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Abstract: The SARS-CoV-2 main protease (Mpro, also known as 3CLpro) is a key target for antivi-
ral therapy due to its critical role in viral replication and maturation. This study investigated
the inhibitory effects of Bofutrelvir, Nirmatrelvir, and Selinexor on 3CLpro through molecular
docking, molecular dynamics (MD) simulations, and free energy calculations. Nirmatrelvir ex-
hibited the strongest binding affinity across docking tools (AutoDock Vina: −8.3 kcal/mol; DiffDock:
−7.75 kcal/mol; DynamicBound: 7.59 to 7.89 kcal/mol), outperforming Selinexor and Bofutrelvir.
Triplicate 300 ns MD simulations revealed that the Nirmatrelvir-3CLpro complex displayed high
conformational stability, reduced root mean square deviation (RMSD), and a modest decrease in
solvent-accessible surface area (SASA), indicating enhanced structural rigidity. Gibbs free energy anal-
ysis highlighted greater flexibility in unbound 3CLpro, stabilized by Nirmatrelvir binding, supported
by stable hydrogen bonds. MolProphet prediction tools, targeting the Cys145 residue, confirmed
that Nirmatrelvir exhibited the strongest binding, forming multiple hydrophobic, hydrogen, and π-
stacking interactions with key residues, and had the lowest predicted IC50/EC50 (9.18 × 10−8 mol/L),
indicating its superior potency. Bofutrelvir and Selinexor showed weaker interactions and higher
IC50/EC50 values. MM/PBSA analysis calculated a binding free energy of −100.664 ± 0.691 kJ/mol
for the Nirmatrelvir-3CLpro complex, further supporting its stability and binding potency. These
results underscore Nirmatrelvir’s potential as a promising therapeutic agent for SARS-CoV-2 and
provide novel insights into dynamic stabilizing interactions through AI-based docking and long-term
MD simulations.
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1. Introduction

In 2019, the emergence of the novel coronavirus SARS-CoV-2 triggered an unprece-
dented global pandemic, resulting in millions of infections and substantial loss of life [1–3].
This crisis underscores the urgent need for effective therapeutic strategies to mitigate the
severity and mortality rates of COVID-19 [4–6]. SARS-CoV-2 is characterized by its spike
(S) protein, which is responsible for viral entry, and an RNA genome encoding more than
24 proteins is crucial for viral replication and pathogenicity [7–10]. Once inside the host cell,
viral RNA is translated into large polyproteins that are subsequently cleaved by two key
viral proteases: the main protease (3CLpro, also known as Mpro) and papain-like protease
(PLpro) [11–13]. Most cleavages are facilitated by 3CLpro, and inhibiting 3CLpro prevents
the virus from producing the proteins necessary for replication [14–16]. Given its critical
role in polyprotein processing and viral replication, 3CLpro has been identified as one of
the most promising targets for antiviral drug development [14,15,17].

3CLpro, a highly conserved enzyme in coronaviruses, plays a crucial role in cleaving
viral polyproteins at several conserved sites, enabling successful viral replication [17–19].
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This conservation makes 3CLpro a potential target for the design of broad-spectrum antivi-
ral inhibitors that may be effective across different coronaviruses (Figure 1).
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We have previously studied the molecular basis of the effect of temperature on the
structure and function of the SARS-CoV-2 spike protein. Our findings revealed that higher
temperatures have little or no influence on the stability and folding of the SARS-CoV-2
spike protein [20]. We have also explored inhibitors targeting key structural proteins
of SARS-CoV-2, including the S protein, nucleocapsid (N) protein, and membrane (M)
protein [20,21]. Additionally, compounds such as Remdesivir have demonstrated potent
inhibitory effects on 3CLpro, RNA-dependent RNA polymerase (RdRP), and other viral
components [22]. Natural compounds, such as Withania somnifera (Ashwagandha) and
psilocybin mushroom, have been proposed for their potential therapeutic effects and clinical
management of SARS-CoV-2 infection [1,23]. Despite these advancements, there is a need
for a more detailed comparative research on orally available inhibitors that specifically
target 3CLpro [24].

PF-07321332 (Nirmatrelvir), a key component of the oral antiviral drug Paxlovid, is a
potent 3CLpro inhibitor with significant therapeutic potential against SARS-CoV-2 [25]. Sev-
eral studies have explored the Nirmatrelvir-3CLpro complex using MD simulations, to iden-
tify stable interactions between Nirmatrelvir and the catalytic triad (Cys145–His41–Asp187)
of 3CLpro, and confirm the complex’s conformational stability through reduced structural
fluctuations in the Nirmatrelvir-bound state [26–28]. Additionally, research on active-site
mutations within 3CLpro, such as C145A and C145S, demonstrated significant reductions
in Nirmatrelvir’s binding free energy and complex structural destabilization, underscoring
the challenges posed by emerging drug resistance [29,30]. These in silico analyses provide
valuable insights into the binding affinity and structural dynamics of the Nirmatrelvir-
3CLpro complex, which are crucial for optimizing drug design. However, few studies have
performed comparative analyses of different compounds targeting 3CLpro, particularly
using advanced computational methods and long-term MD simulations to evaluate binding
stability over extended time scales.

In this study, we employed AI-based docking tools powered by machine learning
algorithms to predict the optimal binding of drug candidates to 3CLpro. Additionally, we
performed long-term MD simulations to create a dynamic, time-resolved model of the
molecular interactions. Our focus is on investigating the inhibitory effects of the first three
oral medications, Nirmatrelvir, Bofutrelvir, and Selinexor, which have entered clinical trials
(Table 1) and target 3CLpro. By evaluating their binding efficiency and inhibitory potential,
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we aim to identify the most promising candidates for targeted antiviral therapy, ultimately
contributing to more effective treatment options for COVID-19.

Table 1. Three drugs against the SARS-CoV-2 3CL protease and their detailed information.

Drug Name Common Name Design Team FDA Approved Clinical Trials PubChem CID

Nirmatrelvir Paxlovid Pfizer Yes Yes 155903259

Bofutrelvir FB2001

Shanghai Institute of Materia
Medica, Chinese Academy of

Sciences; Wuhan Branch, Chinese
Academy of Sciences; Frontier
Biotechnologies, Inc. (China)

No Yes 145343771

Selinexor KPT-330 Karyopharm Therapeutics Yes Yes 71481097

2. Results
2.1. Molecular Interactions

Molecular docking is an essential tool in drug discovery, as it predicts the binding
orientation of small molecules to their protein targets, facilitating the identification of
potential inhibitors [31]. In this study, the binding affinities of Nirmatrelvir, Selinexor,
and Bofutrelvir to SARS-CoV-2 3CLpro were evaluated by molecular docking, specifically
targeting the active-site residue Cys145. Cys145 is part of the catalytic dyad (Cys145–His41),
which is essential for the proteolytic activity of 3CLpro [32]. Targeting Cys145 effectively
inhibits protease activity, thereby preventing viral replication [33].

