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Abstract: Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have
emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This
paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW)
ME devices, which demonstrate unique capabilities in ultra-sensitive magnetic sensing, compact
antennas, and quantum applications. Leveraging the mechanical resonance of BAW and SAW modes,
ME sensors achieve the femto- to pico-Tesla sensitivity ideal for biomedical applications, while
ME antennas, operating at acoustic resonance, allow significant size reduction, with high radiation
gain and efficiency, which is suited for bandwidth-restricted applications. In addition, ME non-
reciprocal magnetoacoustic devices using hybrid magnetoacoustic waves present novel solutions
for RF isolation, which have also shown potential for the efficient control of quantum defects, such
as negatively charged nitrogen-vacancy (NV−) centers. Continued advancements in materials and
device structures are expected to further enhance ME device performance, positioning them as key
components in future bio-sensing, wireless communication, and quantum information technologies.

Keywords: magnetoelectric (ME) devices; bulk acoustic wave (BAW); surface acoustic wave (SAW);
magnetic field sensors; antennas; isolators; bio-sensing; wireless communication; quantum technology

1. Introduction

Over the past few decades, magnetoelectric (ME) devices, which are based on a
combination of both piezoelectric and magnetostrictive materials, have demonstrated their
potential to miniaturize devices while enhancing functionality. In 2001, ME composites
made of bi-layer laminates were demonstrated, marking a significant development in the
field [1,2]. Since then, numerous ME composite materials and devices have been reported
for various applications [3,4].

The efficiency of ME materials primarily depends on the magnetoelectric coefficient
(α); a higher α indicates a greater response to stimuli [5]. This coefficient is constrained
by the quality of the individual materials and the degree of connectedness between them.
For a given composite material, α can be enhanced when measured at the mechanical
resonance of the device, where it is amplified by the quality factor. Mechanical resonance is
typically achieved by exciting the piezoelectric material, thereby generating a bulk acoustic
wave (BAW) within the device. Numerous BAW-based ME devices, such as sensors and
antennas, have been extensively investigated.

ME magnetic sensors capable of detecting bio-magnetic fields in the pico-Tesla to
femto-Tesla range at room temperature have been demonstrated [6], offering an attractive
alternative to other magnetic sensor techniques, such as magnetoencephalography (MEG),
magnetocardiography (MCG), magnetomyography (MMG), and magnetoneurography
(MNG) [7–9]. Their ultra-compact design makes them ideal for having higher spatial
resolution. Cantilever-based magnetic field sensors towards biosensing using an inverse ME
magnetoelectric effect are well investigated [10–12], with recent developments including
an exchange bias-based magnetic multi-layer structure demonstrating a limit of detection
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(LOD) of 18 pT/Hz1/2 at 10 Hz [13]. More compact designs using nano-plate resonators
capable of simultaneous magnetic field sensing and energy harvesting have also been
demonstrated [14].

ME antennas based on BAW resonators, operating at their mechanical resonance,
present a promising alternative to conventional electromagnetic antennas, which operate at
electromagnetic resonance [15–17]. Operating at acoustic resonance and utilizing magnetic
radiation allow these antennas to be significantly miniaturized without ground plane
effects [18], making them highly useful for applications with strict size constraints, such as
microwave devices and medical implants. Various ME antenna designs are discussed in
the literature, each with its own advantages and limitations. Recent advancements include
antenna arrays for increased gain [19] and solidly mounted resonators for improved power-
handling capacity and stability [20].

Similarly, surface acoustic waves (SAW) can also be excited in piezoelectric substrates
or layers, enabling a range of applications. SAW-based sensors employ various working
principles, such as mass loading for bio-detection or the delta-E effect [21–24] for magnetic
field detection. In these cases, a SAW generated at one end travels to the other, with an
active layer between the delay line on the sensor substrate. The active layer changes the
velocity of the traveling wave as a function of a particular stimulus (e.g., magnetic field),
and this causes a phase shift in the traveling wave. Given the range of SAW devices,
this review focuses on those using ME materials, including applications in magnetic field
sensors, antennas, and isolators. SAW-based magnetic field sensors are well-studied in
the literature, with an emphasis on detecting pico-Tesla-level magnetic fields [25]. Their
high bandwidth makes them ideal candidates for bio-magnetic sensing [22]. An exchange-
biased SAW magnetic field sensor with reduced magnetic noise achieves an improved LOD
down to 28 pT/Hz1/2 at 10 Hz and 10 pT/Hz1/2 at 100 Hz [25], and novel SAW-based ME
antennas have also been reported.

In this work, we start with a foundational overview of BAW and SAW concepts and
a brief overview of the typical ME materials and their critical properties. After this, we
present recent advancements in BAW and SAW technology in ME applications, including
magnetic field sensors, ultra-high and low-frequency antennas, and isolators (Figure 1).
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2. Magnetoelectric Materials for BAW and SAW Devices
2.1. BAW and SAW

Bulk acoustic wave (BAW) and surface acoustic wave (SAW) devices have been widely
used in sensors, actuators, filters, and oscillators, among others [26,27]. For instance, SAW
actuators can repair or quarantine damage in mechanical systems for structural health
monitoring [28] and transport material on microscales, and even nanoscales [29]. On the
other hand, SAW sensors play a significant role in the chemical detection of explosives
and vapors [30–32] and the biosensing of cancers, DNA, antigens–antibodies, biotoxins,
etc. [33–35]. The performance of magnetoelectric devices highly depends on the mechanical
quality factor of the acoustic resonators (the ratio of stored energy to energy loss in one
resonant period), mechanical loss, and dielectric loss of wave modes. The parameters of
the BAW and SAW modes used in ME devices are summarized in Table 1.

