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Abstract: Essential oils are investigated due to their biological activity, and the Amazon rainforest,
with its rich biodiversity, is a promising source of therapeutic compounds. The aim of this study was
to evaluate the essential oil from the leaves of Bixa orellana as an antifungal agent, thus contributing
to the search for alternatives that can address the growing resistance to conventional antifungals. B.
orellana leaves were collected in the Ecuadorian Amazon and their essential oil was obtained by steam
distillation. Their chemical composition was analysed by Gas Chromatography-Mass Spectrometry
(GC-MS) and their antifungal activity against Candida albicans was evaluated using the Kirby–Bauer
disc diffusion method (ATCC 10231), with nystatin as a positive control. GC-MS analysis revealed
the presence of 60 compounds, the main ones being dihydroedulan (27.5%), β-caryophyllene (10.3%),
nerolidol (7.21%), trans-β-bergamotene (5.73%), α-santalene (4.94%) and trans-α-bergamotene (4.26%).
The essential oil showed moderate antifungal activity against C. albicans, producing an inhibition
halo of 13 mm in diameter, which is 48% of the inhibition observed with nystatin (27 mm). The
presence of sesquiterpenes, such as β-caryophyllene, known for its membrane-disrupting properties,
probably contributes to the observed antifungal effects. The study highlights the potential of B.
orellana essential oil as a natural antifungal agent; however, further research is required to evaluate its
efficacy against a wider range of pathogenic fungi, its possible synergistic effects with conventional
antifungals and its safety and efficacy in vivo.

Keywords: anti-candidiasis activity; sesquiterpenes; biodiversity; natural products; dihydroedulan

1. Introduction

Candida albicans is a fungal pathogen that causes a variety of infections, mainly affecting
immunocompromised individuals. The fungus is responsible for both superficial infections,
such as oral and vaginal candidiasis and more serious systemic infections [1]. One of the
main challenges in treating these infections is their increasing resistance to conventional
antifungals, such as nystatin and fluconazole.

In the case of C. albicans, the main mechanisms of resistance to antifungal drugs have
been elucidated as genetic mutations encoding certain biosynthetic pathways and the
overexpression of the efflux pump after exposure to antifungal drugs. These resistance
mechanisms are present in the planktonic form as well as in the structure called a biofilm.
In addition, the extracellular matrix of the biofilm has a high density of cells, persister
cells and sterols. The structure acts as a physical barrier that prevents the penetration
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of drugs by making the pathogen inaccessible [2,3]. This situation calls for research into
alternative therapies, such as EOs with antifungal properties, which can complement
available treatments and help to reduce the emergence of resistance [4,5].

Essential oils (EOs) are volatile compounds obtained from various parts of plant ma-
trices, such as flowers, leaves, bark, roots and fruit, using methods like hydrodistillation,
steam distillation or solvent extraction. These oils consist of a variety of low-molecular-
weight chemical constituents, including alcohols, polyphenols, terpenoids, carbonyls and
aliphatic compounds, which contribute to their fragrance and biological properties [6]. Due
to their therapeutic and aromatic properties, EOs are widely used in the health, cosmetic
and pharmaceutic industries. Furthermore, in recent decades, interest in these oils has
increased significantly due to their proven antimicrobial, antifungal and antioxidant activi-
ties, positioning them as promising alternatives to conventional synthetic treatments [7,8].
These properties are mainly related to their ability to prevent infections and protect against
oxidative stress [9,10].

The antifungal activity of essential oils has been widely documented and is one of the
many biological properties for which they are studied, such as the antibacterial activity, the
antiproliferative effect and other potential medicinal applications [11–13]. The mechanism
of action of essential oils mainly involves damaging cell walls and cell membrane structures,
or increasing their permeability, and inhibiting mitochondrial activities. These effects limit
fungal proliferation and mycotoxin production [14]. The potential application of EOs in the
treatment of C. albicans infections has also been extensively studied, showing promising
preliminary data, either during tests of synergic activity with conventional antifungals or
the inhibition of biofilm formation [15,16].