Nirmatrelvir demonstrated the best docking score with a binding affinity of −8.3 kcal/mol.
Key hydrogen bonds formed with Phe140, Cys145, His163, and Glu166 contributed to
stabilizing Nirmatrelvir within the binding site, with additional hydrophobic interactions
involving His41 providing further stabilization. Selinexor exhibited a slightly lower binding
affinity of −8.2 kcal/mol. It formed hydrogen bonds with His41, Cys145, and Asp187,
along with hydrophobic contacts involving Thr25. These interactions anchored Selinexor
within the active pocket, demonstrating moderate potential as an inhibitor. Bofutrelvir had
the lowest binding affinity at −7.9 kcal/mol. Hydrogen bonds formed with Gly143, Cys145,
and Thr190 were observed. However, a positive-positive charge repulsion with His41 likely
contributed to its reduced binding affinity compared to the other compounds (Figure 2).
These results indicate effective interactions of the three compounds with the viral protease,
with Nirmatrelvir displaying the strongest binding affinity and stabilization potential,
making it the most promising candidate for SARS-CoV-2 3CLpro inhibition (Table 2).

Table 2. The binding affinity of Nirmatrelvir, Selinexor, and Bofutrelvir.

Rank Molecule Affinity (kcal/mol)

1 Nirmatrelvir −8.3
2 Selinexor −8.2
3 Bofutrelvir −7.9

2.2. Ligand-Specific Protein Conformational Changes

The DiffDock analysis indicated a strong affinity of Nirmatrelvir, Bofutrelvir, and Selinexor
for SARS-CoV-2 3CLpro, with SMINA docking scores of −7.75 kcal/mol, −6.95 kcal/mol,
and −7.04 kcal/mol, respectively. Nirmatrelvir demonstrated the highest binding affinity
among the three ligands, indicating the strongest interaction with SARS-CoV-2 3CLpro.
In contrast, Bofutrelvir and Selinexor exhibited slightly lower affinities but remained
promising candidates for 3CLpro inhibition, although they may not bind as strongly
as Nirmatrelvir.
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Figure 2. Binding interactions of the three compounds with SARS-CoV-2 3CLpro: (A) Nirmatrelvir,
(B) Selinexor, and (C) Bofutrelvir. (1) Active site view showing drug binding. (2) Surface view high-
lighting hydrogen bond donors and acceptors. (3) Atom-level view of the interactions between the
ligand and key active-site residues. (4) 2D interaction map including hydrogen bonds (green dashed
lines), hydrophobic interactions (purple dashed lines), and unfavorable contacts (red dashed lines).

The output of DynamicBound includes the rotation for both the ligand and each
protein residue, rotation of torsional angles for the ligands, chi angles for the protein
residues, and two prediction modules: binding affinity and confidence score (Figure 3).
Nirmatrelvir consistently ranks high in terms of binding affinity (with values ranging from
7.59 to 7.89), indicating stable interaction. The confidence scores, ranging from 0.46 to 0.51,
support the reliability of these predictions. Bofutrelvir shows good binding affinity as well
(6.96 to 7.14) with slightly higher confidence scores (0.60 to 0.61) compared to Nirmatrelvir,
suggesting a slightly more reliable prediction in terms of binding, even though its binding
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affinity is lower. Selinexor shows the lowest binding affinities (6.76 to 7.02) among the
three, but its confidence scores are comparable to Nirmatrelvir’s (0.47 to 0.48), meaning the
predictions are relatively reliable (Table 3).
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Figure 3. Deep equivariant generative model sampling. (A) The dynamic docking investigation of
Nirmatrelvir (red), Bofutrelvir (green), and Selinexor (blue) into the active pocket of SARS-CoV-2
Mpro. In the protein structure, α-helices are shown in red, β-sheets in yellow, and loop regions in
green. (B) Protein surface view showing the dynamic poses of these ligands.

Table 3. The ranking, binding affinity, and confidence score for the interactions between Nirmatrelvir,
Bofutrelvir, Selinexor, and SARS-CoV-2 3CLpro.

Rank Interaction Binding Affinity Confidence Score

1 Nirmatrelvir-SARS-CoV-2 7.89 0.51
2 Nirmatrelvir-SARS-CoV-2 7.59 0.46
3 Nirmatrelvir-SARS-CoV-2 7.71 0.46
1 Bofutrelvir-SARS-CoV-2 6.96 0.61
2 Bofutrelvir-SARS-CoV-2 7.14 0.60
3 Bofutrelvir-SARS-CoV-2 7.01 0.61
1 Selinexor-SARS-CoV-2 6.76 0.48
2 Selinexor-SARS-CoV-2 7.02 0.48
3 Selinexor-SARS-CoV-2 6.89 0.47

Notes: Binding Affinity: The binding affinity scores are calculated using the DynamicBound software (https:
//neurosnap.ai/service/DynamicBind, accessed on 10 October 2024), where higher positive values indicate
stronger binding affinity. Confidence Score: The confidence score represents the reliability of the binding affinity
prediction, with values closer to 1.0, indicating higher confidence in the prediction accuracy.

2.3. MolProphet Analysis

It has been found that Nirmatrelvir, Bofutrelvir, and Selinexor can potentially form
two, two, and four hydrogen bonds, respectively, with the Cys145 residue of SARS-CoV-
2 3CLpro. Nirmatrelvir was found to have the lowest predicted IC50/EC50 activity of
9.18 × 10−8 mol/L and a binding efficacy index of 0.0141 (pIC50/MW). Bofutrelvir was
found to have an IC50/EC50 activity of 2.64 × 10−7 mol/L and a binding efficacy index of
0.0145 (pIC50/MW). Selinexor was found to have an IC50/EC50 activity of 4.59 × 10−7 mol/L
and a binding efficacy index of 0.0143 (pIC50/MW) (Table 4). MolProphet analysis revealed
the potential of Nirmatrelvir, Bofutrelvir, and Selinexor to form hydrogen bonds with the

https://neurosnap.ai/service/DynamicBind
https://neurosnap.ai/service/DynamicBind
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Cys145 residue of SARS-CoV-2 3CLpro, with varying IC50/EC50 activities and binding
efficacy indices. The predicted IC50/EC50 values (in mol/L) reflect the concentration
of each drug required to inhibit 50% of the target activity (IC50) or achieve 50% of the
desired effect (EC50). Lower IC50/EC50 values indicate higher potency, as the drug can
achieve its inhibitory or therapeutic effects at lower concentrations. Nirmatrelvir has the
lowest predicted IC50/EC50 value, meaning that it requires a much lower concentration to
achieve 50% inhibition or effect compared to Bofutrelvir and Selinexor. This suggests that
Nirmatrelvir is the most potent of the three, followed by Bofutrelvir and then Selinexor.