BAW is generated by applying an alternating AC voltage on the top and bottom
of a piezoelectric layer. Due to the piezoelectric effect, a standing BAW can be built
up in the thickness direction. Depending on the polarization of displacement, the BAW
can be categorized into thickness-extensional mode with out-of-plane polarization and
thickness-shear mode with in-plane polarization [36]. The resonance frequency is inversely
proportional to the resonator thickness, where the wavelength equals twice the thickness.
A thinner piezoelectric layer leads to a higher operation frequency. Typical BAW resonators
include thin-film bulk acoustic resonators (FBAR) and solidly mounted resonators (SMR).
FBAR is suspended in the air to reduce acoustic loss and enhance the mechanical quality
factor. The suspension of the resonator can be realized by etching the backside of the
Silicon on Insulator (SOI) wafer or etching the Si substrate with XeF2 vapor. Even though
FBAR shows an extremely high mechanical quality factor and can be realized by releasing
the resonator from a substrate [37], it is fragile and suffers from a low power-handling
capability [20]. Compared to FBAR, SMR utilizes an acoustic Bragg reflector composed
of several periods of low impedance (e.g., SiO2, Ta2O5) and high impedance layers (W,
Mo, etc.) to confine the acoustic energy in the acoustic resonator [38]. SMR shows an
advantage of strong power-handling capability [20] but typically has a degraded mechanical
quality factor owing to additional acoustic energy leakage and loss brought about by the
reflector [39]. In addition, the fabrication of such a resonator is complex, and the control
of the surface roughness is crucial to reducing acoustic loss and maintaining the magnetic
properties of the magnetostrictive film on top [40].

SAW devices are composed of two pairs of identical receiving and transmitting inter-
digital transducers (IDTs) on a piezoelectric film (e.g., AlN film on Si) or substrate (e.g.,
bulk single-crystal 128 Y-X cut LiNbO3). By applying a RF voltage on the transmission
(Tx) IDTs, a surface acoustic wave can be generated to propagate towards the receiving
(Rx) IDTs. The displacement magnitude decreases exponentially inside the piezoelectric
materials, and most of the acoustic energy concentrates on the surface. Based on whether
acoustic Bragg reflectors are used, SAW devices can be categorized into SAW delay lines
and SAW resonators. Reflectors can be made of metal or dielectric stripes, grooves, and
ion-implanted stripes [3]. SAW delay lines have a transmission behavior like a sinc function
sin(Nπ( f− f0)T)

Nπ( f− f0)T
, where N, f 0, and T refer to the number of finger pairs, center frequency, and

acoustic travel time between the two IDTs, respectively. SAW delay lines have a relatively
wide bandwidth but exhibit a high insertion loss due to acoustic energy leakage on the
two sides of IDTs [41]. The bandwidth of the SAW delay lines is inversely proportional to
the IDT finger numbers. With the depositions of additional Bragg reflectors, a standing
wave can be formed inside the cavity of the SAW resonator, leading to a high mechanical
quality factor with one sharp transmission peak. Typically, the pitch of Bragg reflectors
is designed to be identical to that of the receiving and transmission IDTs [41]. Compared
to BAW, the resonance frequency of the SAW devices was determined by the IDT design.
The design formula of the resonance frequency, acoustic wavelength, and IDT pitch size
(distance between the center of the two fingers) can be found in Table 1. One big challenge
of SAW devices above 3 GHz is the increase in acoustic and electrical loses. In addition, the
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high frequency needs narrow IDTs that cannot be fabricated by industrial photolithography
and require the use of laser or e-beam photolithography. The weak power handling of the
narrow IDTs make their use challenging for practical applications.

Table 1. BAW and SAW modes in ME devices.

SAW/SAW
Mode BAW Thickness Extensional Mode SAW Rayleigh Wave SAW Love Wave

Resonator
structure and
acoustic wave

profile
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in 1894 [43], the first experimentally reported single-phase ME material was Cr2O3 in 1960 
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2.2. Magnetoelectric Composites and Materials
2.2.1. ME Composites

Magnetoelectric (ME) materials are a special class of materials that can possess more
than one ferroic property. Such materials can simultaneously exhibit ferroelectric and
ferromagnetic properties. The direct ME effect corresponds to a change in electrical polar-
ization in the material when it is subjected to a change in magnetic field, while the converse
effects correspond to a change in magnetization upon changing the electrical field. The
ferroelectric property of the materials is due to the relative shifts between the negative and
positive charges in the materials, which usually require empty d orbitals. On the other
hand, the ferromagnetic effect originates from the spins of the partially occupied d orbitals
in the material. Due to these contradicting requirements, there are very limited naturally oc-
curring single-phase magnetoelectric materials. Though such materials were postulated in
1894 [43], the first experimentally reported single-phase ME material was Cr2O3 in 1960 [44].
Other single-phase bulk ME materials include BiFeO3 [45–47], Aurivillius phases [48–50],
Hexaferrite (Sr3Co2Fe24O41) [51], and layered perovskites (YBa1-xSrxCuFeO5) [52]. Though
few of these materials demonstrate the room temperature bulk ME effect, only BiFeO3 is
considered for actual applications [45–47].

Alternatively, multiferroic ME materials have a combination of inorganic ferroelectric
(piezoelectric) and ferromagnetic (magnetostrictive) materials. This approach has an added
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advantage in that one could optimize/tailor the individual layer for the applications. Thus,
it gives a higher degree of freedom for material selection. Direct piezoelectric materials
produce an electrical charge when subjected to mechanical stress. The magnetostrictive
materials produce a strain in the material when subjected to a magnetic field. When both
these materials are coupled, then such a composite could exhibit a composite ME effect. In
such materials, the ME coefficient depends on the following parameters.

α = d · dm · kc =
∂P
∂H

In the above equation, α is the ME coefficient, which gives the change in polarization
due to the change in the magnetic field; d = ∂P

∂S is the piezoelectric coefficient, which
maps the change in polarization (P) due to the strain (S) in the material. dm = ∂S

∂H is the
piezomagnetic coefficient, and it gives the change in strain (S) in the materials for a change
in the magnetic field (H). kc is the coupling coefficient, which varies from zero to one and
depends on the elastic connectivity between both materials.

