nucleases
in these areas [129]. Transcription from methylated regions of DNA has been shown to
be strongly repressed in the presence of MeCP2, whereas unmethylated regions were
not repressed [130]. Therefore, MeCP2 may have significant impacts on the regulation of
methylated regions of DNA, and its absence or compromised function can affect human
health conditions [131]. RTT, in the majority of cases, is attributed to alterations in this gene,
resulting in numerous harmful and life-threatening symptoms.

7.1.2. Autism Spectrum Disorders (ASD) and Epigenetics

ASD cover a wide range of conditions that present with sparse language abilities,
greatly decreased social capabilities, and repetitive behaviours [132]. ASD are also con-
nected to the altered expression of MeCP2. However, other genes have been epigenetically
linked to ASD, including the oxytocin receptor gene (OXTR) [133]. Oxytocin is a hormone
in the body that is responsible for many social factors in everyday life, such as the ability to
express emotion, bonding with others, and social memory, recognition, and behaviour [133].
Oxytocin is of interest in ASD since one of the main deficiencies in the condition is the lack
of proper social skills. Modahl et al. discovered significantly lower levels of oxytocin in
plasma in children with autism compared to those who were developing normally, further
establishing the connection between oxytocin and social interaction abilities [134]. OXTR
has been shown to be impacted by both genetic and epigenetic modifications, both of which
are linked with autism [135]. In that study, two children diagnosed with autism were
born from the same mother. Although one child had a deletion mutation in OXTR, the
other child had OXTR silenced via DNA methylation [135]. Thus, there may be multiple
epigenetic mechanisms that contribute to a single disorder.

7.2. Effects of Metformin on the Epigenetic Landscape of the Brain

Metformin has been shown to exert profound effects on the epigenetic landscape
of various tissues, including the brain. In mice, metformin treatment induces significant
changes in histone modifications, including histone composition and post-translational
modifications in brain tissue.

7.2.1. Metformin and Histone Modifications

Metformin treatment leads to notable alterations in histone acetylation patterns in
the murine brain. It significantly upregulates the expression of BDNF by increasing his-
tone acetylation at its promoter [136]. This increase in histone acetylation is thought to
promote an open chromatin state, potentially enhancing the expression of neuroprotective
genes. Such impact on histone acetylation is partly mediated through its effects on histone
deacetylases (HDAC). Metformin activates AMPK, which influences histone acetylation
by regulating histone acetyltransferases (KATs) [137]. This modulation contributes to the
overall increase in histone acetylation and may play a role in metformin’s neuroprotective
effects. Metformin has been shown to influence various histone modifications, which play
an important role in the epigenetic regulation of gene expression.
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Further, metformin influences histone methylation by decreasing the levels of repres-
sive histone marks, such as H3K9me2 and H3K27me3, while increasing active marks, such
as H3K4me3 [138]. In one study, metformin suppressed the increased level of histone
H3K36me2 associated with the development of pre-diabetes [139]. Metformin affects the
activity of histone-modifying enzymes. For instance, it inhibits the activity of certain
HDAC proteins, such as HDAC2 and HDAC3, in various tissues [138]. Metformin also
stimulates the activity and expression of sirtuins, especially SIRT1 and SIRT6, which are
NAD+-dependent deacetylases that regulate cellular metabolism and energy homeosta-
sis [137,140].

Recent studies have revealed that metformin can alter H2A.Z dynamics and regulate
gene expression, particularly in the context of prostate cancer cells. This finding shed light
on potential mechanisms through which metformin may exert its anti-cancer effects beyond
its primary role in diabetes management. In androgen-dependent androgen receptor
(AR)-positive LNCaP cells, metformin treatment increases H2A.Z occupancy on the AR
gene and AR-regulated genes [141]. Interestingly, this increase in H2A.Z incorporation
is predominantly attributed to the H2A.Z.1 isoform. The specificity of this effect was
confirmed through siRNA-mediated knockdown experiments, which identified H2A.Z.1
as the primary isoform responsible for the observed change in gene regulation following
metformin treatment. The modulation of H2A.Z dynamics by metformin appears to be
part of broader epigenetics in cancer cells [141]. Research suggests that metformin effects
on early stages of prostate cancer may involve histone methyltransferase EZH2 and H2A.Z,
potentially altering different molecular pathways. This multi-faceted epigenetic impact
underscores the complexity of metformin action at the chromatin level. By changing
the levels and gene-binding dynamics of histone variant H2A.Z, metformin may target
prostate cancer cells [141]. This mechanism of action provides new insights into how
metformin might exert its potential anti-cancer effects. The drug’s ability to modulate
H2A.Z incorporation and distribution, particularly of the H2A.Z.1 isoform, suggests a
pathway through which metformin could influence gene expression and cellular behaviour
in the context of cancer [141].