In this context, the Ecuadorian Amazon, one of the most biodiverse regions in the
world, has a great potential for providing essential oils with bioactive properties, which
are still largely unexplored. Around 10% of the world’s known plant species are found in
the Ecuadorian Amazon [17]. This remarkable biological wealth includes a wide variety
of plants with a history of medicinal use in local cultures. For generations, medicinal
plants have been used by various ethnic groups to treat a wide range of ailments [18].
However, many have not yet been studied in depth, especially with regard to their bioactive
properties and therapeutic uses. Research on these compounds is essential in order to
exploit the medicinal potential of both well-known and less-studied plants [19]. Among
the species of interest, B. orellana has been recognised for its traditional applications and
bioactive composition.

B. Orellana (local common name: achiote) is a plant native to Latin America that has
been traditionally used both for its medicinal properties and for its value as a natural
dye [20,21]. In Indigenous cultures, it has been used to treat a variety of ailments, such
as skin infections, digestive problems and fever, as well as in spiritual rituals [22]. Its
best-known applications are as a source of pigment, food, cosmetic and textile dye due
to the high content of bixin in its seeds [23]. These uses, combined with its therapeutic
properties, have positioned it as a plant of interest for both traditional medicine and
industrial applications.

In addition to its traditional relevance, recent research has revealed that B. orellana
EO contains a number of bioactive compounds, including sesquiterpenes and monoter-
penes [24]. Compounds such as β-caryophyllene and trans-β-bergamotene, present in its
EO, have been shown to possess antimicrobial and anti-inflammatory properties [25,26].
These findings suggest that annatto EO may have an antifungal potential that has not yet
been fully investigated, positioning it as a source of interest for the development of natural
therapeutic agents against fungal infections.

In this regard, B. orellana essential oil shows therapeutic potential as a natural al-
ternative to conventional antifungals. However, there is a lack of specific studies on its
antifungal activity, particularly against C. albicans, highlighting the need to explore its
properties in this context. The purpose of the present study was to evaluate the essential oil
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of B. orellana leaves as an antifungal agent, thus contributing to the search for alternatives
that can address the growing resistance to conventional antifungals.

2. Materials and Methods
2.1. Collection and Preparation of Plant Material

The leaves of B. orellana (Figure 1) were acquired at the ‘Mercado del Centro Agrícola’
in the city of Puyo, Pastaza province, in September 2023. Botanical identification was
carried out by Dr. Diego Gutiérrez del Pozo at the Herbarium of the Universidad Estatal
Amazónica (ECUAMZ), Puyo, Ecuador. The leaves came from the community of Canelos,
canton Pastaza, Pastaza province, Ecuador. Subsequently, leaves in good condition and
free of damage or signs of disease were selected and washed with distilled water to remove
any residues or contaminants. Then, they were dried on filter paper at room temperature
(20–25 ◦C) in accordance with Crespo et al. [27]. Once dry, the leaves were ground using
a mill (Model: 4, Thomas Wiley Mill Co., Swedesboro, NJ, USA), achieving an average
particle size of approximately 1.0 mm. The ground material was then placed in hermetically
sealed polyethylene bags until analysis [28].
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2.2. EO Extraction from B. orellana L. by Steam Distillation

The essential oil from the leaves of B. orellana was obtained using the steam distillation
method. Each dried and ground plant sample was placed in a FIGMAY laboratory-scale
essential oil extractor (model: FIGMAY S.R.L. laboratory scale, Córdoba, Argentina), ac-
cording to the method described by Crespo et al. [27]. The distillation was carried out with
a continuous flow of steam until successive readings of the oil volume remained constant.
Multiple runs were performed to obtain a sufficient quantity of essential oil. Subsequently,
the oil was treated with anhydrous sodium sulfate to remove residual moisture, then
filtered and stored at 4 ◦C in sealed vials, protected from light.