In the case of bulk materials, the race to get composites with a high α was initi-
ated by combining particulate mixtures of piezoelectric materials (PbZrTiO3, BaTiO3, and
PbTiO3, among others) and combining with ferrites (NiFe2O4 and CoFe2O4, among oth-
ers). Such composites exhibit α in the range of 1–500 mV/cm Oe [53–57]. The effect
can be enhanced when it is measured at the mechanical resonance. This showed an
increase in α to 6–7 V/cm Oe [58–61]. Another well-explored bulk composites configura-
tion is the 2-2 laminates, where laminates comprising ferromagnetic materials with giant
magnetostriction, such as Terfenol-D [62,63] or amorphous Metglas [64,65], were used in
combination with PZT. In such composites, a high α~5–6 V/cm Oe is demonstrated without
exciting the composites at their resonance.

With the onset of advances in microsystem technology in the early 2000s, the field of
ME composites not only invented novel composites with a high α but also numerous real-
world devices, such as magnetic field sensors, antennas [15], energy harvesters, isolators,
and so on. The most well-researched connectivity explored is the 1-3 nanocomposites,
where the 1D nanomagnetic pillars are embedded in a piezoelectric matrix, and 2-2 bilayer
composites, where both are 2D films on a substrate. The former 1-3 connectivity is supposed
to have a higher α due to its increased surface area between the ferroelectric and magnetic
phases [66,67]. However, leakage currents in the magnetic pillars limit their α to between 20
and 80 mV/cm Oe [68–70]. On the other hand, the 2-2 laminar composites, initially thought
to suffer from substrate clamping, have shown promising results, e.g., AlN/FeCoBSi [71]
and BaTiO3/CoFe/BaTiO3 [72] have shown α = 3–5 V/cm Oe due to perfect coupling. A
further enhancement of α in AlN/FeCoBSi composites to 9.7 kV/cm Oe at resonance in
air and 19 kV/cm Oe at resonance under vacuum was demonstrated [73]. The 2-2 laminar
configuration is most used in the BAW resonators.

2.2.2. Piezoelectric Materials

The piezoelectric materials were first discovered by Pierre and Jacques Curie in 1880
when they saw that certain crystals created an electrical charge when they were subjected
to mechanical compression. Only a year later, in 1881, Gabriel Lippmann predicted the
inverse piezoelectric effect based on the fundamental thermodynamic principle, which
was experimentally demonstrated later by the Curie brothers. The piezo effect occurs in
materials that do not have a center of symmetry. In such materials, without any external
stress, the pseudo-positive and the pseudo-negative centers inside the materials coincide.
However, upon deforming the material, the pseudo-positive and -negative centers are
separated from each other, thus, resulting in creating a dipole movement in the crystal due
to the application of mechanical stress. The fundamental equations that govern the direct
and indirect piezo effect are as follows.

Direct piezo e f f ect : D = ε · E + d · σ
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For indirect piezo e f f ect : S = sE · σ + d · E

where E is the electric field, D is the dielectric displacement, σ is the stress, and S is the
strain field tensors. The ε is the dielectric permittivity, which is a (3 × 3) matrix, while the
sE is the compliance matrix (6 × 6) (which is the inverse of the stiffness matrix). d is the
piezoelectric coefficient, and it is a (3 × 6) matrix. If d = 0, the equations for the direct effect
transform into an equation describing electrical materials, while the indirect piezo effect
transforms into Hooke’s law, which relates mechanical stress with strain. The piezoelectric
matrix is further expanded as:

d =

d11 · · · d16
...

. . .
...

d31 · · · d36


The most important parameters in the matrix are the d31, d32 and d33 elements. The

d33 is the parameter of interest when the piezoelectric material is operated longitudinally
while the d31, d32 are important during transverse operations.

With respect to the BAW and SAW devices, the piezoelectric materials, whether single
crystals or polycrystals, play a crucial role in acoustic wave excitation. In such devices,
the piezoelectric materials are supplied with a RF voltage, which can excite an acoustic
wave in the material. Shown in Table 2 is the list of commonly used piezoelectric materials
for BAW and SAW devices. Though materials like PZT, PMN-PT, and PZN-PT possess
high d33, they have high losses and are not CMOS compatible. Alternatively, materials like
quartz, LiNbO3, and LiTaO3 are well-used for realizing SAW/BAW devices, owing to their
low losses and CMOS compatibility.
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Table 2. (a) Summarizing the important piezoelectric materials and their material properties used in SAW and BAW devices. (b) summarizing low-loss piezoelectric
substrates for SAW and BAW devices.

(a)

Material Piezoelectric Coeff. (pC/N)
Relative Permittivity Density

(Kg/mm3)
Elastic Modulus

(GPa)
tanδ
(%)

Electromechanical
Coupling Efficiency (k2

t )
Comments and Main

Applicationsε11 ε33

PZT d31 =−243 [74] d33 = 574 [74] 2440 [74] 2870 [74] 7500 [3]

C11= C22= 127.2,
C33= 117.4,

C44= C55= 23,
C66 = 23.5 [3]

1.6 [74] 20–35% [74]

Highly used bulk and thin
films (nano-rods) as

sensors, actuators, energy
harvesters, and antennas.

AlN d31 =−2 [3] d33=3.5–4.96 [3] 9.2 [3] 10.1 [3] 3300 [3]

C11= C22= 410,
C33= 389,

C44= C55= 125,
C66 = 130,

C12= C21= 149,
C13= C23= C31
= C32 = 99 [3]

0.025 ± 0.011 [75]

Thin-film bulk acoustic
resonator (FBAR): 7% [76];
contour mode resonator

(CMR): 2% [77];
contour mode Lamb

wave resonator
(CMLR) resonator:

5.33%~7.1% [78–80]

CMOS compatible,
lead-free with very

low loss.