Table 4. The Predicted IC50/EC50 activity and binding efficacy index of Nirmatrelvir, Bofutrelvir, and
Selinexor with SARS-CoV-2 Mpro.

S. No. Drugs Predicted IC50/EC50 Activity
(mol/L)

Binding Efficacy Index
(pIC50/MW)

1. Nirmatrelvir 9.18 × 10−8 0.0141
2. Bofutrelvir 2.64 × 10−7 0.0145
3. Selinexor 4.59 × 10−7 0.0143

Nirmatrelvir can form six hydrophobic interactions and two π-stacking interactions
with His41, one hydrophobic interaction with Met49, six hydrogen bonds with Asn142,
three hydrogen bonds with His164, six hydrophobic interactions with Met165, 17 hydrogen
bonds, two hydrophobic interactions with Glu166, one hydrogen bond with Asp187, two
hydrogen bonds and seven hydrophobic interactions with Gln189, five hydrogen bonds
and one halogen bond with Thr190, and four halogen bonds with Gln192 residues of
SARS-CoV-2 Mpro.

Bofutrelvir can form two hydrogen bonds, one hydrophobic interaction, two π-
stacking interactions with His41, six hydrophobic interactions with Met49, five hydrogen
bonds with Asn142, six hydrophobic interactions with Met165, 14 hydrogen bonds and
six hydrophobic interactions with Glu166, three hydrophobic interactions with Asp187,
eight hydrophobic interactions with Gln189, and one hydrophobic interaction with Gln192
residues of SARS-CoV-2 Mpro.

Selinexor can form two hydrogen bonds and two π-stacking interactions with His41,
five halogen bonds with Met49, seven hydrogen bonds with Asn142, three hydrogen
bonds with His164, seven hydrophobic interactions with Met165, 12 hydrogen bonds, three
halogen bonds with Glu166, two halogen bonds with Val186, seven halogen bonds with
Arg188, five hydrophobic interactions with Gln189, three halogen bonds with Thr190, and
six halogen bonds with Gln192 residues in SARS-CoV-2 Mpro.

Based on the interactions described, Nirmatrelvir appears to be the most promising
drug for inhibiting SARS-CoV-2 Mpro. It exhibits the highest number of interactions,
including extensive hydrogen bonding (notably 17 with Glu166, a key residue), multiple
hydrophobic interactions, and π-stacking interactions with critical residues like His41 and
Gln189 (Figure 4). These strong and diverse interactions with essential residues of Mpro
suggest that Nirmatrelvir may have a higher binding affinity and potentially more robust
inhibitory effects compared to Bofutrelvir and Selinexor.

2.4. Structural Dynamics and Deviations

MD simulations provide insights into the dynamic behavior of biomolecular com-
plexes [20], allowing researchers to understand conformational changes [34], stability [35],
point mutations, and the effects of environmental conditions on protein-ligand interac-
tions [36]. By combining molecular docking and MD simulations, researchers can refine
binding poses, evaluate binding affinities, and predict long-term stability of drug candi-
dates in biological systems. Structural dynamics were studied through triplicate 300 ns MD
simulations for Nirmatrelvir-bound 3CLpro and a single 300 ns simulation for unbound
3CLpro to investigate the detailed binding effects of Nirmatrelvir on the 3CL protease
(Table 5) [37,38]. The root mean square deviation (RMSD) is a crucial property for determin-
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ing whether a protein is stable and resembles its experimental structure [39]. The RMSD
analysis revealed distinct stability profiles for the Nirmatrelvir-unbound and Nirmatrelvir-
bound forms of 3CLpro. The 3CLpro, in its unbound form, showed a higher average
RMSD of 0.424 ± 0.080 nm, reflecting larger fluctuations in its structural conformation.
In contrast, the 3CLpro in the Nirmatrelvir-bound complex exhibited a lower average
RMSD of 0.315 ± 0.051 nm, stabilizing after approximately 120 ns, suggesting that Nir-
matrelvir binding enhances the conformational stability of 3CLpro. The ligand RMSD
showed an average value of 0.464 ± 0.086 nm, with initial fluctuations that gradually
converged to a stable conformation around 0.55 nm after 120 ns (Figure 5A). The root
mean square fluctuations (RMSF) analysis, a commonly used method to assess protein flex-
ibility [40], revealed distinct fluctuation patterns between the Nirmatrelvir-unbound and
Nirmatrelvir-bound forms of 3CLpro. In the unbound form, residues 118–143, particularly
those within the loop regions, exhibited high fluctuations, indicating structural flexibility.
In the Nirmatrelvir-bound complex, residues 45–56, located near the Nirmatrelvir binding
site, displayed increased fluctuations. This localized flexibility in the binding region may
facilitate effective ligand binding and interaction (Figure 5B). These results underscore
the importance of understanding the molecular interactions between Nirmatrelvir and
3CL protease, which are critical for the development of targeted therapeutic strategies
against SARS-CoV-2.
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Figure 4. AI-based molecular interactions. The binding modes of (A) Nirmatrelvir, (B) Bofutrelvir,
and (C) Selinexor with SARS-CoV-2 Mpro. Analysis of the interactions of SARS-CoV-2 Mpro residues
with (D) Nirmatrelvir, (E) Bofutrelvir, and (F) Selinexor.

The radius of gyration is an indicator of the compactness of a protein structure [41].
The average Rg for 3CLpro in the Nirmatrelvir-bound complex was 2.221 ± 0.010 nm,
which is slightly lower than the 2.260 ± 0.020 nm observed in the Nirmatrelvir-unbound
form. Although the difference in average Rg values between the two forms was modest,
Nirmatrelvir binding significantly reduced Rg fluctuations, indicating the enhanced struc-
tural stability of the 3CL protease (Figure 5C). Hydrogen bond analysis is a widely used
method for studying protein-ligand interactions [42]. During the 300 ns MD simulation,
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Nirmatrelvir formed an average of 2 ± 1 hydrogen bonds with 3CLpro (Figure 5D). This
suggests that Nirmatrelvir remains consistently bound to the active pocket of 3CLpro
throughout the simulation. The formation of multiple hydrogen bonds indicates strong
and stable interactions between Nirmatrelvir and 3CL protease, which may contribute to
its high binding affinity and inhibitory potency.