2.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

B. orellana leaf EO was analysed by GC-MS using a Shimadzu model QP2020 NX (Shi-
madzu Europa, Duisburg, Germany) equipped with a split/splitless injector and an AOC-
20i autosampler; the fused silica capillary column was a 30 m × 0.25 mm I.D. × 0.25 µm Rtx
—5 MS (Merck KGaA, Darmstadt, Germany), according to the method described by Valarezo
et al. [24], with slight modifications. For the GC-MS analysis, 0.5 mL of B. orellana EO was
mixed with 4.5 mL of analytical-grade hexane and a volume of 1 µL was injected into the
system. The GC oven temperature was programmed as follows: from 55 to 100 ◦C at a
heating rate of 1 ◦C/min, then increased at a rate of 5 ◦C/min up to 250 ◦C. Details were as
follows—carrier gas: helium (99.99%); mobile phase flow rate: 1.10 mL/min; linear velocity:
40 cm/s; purge flow: 3.00 mL/min; split ratio: 20.0; and stationary phase: 5% diphenyl/95%
dimethylpolysiloxane (low polarity/low bleed). The GC-MS chromatograms were obtained
and analysed with the GC-MS Solution software version 4.50 (Shimadzu Europa, Duis-
burg, Germany). The peaks were identified using the FFNSC 4.0 mass spectral library
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(Shimadzu Europa, Duisburg, Germany), applying a mass spectral similarity threshold of
80% or higher.

2.4. Fungal Strain and Culture Conditions

The microorganism C. albicans (ATCC 10231) was used to evaluate the antifungal
activity of the EO from B. orellana leaves. The strain was purchased from Medibac Labora-
tories (Guayaquil, Ecuador) and stored at −80 ◦C in the Microbiology Laboratory of the
Universidad Estatal Amazónica until use.

First, the C. albicans ATCC 10231 strain was reactivated by incubating it in sealed
test tubes containing potato dextrose agar (PDA, BD Bioxon®, Cuautitlán Izcalli, Mexico)
prepared at a concentration of 39 g/L in water at 30 ◦C for 48 h, following standard micro-
biological procedures [29]. The strain was subsequently diluted in Sabouraud’s dextrose
broth at a concentration of 30 g/L until a suspension with a turbidity of 0.5 on the McFar-
land scale was achieved, which corresponds to a concentration of 1.5 × 108 CFU/mL [29].
The McFarland standard was prepared by mixing 24.875 mL of 1% BaCl2 with 0.125 mL of
1% H2SO4. The absorbance of both the McFarland standard and the microbial suspension
was measured at 625 nm using a Lambda 25 UV/VIS spectrophotometer (Perkin Elmer,
Waltham, MA, USA) until the microbial suspension concentration matched the McFarland
0.5 standard.

2.5. In Vitro Evaluation of the Inhibitory Effect of the B. orellana EO

The antifungal activity of B. orellana EO against Candida albicans (ATCC 10231) was
evaluated using the Kirby–Bauer method [30]. Sterile filter paper discs of 5 mm diameter,
impregnated with 20 µL of the essential oil, were carefully placed at equal distances from
the edge of Petri dishes containing PDA previously inoculated with the C. albicans strain.
Nystatin (100,000 UL/mL, 60 mL suspension) was used as a positive control. The plates
were sealed with Parafilm® to preserve the integrity of the medium and incubated at 37 ◦C
for 48 h. The diameters of the complete inhibition zone were measured in millimetres,
passing through the centre of each disc. Measurements were performed in triplicate
for each disc using a digital vernier (Mitutoyo, Kawasaki, Japan), and the values of the
measurements were averaged. The experiment was performed in triplicate to ensure the
reproducibility of the results.

3. Results
3.1. Extraction Yield of EO from B. orellana

The extraction of EO from B. orellana leaves was carried out using the steam distillation
method. The amount of EO obtained was approximately 13 mL, yielding 0.08 mL/100 g,
with a light-yellow colour and an intense aroma. This yield represents the amount of
essential oil obtained in relation to the quantity of plant material used in the extraction
process with a moisture content of 27.8%.