Al1-xScxN
d31 = −2.32−

15.90x + 82.0x2 −
243x3 [81]

d33 = 5.12+
44.4x − 253x2 +

745x3 [81]
-

89.93x +
10.31(1 − x)−
62.48x(1 − x)

[82]

3530 (x = 0.14),
3560 (x = 0.26)

[81,83], 3.806x +
3.255(1 − x)−

0.298x(1 − x) [82]

C11(x) = 410.2(1 − x)+
295.3x − 210.3x(1 − x),
C12(x) = 142.4(1 − x) +
198.6x − 61.9x(1 − x),

C13(x) = 110.1(1 − x) +
135.5x + 78.9x(1 − x),

C33(x) = 385.0(1 − x)−
23.8x − 101.4x(1 − x),

C44(x) =
122.9(1 − x) + 169.5x −

137.3x(1 − x) [84]

0.025~0.1 [85]

Lamb wave resonator:
7.83~10.28% [86,87];

contour mode resonator
(CMR): 3.2%~5% [88];
Sezawa SAW mode:

3.8%∼ 4.5% [89];
Rayleigh SAW: 2%~2.2%

[90]; Thin-film bulk
acoustic resonator (FBAR):

5% ~14% [91]

CMOS-compatible,
lead-free, promising
ferroelectric material

[92–96].

(PMN)0.7-
(PT)0.3

d31 = −1395 d33 = 2000 4963 1386 7800~7820 [97].
C11= 160.4, C12 = 149.6,

C13= 124, C33= 120,
C44= 53, C66 = 28

<1 62%

Typically used in
piezoelectric transducers,
sonar systems, and energy

harvesters. Material
properties from [98].

(PZN)0.92-
(PT)0.08

d31 = −1250 d33= 2500 2900 7700 8315
C11= 115, C12 =

105, C13= 109, C33=
115, C44= 63.4, C66 = 65

1–1.2 50%

Highest d33 allows their
use in ultrasonic devices in
medical industry, actuators,

and energy harvesters,
among others. Material

properties from [98]
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Table 2. Cont.

(a)

Material Piezoelectric Coeff. (pC/N)
Relative Permittivity Density

(Kg/mm3)
Elastic Modulus

(GPa)
tanδ
(%)

Electromechanical
Coupling Efficiency (k2

t )
Comments and Main

Applicationsε11 ε33

ZnO d31 = −5 [99] d33 = 12.4 [99] 9.2 [3] 12.6 [3] 5665~5680
[100,101]

C11= 206, C12 = 118,
C13= 118, C33= 211,

C44 = 44 [102]

0.025~0.05 for RF
sputtered thin
films [103–105].

ALD film:
0.0001~0.002 [106]

ZnO/SiC SAW resonator:
1.5%~3% [107];

FBAR ZnO resonator:
0.5%~3.4% [101]; Lamb

wave resonator:
12.4%~14% [108,109]

Lead free, bio-compatible,
and non-toxic [110]

(b)

Material
Piezoelectric
Coeff. (pC/N)

Relative Permittivity Density
(Kg/m3)

Elasticity
(GPa)

tanδ
(%) Orientation

Electromechanical
Coupling Efficiency (k2

t ) Comments
ε11=ε22 ε33

LiNbO3

d21 = −d22 = −21,
d31 = d32 = −1,

d33 = 6,
d24 = d15 = 68,
d16 = −42 [3]

84 [3] 30 [3] 4650 [26]

C11= C22= 203,
C33= 243,

C44= C55= 59.9,
C66 = 74.8,

C12= C21= 52.9,
C13= C23= C31=

C32= 74.9,
C14 = −C24 =
C41 = −C42 =

C56 = C65 = 9 [3]

0.002–0.004 [111]

41◦ Y cut-X
propagating

Shear-horizontal SAW:
33.54% [112]

High electromechanical
coupling, low dielectric

and acoustic loss, used for
SAW sensors, resonators,

and filters [113]

X-cut Y
propagating

coupled shear
mode surface

acoustic wave (CS-SAW)
on LiNbO3/SiC: 34% [114]

128◦ Y cut-X
propagating

Rayleigh SAW: 5.5% [113];
first-order

antisymmetric (A1)
Lamb mode: 46.4% [115]

LiTaO3

d21 = −d22 = −7,
d31 = d32 = −2

d33 = 8,
d24 = d15 = 26,

d16 = −14 [3]

51 [3] 45 [3] 7465 [26]

C11= C22= 233,
C33= 275,

C44= C55= 94,
C66 = 93,

C12= C21= 46.9,
C13= C23= C31=
C32= 80.2, C14 =
−C24 = C41 =
−C42 = C56 =
C65 = −11 [3]

0.06 [116]

Z cut Longitudinal BAW:
2.7% [117]

Used as a substrate
material for BAW and

SAW devices [118];
Used for shear horizontal

wave based
magnetoacoustic

non-reciprocal RF devices

X cut, 112.2◦–Y
propagating

FBAR: 17.4% [117]; Fast
shear BAW: 21.6% [117]

36 ◦ Y Cut–X
propagating

Longitudinal BAW:
9.9% [117];

Leaky-SAW (L-SAW):
5.7% [119]

42◦ Y Cut
X–propagating

Longitudinal BAW:9.0%
[117]; shear-horizontal

SAW (SH-SAW) on
LiTaO3/SiC: 5.58% [120]
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Table 2. Cont.