7.2.2. Metformin and Epigenetic Regulators

Research indicates that metformin treatment affects epigenetic regulators in murine
brain tissue. For instance, it induces MeCP2 in the hippocampus of male mice [142]. This
alteration in epigenetic regulators may contribute to its potential cognitive-enhancing
effects. It is important to note that metformin impacts histone composition uniformly in
the brain. Studies from our team have revealed varying effects in different brain regions,
with the hippocampus showing particularly pronounced changes in a sex-dependent
manner [142]. This regional specificity may underlie varied effects of metformin on certain
cognitive and behavioural processes. In placental tissue, metformin increases histone
acetylation (H3K27ac). This was shown in human placental explants that originated from
male offspring [143].

The metformin-induced changes in histone post-translational modifications in the
mouse brain have been linked to its neuroprotective effects and potential improvements in
cognitive function. These epigenetic alterations are associated with upregulation of genes
involved in synaptic plasticity and neurogenesis [136].

Overall, metformin exerts multifaceted effects on the epigenetic landscape of the
murine brain, particularly influencing histone acetylation and epigenetic regulators. These
changes have significant implications for gene expression patterns related to neuroprotec-
tion and cognitive function, highlighting the potential of metformin as a neuromodulatory
agent beyond its established role in diabetes management (Figure 4) [144].
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Figure 4. Summary of the potential effect of metformin in different human diseases. The pleiotropic
effects of metformin are observed in the context of different diseases, including neurological and
cardiovascular diseases, as well as in cancer and viral infection. Metformin may be a promising
therapeutic agent in various diseases. Information obtained from: [18,40,46–52,59,61,65,91,93–95,109].
Illustration created in BioRender.com.

8. Limitations of Repurposing Metformin as an Alternative Therapy for Human
Diseases

Typically, drug–drug interactions are clinically relevant in assessing their effectiveness.
For instance, proton-pump inhibitors and other anti-diabetic drugs, such as rosiglitazone
and epaglinide, inhibit OCT and their ability to uptake metformin [145,146]. The cautionary
tale of using metformin, however, is specifically related to its pharmacogenomics. Genetic
polymorphisms in the genes of transporters primarily involved in metformin uptake and
elimination may directly impact its pharmacokinetics. Loss-of-function variants of OCT1
are shown to lower metformin response in mouse models and in certain patients [147].
Similarly, genetic variants of OCT3 may also impact metformin uptake, while variants of
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MATE2 affect metformin elimination [148]. Thus, despite its potential therapeutic effect in
a plethora of human diseases, the effectiveness of metformin may depend on the presence
or absence of genetic polymorphisms in the genes of the OCT or MATE transporters in a
given individual.

9. Preclinical to Clinical Translation of Metformin in Non-Diabetes Contexts

Compared to other drugs that treat T2D (sulfonylureas, glitazones, glinides, gliptins,
and gliflozins), metformin is the most widely prescribed drug with generally few adverse
side effects. Additionally, the affordability of metformin relative to other anti-diabetic
medications on the market makes it a better candidate for drug repurposing. It is also
important to note that location, pharmacy, dosage, quantity, insurance, or specific drug
formulation may affect the cost of the drug. Meanwhile, the plethora of scientific investiga-
tions into diverse applications of metformin in non-diabetic contexts with promising results
further supports the potential repurposing of the drug. However, the exact mechanisms
of metformin’s therapeutic effects in diseases such as cancer, viral infections, cardiovas-
cular disease, and neurological disease require further elucidation. As mentioned earlier,
metformin relies on the kidneys for elimination from the body. Inefficient clearing of
metformin from the body through the kidneys increases the likelihood of lactic acidosis, the
acidification of the blood due to a buildup of lactate in the bloodstream [149]. Thus, special
care must be taken if metformin is considered as an alternative therapeutic strategy or in
combination with other drugs in diseases involving renal impairment. The following table
outlines some of the ongoing and completed clinical trials involving metformin in different
disease contexts (Table 3).

Table 3. Different applications of metformin in clinical trials involving different human diseases.
Information retrieved from https://clinicaltrials.gov/ (accessed 3 November 2024).

Clinical Trails * Metformin Dose Study Phase Objective/Results Status

Cancer

Metformin Hydrochloride and
Doxycycline in Treating
Patients With Localized Breast
or Uterine Cancer
(NCT02874430)

Unspecified Phase 2

To investigate metformin and
doxycycline combined action
in cells expressing Caveolin-1

in cancer.

Active

Metformin Hydrochloride in
Preventing Breast Cancer in
Patients With Atypical
Hyperplasia or In Situ Breast
Cancer (NCT01905046)

850 mg Phase 3
Studying cytological atypia in
unilateral or bilateral random
periareolar needle aspiration.

Active

Metformin and Chemotherapy
in Treating Patients With Stage
III-IV Ovarian, Fallopian Tube,
or Primary Peritoneal Cancer
(NCT02122185)

Phase 2

Investigating the effect of
metformin in standard

adjuvant or neoadjuvant
chemotherapy in non-diabetic

subjects with stage III-IV
fallopian tube, ovarian,
primary peritoneal, or

carcinoma.