3.2. Chemical Composition of the B. orellana EO

The GC-MS analysis of the EO extracted from B. orellana L. leaves revealed a total
of 60 compounds, accounting for approximately 99.99% of the total chromatogram area
(Figure 2). Compound identification was based on retention times and mass spectra, which
were compared against the FFNSC 4.0 mass spectral library (Supplementary Materials).
This analysis underscores the complex chemical profile of the essential oil.
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For a more detailed and relevant analysis, only those compounds that exceeded 1%
of the total chromatogram area were considered, as detailed in Table 1. Among the main
components by relative abundance, dihydroedulan (27.5%), nerolidol (7.21%), trans-β-
bergamotene (5.73%), α-santalene (4.94%), β-santalene (4.19%) and trans-α-bergamotene
(4.26%) were prominent.

Table 1. Chemical composition of the EO of B. orellana leaves.

RT (min) (%) Component Molecular Weight (g/mol)

6.94 1.65 Cis-Ocimene 120.2
13.020 10.3 β-Caryophyllene 204.4
13.198 4.94 α-Santalene 204.4
13.404 4.26 Trans-α-Bergamotene 204.4
13.509 1.91 Bicyclo[2.2.1]heptane 204.4
13.790 4.19 β-Santalene 204.4
14.319 5.73 Trans-β-Bergamotene 204.4
14.653 3.51 β-Curcumene 202.4
14.954 4.13 3-(1,5-Dimethyl-4-hexenyl)-6-methylene-cyclohexene [S-(RS)] 204.4
15.756 7.21 Nerolidol 222.4
16.097 1.54 β-Caryophyllene oxide 220.4
16.945 1.74 β-Acorenol 222.4
17.408 3.14 Dehydrosesquicineole 218.4
18.659 27.5 Dihydroedulan 220.4
24.829 2.39 Biflora-4(10),15-diene 272.5
26.903 2.46 Phytol 296.5

The identified compounds are classified into chemical groups, such as sesquiterpenes,
monoterpenes and diterpenes. Sesquiterpenes are the most represented group, featuring
compounds like β-caryophyllene, α-santalene, β-santalene and nerolidol, noted for their
high percentages. Other minor groups include diterpenes, such as phytol, along with some
alicyclic and aromatic compounds.
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3.3. Antifungal Activity

The inhibitory capacity of B. orellana essential oil against C. albicans was evaluated by
means of the Kirby–Bauer disc diffusion method. Figure 3 presents the results, compared
with those obtained for nystatin, a standard antifungal used as a positive control.
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nystatin (b).

In Figure 3a, the inhibition halos produced by B. orellana EO (A) and nystatin (C) are
shown, while the quantitative analysis of the inhibition halos is presented in Figure 3b.
Nystatin produced an inhibition halo of ~27 mm in diameter. According to the classification
proposed by Morales et al. [31], this result falls within the high activity category (21–30 mm).
Meanwhile, the essential oil of B. orellana generated a halo with an average diameter of
13 mm, which is classified as moderate activity (11–20 mm) on the same scale. These results
indicate that B. orellana essential oil exhibits antifungal activity against C. albicans, reaching
48% of the inhibition observed with nystatin, an antifungal that has demonstrated effective
activity in this type of assay [32].

4. Discussion
4.1. Extraction Yield of EO from B. orellana

Concerning the extraction yield of EO from B. orellana, the value obtained in this
study is lower than that reported by Valarezo et al. [24], who obtained a yield of 0.13%
by hydrodistillation from B. orellana leaves collected in El Dorado parish, Francisco de
Orellana canton, Orellana Province, Ecuador. These differences in yield can be attributed
to several factors, such as the variety, the part of the plant used, climatic conditions and
the specific extraction process conditions. In this case, evidence from previous studies has
pointed to a higher yield when oils are extracted by hydrodistillation compared to that
obtained by the vapor entrainment method [33].