(b)

Material
Piezoelectric
Coeff. (pC/N)

Relative Permittivity Density
(Kg/m3)

Elasticity
(GPa)

tanδ
(%) Orientation

Electromechanical
Coupling Efficiency (k2

t ) Comments
ε11=ε22 ε33

Quartz d11= 2.31,
d14= 0.727 [118] 4.52 [118] 4.68 [118] 2560 [26]

C11= 87.26,
C33= 105.8,
C44= 57.15,
C66 = 40.35,
C12= 6.57,
C13= 11.95,

C14 = −17.18
[121]

0.01 [122,123]

ST-cut
(42◦75′ Y-cut,

X-propagating)

Calculated for temperature
sensor 0.14% [124]

Low acoustic loss, and
high resonant frequency

stability over a broad
range of temperatures and
pressures, used for BAW

oscillators (typically
AT-cut quartz with

thickness shear mode) for
frequency control in

communication systems
and clocks and SAW filters

(ST-cut) [118]

AT-quartz
(35◦15′ Z-cut,

X-propagating)

Bulk acoustic wave
devices 8.8% [125]
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2.2.3. Magnetostrictive Materials

The discovery of magnetostriction predates the piezoelectric effect. It was discovered
by James Prescott Joule in 1842 [126], when he observed a change in the dimension of iron
when altering its magnetization. The opposite effect, the Villari effect, was discovered
in 1864 and showed a change in magnetization when there is stress applied to the mate-
rial [127]. The magnitude of the dimensional change is represented by lambda (λ), which is
the ratio of change in length to the original length. λ is a dimensionless number and is
typically reported in ppm. The origin of the effect is in the interaction of atomic magnetic
moments with the elastic bond lengths of the crystal.

Above the Curie temperature, all the magnetic moments in a ferromagnetic material
do not have any magnetic order, and the net magnetization is equal to zero. Upon cooling,
spontaneous magnetization occurs in the material, and all of the magnetic moments align
along the easy axis of the material (due to anisotropy). The sample either shrinks or
expands depending on the sign of the magnetostriction constant, as the magnetic moments
rotate towards or away from the external magnetic field direction. Now, if an external
magnetic field is applied, such that the magnetic domains rotate 90 degrees, then one can
get maximum magnetostriction. However, if the magnetic field is applied, such that the
magnetic moments rotate by 180 degrees, then there is no effective change in the shape
of the sample [128]. The change of magnetostriction as a function of the magnetic field,
dm = ∂λ

∂H , is of interest and is termed the piezomagnetic coefficient. λ increases/decreases
as a function of the external field and saturates when all of the magnetic moments point in
the direction of the external magnetic field. This is termed saturation magnetostriction, λs.
The equations that govern the magnetostriction are given by:

B = µσ · H + dm · σ

S = sH · σ + dm · H

where B is the magnetic induction, H is the magnetic field, and σ is the stress field tensors.
µσ is the permeability at constant stress. sH is the compliance, and dm = ∂λ

∂H is the piezo-
magnetic coefficient of the material. In the above equations, if there is no magnetostriction
(dm = 0), the equations transform to describe classic magnetic materials and stress with
strain (Hooke’s law) relation.

Rare earth-based bulk materials exhibit the highest magnetostriction. This is mainly
due to the partially filled 4f orbitals, which have strong anisotropy [129]. Giant magne-
tostrictions of around 6000 ppm in Dysprosium [130] and 3000 ppm in Terbium [131] were
reported in the 1960s, but the Curie temperature of these materials is well below room
temperature (RT).

The highest RT magnetostriction achieved by far in either bulk or thin films is Terfenol-
D (Tb0.27Dy0.73Fe2). It can demonstrate a λs of around 1840 ppm. It is obtained by com-
bining two different Laves phase materials, TbFe2 and DyFe2, with opposite anisotropies,
which have near-zero magnetic anisotropy [132,133]. Other materials that exhibit high
magnetostriction are Galfenol (Fe81Ga19) [134] and FeSiBMn (Metglas) [135].

In thin films, giant magnetostriction was first reported by Quandt et al. in TbFe/FeCo
multilayers with a saturation field of 20 mT [136,137]. Materials with such low saturation
fields have high industrial relevance. In recent years, increasing studies has focused on
actual devices, such as magnetic sensors, RF filters, and antennas, where materials with
high piezomagnetic coefficients ( δλ

δH ) are particularly important. Thin film magnetostric-
tive materials have a high piezomagnetic coefficient, mainly originating from the absence
of magnetocrystalline anisotropy. A few examples are FeGaB, FeCoBSi, CoFeC, and Fe-
GaC. Table 3 below summarizes the bulk and thin film magnetostrictive materials and
their parameters.
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Table 3. List of magnetostrictive materials in the literature. Also given are the saturation magne-
tostriction and the piezomagnetic coefficient.

λs (ppm) ( ∂λ
∂H )/d33, m

(ppm/Oe)
Crystallography Fabrication

Method
Thermal

Stability (◦C) * Comments/Ref.

Terfenol-D
Tb0.27Dy0.73Fe2

1840 2.4 Single crystal,
bulk Casting 650 highest λs

[133,138,139]

Galfenol
(Fe81Ga19) 395 3 Single crystal,

bulk Casting 700 [134,140]

FeSiBMn
(2605SA1

Metglas, Inc)
27 - Amorphous,

ribbons Melt spinning 395
Low loss, high
permeability

[135,141]

(Fe90Co10)78Si12B10 30 6.3 Amorphous,
thin film

Magnetron
sputtering - Amorphous

thin film [10]

(Co50Fe50)95.2C4.8 60 10.3 Amorphous,
thin film

Magnetron
sputtering 500 [142]

(Fe81Ga19)88B12 75 7
Amorphous,

thin film,
as deposited

Magnetron
sputtering - [143,144]

(Fe81Ga19)88B12 75 12

Amorphous,
thin film,
annealed

@280◦C for
120 min

Magnetron
sputtering -

Highest
piezomagnetic
coefficient [140]

(Fe80Ga20)89C11 81.2 9.71 Amorphous,
thin film

Magnetron
sputtering - [145]

* Thermal stability can either be Curie temperature or in the case of amorphous materials, the temperature the
material forms nano-crystalline order, thus reducing its magnetostriction.