Table 5. Structural stability parameters for 3CL protease (Nirmatrelvir-unbound and Nirmatrelvir-
bound forms) over 300 ns MD simulations.

System Replica RMSD (nm) Ligand RMSD (nm) RMSF (nm) Rg (nm) Hydrogen Bonds

3CL protease
(Nirmatrelvir-unbound) 1 0.424 ± 0.080 - 0.192 ± 0.120 2.26 ± 0.020 -

3CL protease
(Nirmatrelvir-bound)

1 0.351 ± 0.072 0.263 ± 0.068 0.179 ± 0.103 2.21 ± 0.023 2 ± 0.9

2 0.284 ± 0.038 0.497 ± 0.233 0.156 ± 0.093 2.23 ± 0.014 2 ± 1.1

3 0.310 ± 0.059 0.632 ± 0.056 0.148 ± 0.114 2.22 ± 0.012 1 ± 1.2
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Figure 5. Molecular dynamics simulations of SARS-CoV-2 3CL protease in its Nirmatrelvir-unbound
and Nirmatrelvir-bound forms. (A) Root mean square deviation (RMSD), (B) Root mean square fluc-
tuations (RMSF), (C) Radius of gyration (Rg), and (D) Hydrogen bond analysis between Nirmatrelvir
and 3CL protease. The color black represents 3CL protease alone, while red indicates the 3CL protease
in the Nirmatrelvir-3CL protease complex, and green represents the ligand in the Nirmatrelvir-3CL
protease complex. The presented charts are the average representation of the triplicate MD simulation
runs for the Nirmatrelvir-3CL protease complex.

2.5. Solvent-Accessible Surface Area

The solvent-accessible surface area (SASA) of a protein refers to the region that inter-
acts with solvent molecules [43]. The mean SASA values for the 3CL protease in its unbound
form and the Nirmatrelvir-bound complex were 151.6 ± 2.7 nm2 and 149.3 ± 1.4 nm2, re-
spectively. The slight reduction in SASA upon ligand binding suggests that the protein
becomes less solvent-accessible, indicating the stabilization of the binding region. Addi-
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tionally, Nirmatrelvir was observed to be binding resulted in fewer SASA fluctuations of
the 3CL protease compared to the unbound form (Figure 6A). This further indicates that
the binding of Nirmatrelvir restricts the conformational flexibility of the 3CLpro, thereby
stabilizing complex formation. This modest reduction in SASA, combined with a stable Rg
and increased RMSF of active-site residues, suggests that Nirmatrelvir induces localized
conformational changes primarily near the binding site, rather than causing a global re-
arrangement of the protease structure. These localized changes may play a critical role in
stabilizing the protein-ligand complex and enhancing binding affinity.
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Figure 6. (A) Solvent-accessible surface area, and (B) Free energy of solvation. The color black
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protease alone and (D) 3CL protease in the Nirmatrelvir-3CL protease complex. The presented
charts are the average representation of the triplicate MD simulation runs for the Nirmatrelvir-3CL
protease complex.

The free energy of solvation (∆Gsolv) measures the change in free energy required
to transfer a protein from a vacuum to a solvent environment. A more negative ∆Gsolv
indicates stronger interactions between the protein and the solvent, reflecting higher solu-
bility [44]. The average ∆Gsolv for the unbound 3CLpro is −26.07 ± 5.32 kcal/mol, while
the ∆Gsolv for the 3CL protease in complex with Nirmatrelvir is −26.34 ± 4.34 kcal/mol
(Figure 6B). The small difference in ∆Gsolv between the ligand-unbound and ligand-bound
forms of 3CL protease suggests that Nirmatrelvir binding does not significantly impact the
global solvation properties of the protein. The SASA was further divided into hydrophobic
and hydrophilic regions for unbound 3CLpro and 3CLpro in the Nirmatrelvir-3CL pro-
tease complex (Figure 6C,D). The hydrophobic regions of the 3CL protease exhibited a
mean SASA of 50.030 ± 1.997 nm2 in the unbound form and 47.806 ± 1.927 nm2 in the
Nirmatrelivir-bound complex. In contrast, the hydrophilic regions showed a mean SASA of
97.618 ± 2.167 nm2 for the unbound 3CLpro and 97.258 ± 1.918 nm2 for the Nirmatrelivir-
bound form. Both hydrophobic and hydrophilic regions demonstrated reduced fluctuations
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upon ligand binding, indicating enhanced stability and minimized conformational variabil-
ity in these regions when Nirmatrelivir is bound. Table 6 summarizes these contributions,
along with the corresponding ∆Gsolv values, highlighting a modest overall reduction in
SASA upon ligand binding. A key distinction exists between the global average deviation
for the triplicate simulations and the deviations observed within each individual repli-
cate. The global average deviation provides an overall trend, indicating reduced SASA
fluctuations in the bound form, as shown in Figure 6. In contrast, the individual replicate
deviations reflect the inherent variability present within each simulation run, resulting in
higher deviation values, as shown in Table 6. This distinction ensures a comprehensive
understanding of both the general stability trends and the specific fluctuations observed
across different simulation replicates.

Table 6. Average SASA, ∆Gsolv, hydrophobic, and hydrophilic contributions to 3CLpro in its
Nirmatrelvir-unbound and Nirmatrelvir-bound states.

System Replica SASA (nm2) D Gsolv (kcal/mol) Phobic (nm2) Phylic (nm2)

3CL protease
(Nirmatrelvir-unbound) 1 151.593 ± 2.707 −26.072 ± 5.318 50.030 ± 1.997 97.618 ± 2.167

3CL protease
(Nirmatrelvir-bound)

1 148.668 ± 2.797 −23.660 ± 6.092 48.251 ± 2.561 95.472 ± 2.876

2 150.414 ± 2.467 −29.312 ± 5.362 46.481 ± 1.782 99.888 ± 1.991

3 148.684 ± 2.348 −26.058 ± 6.904 48.686 ± 2.550 96.415 ± 2.646

2.6. Secondary Structure Analysis

The average number of residues involved in the formation of secondary structures in
the 3CL protease was observed and compared between the Nirmatrelvir-unbound 3CLpro
system and the Nirmatrelvir-3CL protease complex during the 300 ns MD simulations
(Figure 7). The residues contributing to secondary structure formation were found to be
190 ± 7 in the 3CL protease alone and 190 ± 6 in the Nirmatrelvir-3CL protease complex,
indicating that the overall folding and secondary structure elements are largely preserved
regardless of ligand binding (Table 7). The similar secondary structure content of 3CLpro
in its Nirmatrelvir-unbound and Nirmatrelvir-bound forms suggests that Nirmatrelvir
binding induces localized structural rearrangements rather than global changes, thereby
allowing strong binding without significantly altering the overall structure of 3CLpro.
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Table 7. Average number of residues involved in secondary structure formation for 3CLpro in its
Nirmatrelvir-unbound and Nirmatrelvir-bound forms during MD simulations.