In addition, the drying temperature of the leaves also plays an important role in the
yield of the essential oil obtained. A study by Oliveira Everton et al. [34] showed that
drying temperature significantly affects both the quantity and quality of the essential oil
extracted from B. orellana leaves. In particular, they found that drying at 45 ◦C produced
the highest essential oil yield (2.23%), outperforming lower or higher temperatures, such as
35 ◦C (0.21%) and 55 ◦C (0.38%). This behaviour is attributed to the preservation of cell
integrity at intermediate temperatures, which facilitates the extraction of the essential oil
without causing a significant loss of volatile components. Therefore, it is possible that the
lower yield obtained in our study is also due to the drying temperature of the leaves used
before extracting the EO.

4.2. Chemical Composition of the B. orellana EO

Regarding the chemical composition of the B. Orellana EO, similar results were ob-
tained by Giorgi et al. [35], who also reported that sesquiterpenes and monoterpenes are
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the main groups of volatile compounds present in the essential oil extracted from different
parts of B. orellana, collected in the Upper Guamá River Reserve in the state of Pará in
Brazil’s Amazon region. In their study, they identified β-caryophyllene, γ-caryophyllene,
α-caryophyllene, α-copaene and D-germacrene as the major compounds. However, the
difference between their results and the compounds identified in the present study can be
attributed to a number of factors, including the environmental, geographical and growing
conditions of plants, as well as possible variations in the time of collection of the plant
material analysed. It is well documented in the literature that the chemical composition of
essential oils can vary significantly depending on these extrinsic factors [36].

The dominant presence of sesquiterpenes in B. orellana essential oil suggests that it
may possess diverse bioactive properties [37]. Sesquiterpenes, such as costunolide, have
demonstrated remarkable in vitro antifungal activity against various pathogens, indicating
that these compounds could contribute significantly to the antimicrobial properties of the
essential oil [38]. Previous studies have also reported that certain sesquiterpenes exhibit
anti-inflammatory and antioxidant properties, indicating that they are potential candidates
for the development of natural therapeutic agents [39]. The ability of these compounds
to modulate diverse biochemical pathways, such as inhibiting cyclooxygenase-2 (COX-2)
and neutralising reactive oxygen species (ROS), has been documented in both cellular and
animal models [37,40]. These findings underscore the importance of sesquiterpenes in both
traditional medicine and modern pharmacological research. However, while the presence
of these compounds in B. orellana essential oil is promising, further studies specifically
focusing on this oil are necessary to determine its potential therapeutic applications. Such
research would help elucidate the bioavailability and potential synergistic effects of the
various compounds present in the oil.

Monoterpenes typically constitute up to 90% of essential oils and are known for their
antimicrobial and antioxidant activities [40]. As mentioned above, dihydroedulan, a cyclic
monoterpene, was identified as the most abundant compound in the essential oil of B.
orellana in the present study.

Various investigations into monoterpenes have demonstrated their bioactive prop-
erties, including antimicrobial, antioxidant, anti-inflammatory and neuroprotective ef-
fects [41–43]. Compounds like α-pinene and limonene show antimicrobial activity, while
1,8-cineole demonstrates antioxidant properties by protecting cells from oxidative stress-
induced apoptosis [43]. Additionally, some monoterpenes, such as β-caryophyllene, display
neuroprotective potential by inducing antioxidant enzyme expression through transcription
factors like Nrf2 [41]. These properties highlight the therapeutic potential of monoterpenes
in various applications, from food preservation to pharmaceutical formulations. In this
regard, the significant presence of dihydroedulan in B. orellana essential oil suggests that it
could be an important contributor to the overall bioactivity of the oil.

4.3. Antifungal Activity

Finally, the antifungal activity observed in B. orellana EO could be explained by the
presence of compounds with known bioactive properties. Very few studies exist on the
biological activity of dihydroedulan; Naija et al. [44] mention the molecule’s antioxidant
and antimicrobial properties. Concerning nerolidol, the literature reports preliminary
results for neurodegenerative diseases and a common use as a cosmetic, detergent and
food flavouring agent [45,46]. Although the specific bioactive properties of dihydroedulan
and trans-β-bergamotene are less well documented compared to those of nerolidol and
other terpenes, their prevalence suggests they may contribute significantly to the overall
bioactivity of oils. β-Caryophyllene (10.3%), one of the major components identified, has
been widely investigated for its antifungal effects against various pathogenic fungi [47].
Indeed, it is a major sesquiterpene in many essential oils and has been shown to have
the ability to interact with fungal cell membrane lipids, compromising their structural
integrity and, consequently, their viability [41]. This effect is due, in part, to the ability of
terpenoids to increase membrane permeability, which can lead to cell lysis. Furthermore,