3. Magnetoelectric Sensors

Magnetic sensors are critical components in a wide range of technological applica-
tions due to their ability to detect and measure weak magnetic field signals with high
sensitivity for high-precision measurements. They are crucial in industrial automation,
navigation systems, medical diagnostics, and scientific research. For instance, in biomedical
applications, magnetic sensors enable non-invasive, contactless, flexible, and fast detection
of weak bio-magnetic signals from human organs and tissues, such as nerves, muscles,
brains, and hearts, making them vital in health monitoring and medical diagnosis. Existing
bio-magnetic sensing and diagnosis techniques, including magnetic resonance imaging
(MRI) [146], magnetoencephalography (MEG), magnetocardiography (MCG) [7,147], mag-
netomyography (MMG), and magnetoneurography (MNG) [8,9], have provided real-time
insight into physiological functions like neural and cardiac activities for invaluable data in
both research and clinical environments. In industrial applications, magnetic sensors are
employed for current sensing, position tracking, and detecting flaws in materials. They are
essential for precision control and feedback systems in robotics and automated machinery,
offering robustness in harsh environments like high temperatures and humidity [148].
Magnetic sensors are used for contactless current, angular position, and switch sensing
in green energy power plants such as wind turbines and solar panel farms for optimal
wind power generation. Their applications continue to expand as they become more inte-
grated with emerging technologies like IoT and Industry 4.0 [149,150], further underscoring
their importance.

Over the decades, various magnetic sensors have been intensively investigated and
developed, aiming to improve sensitivity and reduce size, especially for bio-magnetic
applications requiring stable fT-level magnetic sensing over a broad frequency range from
0.01 Hz to 1000 Hz [151–154]. Superconducting quantum interference devices (SQUID) are
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state-of-the-art magnetometers with a fT range magnetic signal sensing capability [155],
which makes them capable of monitoring brain, nerve, skeletal muscle, and heart activities.
However, the requirement for a cryogenic environment provided by liquid helium makes
the operation of SQUID expensive, bulky, and energy intensive. Alternative systems, such
as optically pumped magnetometers, also have similar issues of high complexity and cost
owing to the need for a laser and a gas chamber, despite a superior equivalent magnetic
noise level of below 100 fT/

√
Hz [156–162]. The miniaturization of magnetic sensors

has been realized by advanced micro–nano fabrication techniques, leading to the demon-
stration of giant magnetoimpedance (GMI) sensors [163–168], giant magnetoresistance
(GMR) [169–171] and tunnel magnetoresistance (TMR) sensors [172,173], etc. However,
the notable thermal, flicker-, and spin–torque noise originating from high driving cur-
rent limit the sensing performance of these compact magnetic sensors to the pT/Hz1/2

level [174–177]. The need for miniaturization, low noise, low power, and extremely high
sensitivity has driven the development of the bulk acoustic wave (BAW) magnetoelectric
(ME) sensors [11,147,178–188], which utilize high quality factor (Q) magnetoelectric cou-
pling in a ME composite and realize strain-mediated power-efficient conversion from weak
magnetic signals to voltage outputs. On the other hand, the surface acoustic wave (SAW)
sensor can detect ultra-sensitive magnetic signals owing to the significant transmission
change between SAW transducers in response to the modulus change of magnetostrictive
film [22–25]. The state-of-the-art magnetoelectric magnetometers can enable the detection
of single-digit fT magnetic fields at kHz at room temperature, greatly lowering the cost,
power consumption, and form factor for biomedical magnetometry systems [4,189]. The
following subsections will review the recent progress of BAW and SAW ME sensor fab-
rication, material synthesis, modulation scheme, and detection and noise performance
improvement.

3.1. BAW ME Sensor
3.1.1. Bulk ME Sensors

The BAW ME sensors utilize the direct ME effect to detect the voltage output in the
piezoelectric layer induced by the strain of the magnetostrictive layer under an external
magnetic field signal [4,190,191]. Depending on the sizes of the piezoelectric phase and
the magnetostrictive phase, they can be categorized into bulk and thin-film BAW ME
sensors. The bulk ME sensors are typically composed of ME laminates with one single-
crystal piezoelectric substrate, such as PZT and PMN-PT, sandwiched by an epoxy-glued
magnetic foil like Metglas [192]. Depending on the orientation of magnetization in the
magnetostrictive layer and polarization in the piezoelectric layer, the bulk ME sensors can
operate on different combined modes, including L-L, L-T, T-T, and T-L, where T refers to
transverse and L stands for longitudinal. Since the thickness of the magnetostrictive is
typically much smaller than the lateral dimension, the strong demagnetizing field forces the
magnetostrictive to have in-plane magnetization. Therefore, most bulk ME sensors work
on L-L or L-T modes so that they can exhibit a high ME coupling coefficient αME for high
magnetic field sensitivity. Since αME can realize a 100 times improvement at electromechan-
ical resonance (EMR) [193], the direct detection scheme of the ME voltage at EMR has been
developed, with intensive efforts in boosting αME via geometry optimization [194–198],
novel material development [199,200], and sensor fabrication improvement [201–203]. To
reduce the hysteresis loss and enhance the mechanical quality factor of the ME resonator,
Chu et al. utilized laser treatment on Metglas layers and epoxy-glued them to PMN-PZT
fiber to form a ME sensor. The fiber can concentrate magnetic flux in the magnetic layer,
leading to a high αME of 7000 V/cm Oe. By doping Mn into PMN-PZT, αME can be further
boosted to 12,500 V/cm Oe owing to a more stabilized ferroelectric domain and pinned
domain wall motion. However, the highest ME coefficient of bulk ME sensors is typically
realized at tens of kHz or even higher. This frequency range is beyond the typical magnetic
signal frequency from 0.01 Hz to 1 kHz.
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The highest off-resonant αME of 52 V/cm Oe was realized in PMN-PT single-crystal
fiber laminated with six layers of magnetostrictive Metglas at 1 kHz in multiple L-L
mode [192], as shown in Figure 2a,b. The multiple L-L acoustic mode leads to an alternative
expansion and compression of the lattice in the piezoelectric layer, as shown in Figure 2c.
The multi-push–pull modality in the ME composite was configured by a pair of Kapton
interdigital (ID) electrodes, where the alternating electric field streamline is shown in
Figure 2d. The final Metglas/ID electrodes/PMN-PT ME sensor is shown in Figure 2e.
An extremely low equivalent magnetic noise of 5.1 pT/Hz1/2 @ 1 Hz was realized [64]. A
similar performance of 8.2 pT/Hz1/2 @ 1 Hz was also realized in a 4 × 4 Metglas/Pb (Zr,
Ti) O3 magnetoelectric (ME) sensor array unit in an open environment [188]. By magnetic
frequency conversion (MFC), low limit of detections of 20 pT @1 Hz, 150 pT @ 0.1 Hz, and
200 pT @ 0.01 Hz were demonstrated owing to up-conversion of the frequency band near
EMR for high sensitivity and rejection of low-frequency noise [204]. The details of this
active detection scheme are elaborated upon in Section 3.1.2.
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Figure 2. (a) Schematic diagram of the Metglas/piezo fiber ME sensor configuration, featuring
ID electrodes on the PMN-PT fiber core composite and symmetric three-layer Metglas actuators.
(b) Exploded view of individual components. (c) Illustration of multiple alternating push–pull units
for enhanced ME coupling. (d) Optical microscopy image of a longitudinally poled push–pull element
within the core composite. (e) Photographs of the fully assembled Metglas/piezo fiber ME sensor.
Reproduced with permission from Refs. [17,64]. Copyright 2021 IEEE; Copyright 2011 John Wiley
and Sons.