Active

Chemotherapy and Radiation
Therapy With or Without
Metformin Hydrochloride in
Treating Patients With Stage
III Non-small Cell Lung
Cancer(NCT02186847)

500 mg–1000 mg Phase 2

Determining whether
metformin hydrochloride with
chemoradiotherapy improves

survival of patients with
non-small cell-lung cancer.

Active

Alzheimer’s Disease

Metformin in Amnestic Mild
Cognitive Impairment (MCI)
(NCT00620191)

1000 mg Phase 2

Studying cognitive function
improvement in Alzheimer’s

disease patients using relevant
biomarkers of Alzheimer’s

disease [150].

Completed

Effect of Insulin Sensitizer
Metformin on AD Biomarkers
(NCT01965756)

500 mg–2000 mg/day Phase 2

Found evidence of improved
executive functioning
following metformin

treatment as well as trends of
improvement in memory,

learning, and attention [102].

Completed

https://clinicaltrials.gov/
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Table 3. Cont.

Clinical Trails * Metformin Dose Study Phase Objective/Results Status

Parkinson’s Disease

Clinical Study to Evaluate the
Possible Efficacy of Metformin
in Patients With Parkinson’s
Disease (NCT05781711)

500 mg Phase 2 To be determined Recruiting

Huntington’s Disease
TEsting METformin Against
Cognitive Decline in HD
(NCT04826692)

425 mg–850 mg Phase 3 To be determined Unknown

Amyotrophic Lateral
Sclerosis

Safety and Therapeutic
Potential of the FDA-approved
Drug Metformin for C9orf72
ALS/FTD (NCT04220021)

500 mg–2000 mg Phase 2
Evaluating tolerability and

safety of metformin in
participants with C9orf72 ALS.

Active, not
recruiting

Multiple Sclerosis

Drug Repurposing Using
Metformin for Improving the
Therapeutic Outcome in
Multiple Sclerosis Patients
(NCT05298670)

1000 mg twice daily Phase 2 To be determined Recruiting

Metformin Add-on Clinical
Study in Multiple Sclerosis to
Evaluate Brain Remyelination
And Neurodegeneration
(NCT05893225)

850 mg twice or thrice
a day Phase 2 To be determined Recruiting

Metformin Treatment in
Progressive Multiple Sclerosis
(NCT05349474)

500 mg–2000 mg/day Early Phase 1 To be determined Recruiting

Fragile X Syndrome

Metformin in Children With
Fragile X Syndrome
(NCT05120505)

50 mg–1 or 2 g per
day Phase 4 To be determined Recruiting

A Trial of Metformin in
Individuals With Fragile X
Syndrome (Met)
(NCT03862950)

250 mg–2000 mg Phase 2 To be determined Recruiting

A Trial of Metformin in
Individuals With Fragile X
Syndrome (Met)
(NCT03479476)

250 mg–2000 mg Phase 2 Phase 3

Metformin may be a potential
candidate for targeting
multiple intracellular

functions in neurons that are
impaired in Fragile X

Syndrome [151].

Completed

Cardiovascular Disease

Metformin and Prevention of
Cardiovascular Events in
Patients With Acute
Myocardial Infarction and
Prediabetes (MIMET)
(MIMET) (NCT05182970)

500 mg–2000 mg Phase 3 To be determined Recruiting

Carotid Atherosclerosis:
MEtformin for Insulin
ResistAnce Study (CAMERA)
(NCT00723307)

850 mg tablet twice
daily Phase 4

Metformin did not affect
carotid intima-media

thickness in non-diabetic
patients with high risk of

cardiovascular disease [152].

Completed

Efficacy of Metformin as
add-on Therapy in
Non-Diabetic Heart Failure
Patients (NCT05177588)

1000–2000 mg/day Phase 4

Metformin reduced left
ventricular ejection fraction,
improved total antioxidant
capacity, and prevented the
increase in left ventricular
mass index compared with

standard of care [153].

Completed

* The names of clinical trials included in this table are the same as listed on https://clinicaltrials.gov/ (accessed
3 November 2024).

10. Closing Remarks

Development of metformin stands as a remarkable example of how ancient herbal
knowledge and modern pharmacological research can converge to create life-changing
medical therapies. From its roots in the medieval use of Galega officinalis to the systematic
study of guanidine derivatives, metformin history reflects the persistence and innovation
of scientists who sought to turn a potentially toxic substance into a therapeutic marvel.
Through decades of research and trials, what was once a dangerous compound became
a safe and effective treatment, offering millions of patients with type 2 diabetes a reliable
means of controlling their blood glucose levels.

Today, metformin is one of the first lines of treatment for diabetes, not only because
of its efficacy in lowering blood sugar but also due to its relatively low cost, favorable
safety profile, and additional benefits, such as cardiovascular protection. The story of
metformin development underscores the importance of interdisciplinary collaboration in
medicine, combining the fields of botany, chemistry, and clinical research to address one of
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the most pressing public health concerns of our time. As researchers continue to explore
new applications of metformin, its legacy as a cornerstone of type 2 diabetes management
is set to endure, highlighting metformin’s profound and ongoing impact on global health.
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