System Replica Structure Coil β-Sheet β-Bridge Bend Turn α-Helix 5-Helix 3-Helix

3CL protease
(Nirmatrelvir-unbound) 1 190 ± 7 77 ± 4 82 ± 4 6 ± 1 25 ± 4 48 ± 6 54 ± 5 0.1 ± 0.7 14 ± 5

3CL protease
(Nirmatrelvir-bound)

1 190 ± 6 77 ± 4 80 ± 3 6 ± 1 27 ± 4 45 ± 5 59 ± 5 0.03 ± 0.4 13 ± 4

2 190 ± 6 80 ± 3 80 ± 3 6 ± 1 25 ± 4 50 ± 6 53 ± 6 0.04 ± 0.5 12 ± 4

3 190 ± 6 80 ± 3 80 ± 3 7 ± 1 24 ± 4 50 ± 6 54 ± 6 0.02 ± 1 15 ± 5

Note: Structure = α-helix + β-sheet + β-bridge + Turn.

2.7. PCA and GFE Landscape

Principal component analysis (PCA) is a widely used statistical technique that re-
duces the dimensionality of high-dimensional data sets [45]. In protein dynamics, PCA
is particularly useful for identifying clusters and examining significant collective motion
within a protein molecule. We employed MD trajectories from 120 ns to 300 ns to perform
PCA analysis for the Nirmatrelvir-unbound 3CL protease and the Nirmatrelvir-bound 3CL
protease complex. The two-dimensional projection of the 3CL protease in the Nirmatrelvir-
bound state revealed a restricted distribution in the conformational space compared to the
unbound form. This indicates that Nirmatrelvir binding significantly stabilizes the move-
ment patterns of the 3CL protease. The Nirmatrelvir-unbound form exhibited a broader
and more diverse distribution, reflecting greater conformational freedom and flexibility in
the absence of the ligand (Figure 8A–C). The sum of eigenvalues for the 3CL protease in
its unbound form was 1410.21, while the 3CL protease in the Nirmatrelvir-3CL protease
complex exhibited eigenvalues of 1371.17, 968.16, and 841.44 for replicates 1, 2, and 3,
respectively. These reduced structural variances of 3CL protease in the Nirmatrelvir-bound
complex reflected the stabilizing effect of ligand binding on the 3CL protease. Furthermore,
the eigenvector locus of 3CL protease alone was higher than that of the Nirmatrelvir-3CL
protease complex, reflecting the greater conformational flexibility of the unbound protease
(Figure 8D). These results suggest that Nirmatrelvir binding restricts the conformational
freedom of 3CL protease, thereby stabilizing the protein structure. Table 8 presents the
percentage of variance explained by the principal components (PC1 and PC2) during the
120–300 ns MD simulations.

Table 8. Percentage of variance explained by principal components (PC1 and PC2) during 120–300 ns
MD simulations of 3CLpro in its Nirmatrelvir-unbound and Nirmatrelvir-bound forms.

System Replica PC1 Variance (%) PC2 Variance (%)

3CL protease
(Nirmatrelvir-unbound) 1 28.89 11.32

3CL protease
(Nirmatrelvir-bound) 3CL protease-Nirmatrelvir

1 25.40 14.44

2 18.58 15.29

3 17.75 8.32

The Gibbs free energy landscape (GFE) was further analyzed, with projections along
the first (PC1) and second (PC2) eigenvectors [46] to identify energy minima and their cor-
responding representative lowest-energy structures. A single minimum energy basin was
observed for the 3CL protease in its Nirmatrelvir-unbound form and in the Nirmatrelvir-
bound complexes for replicates 1 and 2. In contrast, analysis of replicate 3 revealed two
distinct low-energy states, with structural analysis showing that these states adopted similar
conformations (Figure 8E–H). Additionally, the 3CL protease alone exhibits a larger region
of low free energy, suggesting that it is more flexible or dynamic when unbound. This
flexibility may be reduced upon binding to Nirmatrelvir, as drug binding often stabilizes
the specific conformation of the protein.
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Figure 8. Principal component analysis (PCA) trajectory projections of 3CLpro along eigenvector
1 (PC1) and eigenvector 2 (PC2), comparing the Nirmatrelvir-unbound form and Nirmatrelvir-
bound complexes. Trajectory projections for (A) replicate 1, (B) replicate 2, and (C) replicate 3.
(D) Eigenvector analysis of the 3CLpro in its Nirmatrelvir-unbound form and Nirmatrelvir-bound
complexes. The black color represents the Nirmatrelvir-unbound 3CL protease, while red, green,
and blue correspond to the complexed 3CL protease in replicates 1, 2, and 3, respectively. (E) Gibbs
free energy (GFE) landscape and the representative structure with the lowest free energy of the
Nirmatrelvir-unbound 3CL protease, and (F–H) GFE landscapes and the representative structures
with the lowest free energy of the 3CL protease in the Nirmatrelvir-3CL protease complex for
replicates 1, 2, and 3. The numbers 0.3083, 0.3438, 0.3208, and 0.2833 represent the free energy values
(in kcal/mol) of the minima energy basins, indicating the most stable conformational states within
the energy landscape.

2.8. Nirmatrelvir-3CL Protease Binding Analysis

Clustering analysis can be used to group similar conformational states from molecular
simulations, helping identify stable and representative structures of the system [47]. To
analyze the protein-ligand interactions in the Nirmatrelvir-3CLpro complex, clustering
of representative structures from the triplicates of the MD simulations (120 ns to 300 ns)
was performed. A total of 35, 29, and 17 clusters were identified for replicates 1, 2, and 3,
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respectively, with the largest clusters comprising 8269, 10,350, and 9283 structures. These
clusters provided insights into the dominant conformational states of the complex.