Despite the success of the direct detection scheme in the realization of pT-level mag-
netic field sensing, a DC bias field typically needs to be applied by permanent magnets
or solenoids on the ends of bulk ME sensors to realize maximum ME coupling and best
sensitivity. The use of magnets makes the device bulky and adds additional magnetic
noise sources and electromagnetic interference [17]. The mutual interference between each
ME sensor also makes the integration of the sensor array challenging [205]. To realize
non-zero ME coupling at a zero-bias field, self-biased ME composites (SMECs) have been
developed in the last two decades. The self-biased ME effect was first discovered in co-
fired LSMO-PZT laminates in 2002 [206], followed by another discovery in Fe–PZT–Fe in
2005 [207]. Existing self-biased ME composites can be classified as functionally graded
FM-based SMECs [207–211], exchange bias-mediated SMECs [200,212], magnetostriction
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hysteresis-based SMECs [208,213,214], built-in stress-mediated SMECs [2,206,215,216], and
non-linear SMECs [217–219]. The detailed development of SMECs can be found in [179].

3.1.2. Thin-Film ME Sensor

Compared to bulk ME sensors suffering from piezoelectric leakage and non-ideal glued
mediated mechanical coupling, thin-film ME sensors realize atomic interfacial bonding
between a magnetostrictive layer and a piezoelectric layer. The thin-film ME sensors
show an ultra-compact size from mm to µm and show great potential for high spatial
resolution magnetic sensing. The EMR of the compact thin-film ME sensors is in the
kHz or MHz frequency range, which is far beyond the frequency band (0.01 Hz~1 kHz)
of the magnetic signal to be detected. The ultra-low sensitivity at off-resonance mode
and high 1/f noise levels make the direct passive detection scheme impractical. Indirect
detection schemes have been developed for the operation of thin-film ME sensors, including
magnetic frequency conversion (MFC), electrical frequency conversion (EFC), and the delta-
E effect [190].

Magnetic frequency conversion relies on the quadratic magnetostriction effect versus
a bias field and converts the low-frequency magnetic signal to the sidebands near EMR to
ensure high magnetic sensitivity for practical magnetic sensing [217,218]. When a driving
modulation AC field at a high-frequency f mod near EMR is applied to the ME sensors
together with the magnetic signal at f sig, the output of the ME sensors includes the prod-
uct of the two signals due to quadratic magnetostriction. The sensor output frequency
spectrum contains f mod − f sig, f mod, and f mod + f sig, where the low-frequency noise is
highly suppressed. However, the modulation magnetic field is typically generated by a
modulation coil, which introduces additional high-frequency noise and high power con-
sumption for driving it. The coil also limits the size miniaturization of the ME sensor
system. To overcome these challenges, electrical frequency conversion has been developed,
which exerts modulated voltage on the piezoelectric layer. The modulated voltage leads
to periodic stress on the magnetostrictive layer and induces additional uniaxial magnetic
anisotropy, affecting magnetization dynamics. Although a modulation coil is not required,
the output electronics must have a large dynamic range to stay outside the saturation
region and provide a strong modulation voltage for detecting very weak magnetic sig-
nals [11,17]. This can restrict the sensor’s ability to detect both very small and very large
magnetic field variations. Electrical frequency conversion introduces noise from electronic
components, like mixers, oscillators, and amplifiers [220]. These components, especially
in low-power systems, are prone to phase noise and thermal noise, which degrade the
sensor’s signal-to-noise ratio (SNR). As a result, the converted signal is often less pure and
contaminated, making it harder to detect weak magnetic fields. The equivalent magnetic
noise performance of the EFC-based ME sensor is limited to several nT/Hz1/2 [11].

For both MFC and EFC, the frequency up-conversion boosts the noise level while
amplifying the magnetic signal. The optimal driving field or voltage is obtained by the
balance between increasing the signal strength and maintaining a manageable noise level.
The frequency up-conversion method often requires more complex circuitry and additional
power to maintain the modulation and detection processes. This can limit its practical
applications in low-power, portable devices or in scenarios where simplicity and energy
efficiency are critical. While the resonance frequency is selected to enhance the detection
capabilities, it also limits the sensor’s performance in a broad frequency range. Tuning to
a specific frequency can make the sensor less effective for detecting magnetic fields that
fall outside of this range. The output signal distortion and the introduction of additional
spurious signals due to non-linear mixing are also problems that need to be addressed.