Life 2024, 14, 1628 8 of 11

previous studies have suggested that β-caryophyllene can induce the production of reactive
oxygen species (ROS), resulting in additional oxidative damage to the fungal cell. The
cyclic structure of certain sesquiterpenes, such as α-santalene, confers them greater stability,
favouring their interaction with membrane lipid components, which could enhance their
antifungal activity by inducing both structural damage and oxidative stress [48].

Compounds such as trans-β-bergamotene (5.73%) and α-santalene (4.94%) have also
shown antifungal activity in other investigations [49–51]. Trans-bergamotene was also
identified as an important compound of Isolona dewevrei essential oil, which presented
preliminary in vitro anti-inflammatory potential [26]. Therefore, it is possible that the
abundant presence of these sesquiterpene hydrocarbons contributes to the antifungal
capacity of B. orellana L. essential oil, although further studies are required to establish
direct correlations.

Whilst B. orellana essential oil does not reach the same level of inhibition as nystatin, it
exhibits moderate antifungal activity against C. albicans, which may indicate its potential
as a natural antifungal agent. However, an additional aspect to consider is the potential
synergy between the components of B. orellana essential oil and conventional antifungal
agents. Studies, such as that of Sempere-Ferre et al. [52], have demonstrated that combin-
ing essential oils with antifungals can enhance their activity and reduce the likelihood of
resistance development in microorganisms. Currently, the authors found no studies of
synergistic activity with conventional antifungals related to B. orellana oil or any of the fol-
lowing main components: dihydroedulan, trans-β-bergamotene, α-santalene, β-santalene
and trans-α-bergamotene. The only data found concern the synergistic action of nerolidol
and griseofulvin for Trichophyton spp. For all other compounds and for B. orellana essential
oil, further research would be appropriate [53].

In this regard, recent studies have shown that essential oils such as Mentha x piperita,
Pelargonium graveolens and Melaleuca alternifolia possess antifungal properties that demon-
strate a strong synergy when combined with conventional antifungals. In their study on
the combination of essential oils with diclofenac, Rosato et al. [54] showed that there is a
significant decrease in the minimum inhibitory concentration (MIC) required to inhibit the
growth of various strains of Candida spp. The essential oil of M. piperita showed a fractional
interaction index (FICI) of 0.22, indicating a strong synergy, reducing the concentration of
diclofenac from 2.05 to 0.06 µg/mL in the presence of the oil. This suggests that B. orellana
essential oil, due to its sesquiterpene-rich composition, could have a similar synergistic
effect, which could increase its antifungal efficacy.

5. Conclusions

This study provides valuable insights into the chemical composition and antifungal ac-
tivity of B. orellana EO from the Ecuadorian Amazon. The results show a complex terpenoid
profile with dihydroedulan (27.5%), β-caryophyllene (10.3%) and trans-β-bergamotene
(4.26%) as major components. These compounds have previously been associated with
significant bioactive properties, suggesting potential therapeutic applications. The EO
showed moderate antifungal activity against C. albicans, achieving 48% of the inhibition
observed with nystatin. This result positions B. orellana EO as a promising source of natural
antifungal compounds. However, further studies are needed to investigate the antifungal
activity against a wider range of pathogenic fungi, potential synergistic effects with con-
ventional antifungal agents and the in vivo efficacy and safety. This research establishes B.
orellana EO from the Ecuadorian Amazon as a promising source of bioactive compounds
with potential applications in the development of natural antifungal agents and other
therapeutic uses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life14121628/s1, Table S1: Chemical composition of the essential
oil of the leaves of B. orellana L.
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