Superimposition of the representative structures from the most populated clusters of
all replicates revealed that Nirmatrelvir consistently adopted the same binding position in
the active pocket of 3CL protease, with only minor deviations in orientation (Figure 9A).
When comparing the representative structures of each replicate to their corresponding
lowest-energy structures derived from Gibbs free energy analysis, we found that the
representative structure from replica 1 aligned well with its lowest-energy structure, with
an RMSD of 0.84 Å (Figure 9B). Consequently, a representative structure of replica 1 was
selected for further binding analysis.
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Figure 9. Clustering and binding analysis of the Nirmatrelvir-3CL protease complex. (A) Cluster
analysis identified 35, 29, and 17 clusters for replicas 1, 2, and 3, respectively. (B) Superimposition of
the representative structure of replica 1 (magenta) with its lowest-energy structure (yellow), showing
close alignment. (C) Superimposition of Nirmatrelvir in replica 1’s representative structure (magenta)
with its docked pose (teal), revealing minimal deviations. (D) 2D interaction analysis of Nirmatrelvir
with 3CL protease based on the representative structure of replica 1.

Nirmatrelvir maintained a consistent binding position and orientation compared to
its initial docked pose, with minor deviations (2.486 Å) observed during MD simulations
(Figure 9C). This consistency highlights the stability of Nirmatrelvir’s binding mode under
dynamic conditions. Moreover, after MD simulations, Nirmatrelvir formed additional
hydrogen and halogen bonds with key residues of the 3CL protease, enhancing its inter-
actions compared to the docking results (Figure 9D). The increased interactions during
MD simulations may be attributed to conformational flexibility within the binding pocket,
allowing key residues to form additional stabilizing interactions. This flexibility likely
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enhances Nirmatrelvir’s binding stability by optimizing its orientation and aligning its
functional groups with complementary sites in 3CL protease. These dynamic interactions
reinforce the strong binding affinity observed for Nirmatrelvir in the simulations, providing
further evidence of its potential as a robust inhibitor.

Binding free energy calculations for the Nirmatrelvir-3CLpro complex were performed
during the stable segment of the trajectory (196–198 ns) in the MD simulation. This seg-
ment was specifically chosen because it corresponds to the stable conformation of 3CLpro,
lying within the lowest energy well of the Gibbs free energy landscape. Extending these
calculations to longer timescales or other regions with higher conformational variability
would have introduced increased standard deviations, potentially reducing the reliability
of binding energy estimates [48]. The van der Waals energy contributed significantly to
this interaction, with a value of −144.659 ± 0.948 kJ/mol, indicating strong non-polar
interactions between the Nirmatrelvir and the 3CLpro. The electrostatic energy contributed
to a negative value of −9.009 ± 0.511 kJ/mol, further stabilizing the complex by promot-
ing favorable electrostatic interactions. The polar solvation energy provided a positive
contribution of 69.487 ± 0.970 kJ/mol, which reflects the tendency of solvent interactions
to slightly destabilize the ligand-protein interactions. However, this destabilization effect
was mitigated by the SASA (solvent-accessible surface area) energy, which contributed
to a small negative value of −16.474 ± 0.121 kJ/mol, suggesting the stabilization of hy-
drophobic interactions within the complex. Altogether, the total binding energy for the
3CLpro-Nirmatrelvir complex was calculated to be −100.664 ± 0.691 kJ/mol, signifying a
favorable binding interaction between the Nirmatrelvir and 3CLpro, primarily driven by
van der Waals forces and supplemented by electrostatic interactions, with minor opposition
from solvation effects.

3. Discussion

This study provides a comparative analysis of three protease inhibitors, Nirmatrelvir,
Bofutrelvir, and Selinexor, targeting SARS-CoV-2 3CLpro through molecular docking
and molecular dynamics simulations. Our results identified Nirmatrelvir as the most
potent inhibitor, exhibiting the highest binding affinity (−8.3 kcal/mol) and forming
multiple stable interactions with 3CLpro. Bofutrelvir and Selinexor also demonstrated
effective binding but with slightly lower affinities (−7.9 kcal/mol and −8.2 kcal/mol,
respectively). These findings provide valuable insights into the inhibitory mechanisms of
these compounds and their potential roles in antiviral therapy.

Previous studies have explored various antiviral agents targeting different SARS-CoV-
2 proteins. Our earlier research found that Remdesivir, which demonstrated a binding
affinity of −7.8 kcal/mol to 3CLpro, could serve as an effective antiviral agent by targeting
multiple viral components, including 3CLpro, RNA-dependent RNA polymerase (RdRP),
and the membrane protein (M protein) of SARS-CoV-2 [22]. Natural compounds such
as fangchinoline and versicolactone C have shown the potential to disrupt viral structural
integrity by targeting key proteins such as the spike (S) protein, M protein, and nucleocapsid
(N) protein [20,21]. However, the higher binding affinity of Nirmatrelvir, observed in this
study, suggests that it may offer superior inhibition of the 3CLpro compared to other
antiviral agents. This observation is consistent with Nirmatrelvir’s clinical efficacy in
reducing viral load and symptom severity, as demonstrated in its approval for emergency
use as part of the Paxlovid treatment.

Our results align closely with and build upon previous molecular dynamics (MD) stud-
ies of Nirmatrelvir in complex with 3CLpro, which consistently highlights Nirmatrelvir’s
strong binding affinity and stability within the protease’s active site. Notably, previous
studies have demonstrated that Nirmatrelvir forms robust interactions with critical catalytic
residues, including Cys145 and His41, as well as with other nearby pocket residues, corrob-
orating our findings [27,28,30,49]. Work by de Oliveira Só et al. also reported a reduction
in the RMSD of the Nirmatrelvir-3CLpro complex during simulations, further supporting
our observations of conformational stability [28]. Beyond RMSD, reductions in RMSF,
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Rg, and changes in hydrogen bonding patterns observed in our simulations align with
previous reports of decreased protease flexibility upon Nirmatrelvir binding [28]. These
findings not only corroborate Nirmatrelvir’s stabilizing effect on 3CLpro but also provide
deeper insights into its influence on the protease’s structural dynamics. Moreover, our
MD simulations reveal additional stabilizing interactions, including increased hydrogen
bonding and halogen bonding interactions, which were not observed in earlier docking
studies. This emphasizes the critical role of dynamic analyses in capturing ligand behavior
and provides a framework for optimizing next-generation antiviral inhibitors targeting
SARS-CoV-2 and other coronaviruses.

Molecular interaction analysis revealed that Nirmatrelvir had the strongest inhibitory
effect, which was attributed to its ability to form multiple hydrogen bonds and hydrophobic
interactions within the active site of 3CLpro, particularly with the catalytic residue Cys145.
Deep equivariant generative model sampling and MolProphet molecular interactions also
revealed that Nirmatrelvir emerges as the strongest candidate due to its higher binding
affinity and reasonable confidence scores, supporting its known efficacy as a SARS-CoV-
2 inhibitor. Bofutrelvir presents a promising option, with stable affinities and higher
confidence scores than Nirmatrelvir, indicating good potential for further investigation.
Selinexor shows moderate binding affinity and comparable confidence scores, suggesting
that it may still be effective but might require additional optimization.

Molecular dynamics simulations revealed conformational stability in the Nirmatrelvir-
3CLpro complex, as indicated by a modest reduction in root mean square deviation (RMSD).
SASA analysis showed a slight decrease upon Nirmatrelvir binding, indicating a localized
conformational change primarily near the binding site of the protease structure when
complexed with this inhibitor. Nirmatrelvir also altered the Gibbs free energy landscape of
the 3CLpro. The larger region of low free energy in the unbound 3CL protease suggests that
it is more flexible and dynamic when unbound. This flexibility is reduced upon binding to
Nirmatrelvir, as the inhibitor binding often stabilizes a specific conformation of the protease.
Further, the formation of multiple hydrogen bonds throughout the simulations indicates
strong and stable interactions between Nirmatrelvir and 3CLpro, which may contribute to
its high binding affinity and inhibitory potency. We also identified the atomic coordinates
corresponding to the lowest free energy for the Nirmatrelvir-bound 3CLprotease complex
at a specific time: 186.200 ns for replica 1, 229.880 ns for replica 2, and 150.930 ns and
205.920 ns for replica 3. For the unbound 3CLprotease, the lowest free energy frame was
observed at 125.900 ns. It is important to note that these conformations represent local
stable states due to sampling limitations inherent in molecular dynamics rather than global
minimum free-energy states. Further clustering analysis identified key interactions between
Nirmatrelvir and the active-site residues, particularly the formation of a hydrogen bond
with Cys145. This bond formation is complemented by additional interactions with nearby
residues, further stabilizing the Nirmatrelvir-3CLpro complex.

Bofutrelvir, which shows a relatively lower binding affinity, remains a promising
candidate due to its experimentally determined IC50 value of 53 nM [50] and its mechanism
of targeting the same catalytic residues as Nirmatrelvir [50–53]. Although charge repulsion
with His41 was observed in docking studies, clinical trials using inhalation delivery of
Bofutrelvir suggest it could achieve high concentrations in the respiratory tract, which may
enhance its therapeutic efficacy [51–53]. Selinexor, a selective nuclear export inhibitor [54],
exhibited a comparable binding affinity to Nirmatrelvir, albeit slightly lower. Its ability
to form hydrogen bonds with key residues, such as His41 and Cys145, despite being
designed for other therapeutic uses, highlights its potential for repurposing as an antiviral
agent. Although Selinexor’s primary mechanism differs from that of traditional protease
inhibitors, its interaction with 3CLpro suggests that it may be a viable option for multi-
target antiviral therapies.

While our computational study provides valuable insights into the inhibitory mech-
anisms of these compounds, the limitations of in silico methods must be acknowledged.
Molecular docking and dynamic simulations offer a predictive model; however, the com-
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plexity of biological systems requires experimental validation. In addition, this study
focused on noncovalent interactions to compare the binding energies of these inhibitors.
Future studies should focus on in vitro and in vivo assays to confirm the inhibitory potency
of these compounds and explore the pharmacokinetics and toxicity profiles that are not
fully captured through computational methods.

4. Materials and Method
4.1. Molecular Docking

The molecular structures of three drugs (Nirmatrelvir, Bofutrelvir, and Selinexor) and
the SARS-CoV-2 3CL protease were obtained from the PubChem database and the Protein
Data Bank (PDB ID: 7C6S) [55], respectively. The SARS-CoV-2 3CL protease structure and
drug structures (Nirmatrelvir, Bofutrelvir, and Selinexor) were prepared using AutoDock
Tools version 1.5.7 (The Scripps Research Institute, La Jolla, CA, USA) [56], preprocessed
by removing water molecules, adding hydrogen atoms, assigning Gasteiger charges, and
minimizing energy for docking analysis. Cys145 is a key active-site residue and a nucle-
ophilic target for SARS-CoV-2 Mpro inhibitors [57]. The configuration file was generated
by defining a grid box centered on Cys145 with dimensions of 25 × 25 × 25 Å and a
spacing of 1 Å, carefully adjusted to include adjacent active-site residues. The docking data
were analyzed for protein-ligand complex stability, scoring function values, and molecular
interactions. Important elements, such as hydrogen bonding, charge interactions, and
hydrophobic interactions, were considered when assessing the stability and binding affinity
of each protein-ligand complex.

4.2. Deep Equivariant Generative Model Sampling

To predict 3CL protease conformational changes upon binding of Bofutrelvir, Nirma-
trelvir, and Selinexor, we employed the Neurosnap platform (Neurosnap Inc.—Computational
Biology Platform for Research. Wilmington, DE, USA, 2022. https://neurosnap.ai/, ac-
cessed on 10 October 2024). This web-based bioinformatics tool integrates advanced
computational biology algorithms, including DiffDock and DynamicBound, into a user-
friendly interface. DiffDOCK (https://neurosnap.ai/service/DiffDock-L, accessed on 10
October 2024), a diffusion generative model for molecular docking, was used to dock
Nirmatrelvir, Bofutrelvir, and Selinexor into the active pocket of SARS-CoV-2 Mpro [58].
DiffDOCK applies a diffusion process over the ligand pose transformation manifold to
achieve accurate and efficient docking results, providing a novel approach for studying
ligand-protein interactions. As part of its evaluation process, DiffDock integrates SMINA,
a scoring function used to calculate the affinity score of docked ligand poses [59]. Ad-
ditionally, DynamicBind (https://neurosnap.ai/service/DynamicBind, accessed on 10
October 2024), a deep learning method that uses equivariant geometric diffusion networks,
was employed to construct a smooth energy landscape and facilitate efficient transitions
between equilibrium states during docking [60]. It captures ligand-specific protein confor-
mational changes and handles diverse protein dynamics, offering valuable insights into
protein-ligand interactions.

4.3. MolProphet-Based Compound Targeting

Artificial intelligence (AI) is an effective tool for accelerating drug discovery and
reducing costs during the discovery process. The amino acid Cys145 was targeted for
molecular interactions of Nirmatrelvir, Bofutrelvir, and Selinexor with SARS-CoV-2 Mpro
using the AI-based docking tool MolProphet [61]. It performs a rapid evaluation of a
molecular data set through AI technology. Based on geometric deep learning, it learns
target pocket information and small molecule structure information, and reinforcement
learning is used to sample the receptor flexible conformation while optimizing the binding
conformation of the ligand molecule to predict the minimum free energy of molecule
binding to the target pocket.

https://neurosnap.ai/
https://neurosnap.ai/service/DiffDock-L
https://neurosnap.ai/service/DynamicBind
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4.4. Molecular Dynamics Simulation

The best docking pose for the Nirmatrelvir-3CLpro complex was used as the initial
structure for MD simulations in GROMACS version 2023.2 [62,63]. The ligand parameters
and topology files were generated using the ATB server (https://atb.uq.edu.au/, accessed
on 29 March 2024). The protein-ligand complex was solvated in a cubic box with a 10 Å
buffer filled with TIP3P water molecules. To neutralize the system and mimic physiological
conditions, Na+ and Cl− ions were added using the gmx genion module to achieve an
ionic concentration of 0.15 M. Energy minimization was then performed using the steepest
descent algorithm for 50,000 steps. Equilibration was conducted in two phases: first, the
system was heated from 0 K to 310 K over 100 ps using the NVT ensemble at constant
volume and temperature, with separate temperature coupling groups for the protein-ligand
complex and water_and_ions. During this phase, position restraints with a force constant
of 1000 kJ/(mol nm2) were applied to the protein and ligand using restraint files and
LINCS constraints were used to stabilize all bonds involving hydrogen. Next, 100 ps of
equilibration was performed under the NPT ensemble at constant pressure (1 bar) and
temperature (310 K) using a V-rescale thermostat for temperature coupling and a Berendsen
barostat for pressure coupling to stabilize the density and pressure while maintaining
the same restraints and constraints. These restraints were removed before the production
phase. Production MD simulations were conducted for 300 ns at 310 K, utilizing the
Particle Mesh Ewald (PME) method for long-range electrostatics. A time step of 2 fs was
used, and 30,001 frames were saved throughout the 300 ns production run for analysis.
All simulations were carried out under the same conditions to ensure system stability,
and the resulting trajectories were used for further analysis. We employed root mean
square deviation (RMSD) to quantify structural differences between experimental and
simulated protein structures, and we also used Root Mean Square Fluctuation (RMSF)
to measure the displacement of specific atoms or groups relative to a reference structure.
The radius of gyration (Rg) was used to evaluate the protein compactness and atomic
distribution. Solvent-Accessible Surface Area (SASA) analysis was performed to assess
the protein exposure to the solvent, providing insights into conformational changes and
solvent interactions. The solvation-free energy (∆Gsolv) was also calculated to quantify the
energetic contribution of the solvent interactions. Principal Component Analysis (PCA) was
employed for dimensionality reduction in large datasets to enhance interpretability. The
Gibbs freeeEnergy (GFE) landscape was calculated to visualize the energetic distribution of
the conformational states of the 3CL protease.

4.5. The Solvation-Free Energy (∆Gsolv) Analysis

The solvation-free energy (∆Gsolv) was calculated using the gmx_mpi sasa tool in
GROMACS version 2023.2. The calculation is based on equation [64]:

∆Gsolv = ∑
atoms i

∆σiAi (1)

where ∆σi represents the atomic solvation parameter (ASP) of atom i. Ai represents
the solvent-accessible surface area (SASA) of atom i. The gmx_mpi sasa tool calculates
the SASA by modeling the surface area accessible to solvent molecules and outputs the
solvation-free energy using the -old flag. This approach incorporates contributions from
the hydrophilic and hydrophobic regions, with ASP values predefined in the GROMACS
version 2023.2 library.

4.6. Principal Component Analysis

Principal Component Analysis (PCA) or Essential Dynamics (ED) was conducted for
the 3CL protease alone and the 3CL protease-Nirmatrelvir complex by diagonalizing the
covariance matrix C using the following equation:

Cij = 〈(ri − <ri>) × (rj − <rj>)〉 (i, j = 1, 2, 3,. . ., 3N) (2)

https://atb.uq.edu.au/
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Here, ri represents the Cartesian coordinate, i-th Cα atom, N denotes the number of
Cα atoms, and <ri> indicates the time average for all configurations.

To ensure that the PCA focused on the intrinsic conformational changes of the 3CLpro,
the trajectory was aligned to a reference structure using least squares fitting prior to
the analysis. This alignment removed the effects of global translational and rotational
motions. During the PCA analysis, the gmx_mpi covar tool was used, which automatically
aligns all trajectory frames to the reference structure provided in the input file (md.tpr).
This ensures that the covariance matrix reflects only the internal motions of the system.
After diagonalizing the covariance matrix, gmx_mpi anaeig was utilized to analyze the
eigenvectors and project the trajectory onto the first two principal components.

4.7. Gibbs Free Energy Landscape

The GFE landscape analysis can reveal potential structural and conformational alter-
ations in both the 3CL protease and the 3CL protease-Nirmatrelvir complex. To visually
represent the 2D and 3D conformations, the GFE landscape was projected onto PC1 and
PC2 for the 3CL protease alone and the 3CL protease-Nirmatrelvir complex, respectively.

G (PC1, PC2) = −kBT ln P (PC1, PC2) (3)

The kB, T, and P (PC1, PC2) denote the Boltzmann constant, temperature, and normalized
joint probability distribution for the 3CL protease alone and the 3CL protease-Nirmatrelvir
complex, respectively. A flowchart outlining the data analysis is shown in Figure 10.
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4.8. MM/PBSA Calculations

The binding free energy between 3CLpro and Nirmatrelvir was calculated using the
MM/PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) approach. The molec-
ular dynamics (MD) simulation trajectory was generated using GROMACS version 2023.2,
and frames corresponding to the stable binding state of the ligand were extracted for analy-
sis. The MM/PBSA calculations were conducted in three parts: the molecular mechanics
(MM) component assessed van der Waals and electrostatic contributions, the Poisson-
Boltzmann (PB) component evaluated the polar solvation energy, and the surface area (SA)
component measured non-polar solvation via the solvent-accessible surface area (SASA).
The final, binding free energy was calculated as the sum of these three components across
multiple frames to capture the average interaction energy.
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5. Conclusions

Our comparative analysis of Nirmatrelvir, Bofutrelvir, and Selinexor demonstrated
that all three medications effectively inhibited the main SARS-CoV-2 protease. Notably,
Nirmatrelvir, the active ingredient in Paxlovid, exhibited the highest binding affinity,
highlighting its role as a potent inhibitor of 3CL protease. The binding of Nirmatrelvir
not only stabilizes the 3CLpro but also induces localized structural rearrangements that
likely disrupt enzymatic activity. Our findings support the potential of Nirmatrelvir as
a valuable therapeutic agent against SARS-CoV-2, as it effectively targets critical viral
enzymes necessary for the virus’s life cycle. This research underscores the importance of
precise molecular interactions for the development of effective antiviral strategies.
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