The delta-E effect is an alternative method that utilizes a resonance frequency shift in
the ME resonator owing to the Young’s modulus change of the magnetostrictive material
under a magnetic field excitation. This method can effectively enhance sensitivity, since the
resonance frequency shift is more sensitive to external magnetic field signal change [221].
The dynamic range of ME sensors can also be enhanced because the sensors can operate on



Micromachines 2024, 15, 1471 15 of 59

multiple mechanical resonance modes [221]. For instance, by applying different adapted
electrode designs on a FeCoSiB (2 µm)/poly-Si (50 µm)/AlN cantilever beam (2 µm), the
first and second transversal bending modes could be excited [221]. The sensitivity was
boosted by a factor of six, and the dynamic range of the sensor output was reduced by
16 dB, which significantly eases the bandwidth requirements of readout electronics. The
wide bandwidth of 100 Hz and an equivalent magnetic noise of 100 pT/Hz1/2 make the
delta-E effect sensors promising for low-frequency magnetic field sensing [221].

Depending on the structure, size, and excitation configurations of the ME sensors,
different bulk acoustic wave modes can be established for magnetic sensing under certain
indirect detection schemes. Based on the structure of the ME sensors, they can be divided
into cantilever-based ME sensors, nanoplate resonator (NPR) ME sensors, nanoplate res-
onator (NPR) array ME sensors, etc. The excited bulk acoustic wave modes and sensor
performances were discussed.

Cantilever-Based ME Sensor

The cantilever-based ME sensors are typically composed of a surface-micromachined
magnetostrictive layer and a piezoelectric layer on both sides of a poly-Si or thermal oxide
Si substrate. The fabrication of cantilever-based magnetoelectric (ME) sensors involves a
multi-step process that integrates both piezoelectric and magnetostrictive layers on the sub-
strates to produce highly sensitive, miniaturized sensors [222], as shown in Figure 3a. The
process typically initiates with the deposition of Ti/Pt layers to form the bottom electrode,
followed by PECVD deposition of SiO2 for electrical isolation. Subsequently, piezoelectric
layers, such as AlN, are deposited and structured using Mo hard masks and selective
etching techniques. Following this, a Cr/Au layer is added to create conduction lines and
electrical bond pads. For the magnetostrictive layer, materials like (Fe90Co10)78Si12B10 are
deposited with Ta seed and capping layers, ensuring both adhesion and enhanced magnetic
response. Finally, a selective silicon etching using XeF2 and TMAH releases the cantilever,
resulting in a high-aspect-ratio structure that responds to magnetic fields with a measurable
piezoelectric output.
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Figure 3. (a) Process flow of cantilever-based ME sensors. (b) Bonding process flow of capped
wafer to effectively improve the mechanical quality factor and reduce the equivalent magnetic noise.
(c) Photographs of ME sensor die on wafer (d) cantilever-based ME sensor with (1) ME cantilever,
(2) etch groove, (3) bond frame, and (4) bond pads. Reprinted with permission from Ref. [222].
Copyright Elsevier 2013.
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The first thin-film cantilever beam AlN/Si/FeCoSiB ME sensor was fabricated by
Jahn et al. in 2011 [223], where a 20 mm × 3 mm silicon cantilever was covered with a
0.3 µm-thick molybdenum bottom electrode and a 1.8 µm-thick piezoelectric AlN on top. A
1.75 µm-thick magnetostrictive FeCoSiB top electrode with an area of 1.6 × 10−5 m2 acted
as a third layer. A 7 mm broad trench was etched to reduce the mechanical resonance
frequency to 330 Hz. The cantilever sensor was clamped onto an epoxy block. The
maximum ME coefficient of 1200 V/cm Oe was realized at a 6 Oe bias field. The noise
of the ME sensor system mainly comes from the intrinsic thermal noise of the ME sensor
and the extrinsic noise of voltage and charge amplifiers. An equivalent magnetic noise
of 5.4 pT/Hz1/2 was obtained at 330 Hz. Compared to the calculated noise spectrum,
additional noise was found to come from magnetic coupling to ambient noise sources,
such as transformers, switching power supplies, electric motors, and external mechanical
vibrations at its bending resonance. A similar surface micromachined cantilever beam with
a stack composed of SiO2/Ti/Pt/AlN/Cr/FeCoSiB was fabricated on a 150 mm Si (1 0 0)
wafer [224], realizing a giant ME coefficient αME = 1000 (V m−1)/(A m−1) in resonance at
2.4 kHz. The resulting static ME coefficient is αME = 14 (V m−1)/(A m−1). In resonance
operation, a sensitivity of 780 V/T and noise levels as low as 100 pT/Hz1/2 have been
reached. The wafer bonding and encapsulation can effectively improve the mechanical
quality factor and reduce the equivalent magnetic noise from 100 pT/Hz1/2 [224] for the
non-encapsulated device to 27 pT/Hz1/2 [222]. Since commonly used glass frit and anodic
bonding require temperatures beyond the 300 ◦C threshold for glass to crystallize and
change properties, a transient liquid phase (TLP) bonding process was specially developed
with a bonding temperature of 260 ◦C [225]. The bonding process is shown in Figure 3b.
The cap wafer and sensor wafer are carefully aligned and loaded into a wafer bonder with a
vacuum pressure of 5×10−5 mbar. By heating to 260 ◦C for 10 min, the melt and solid-liquid
interdiffusion of the thin interlayer led to isothermal solidification, forming a robust bond
between the wafers. The wafer-level packaged (WLP) magnetoelectric MEMS sensors after
dicing were encapsulated [224], as shown in Figure 3c,d. In addition to encapsulation, PZT
films with interdigital transducer electrodes were used as a piezoelectric phase for the Si
cantilever ME sensors based on FeCoSiB films on the backside [186]. The limit of detection
was improved to 2.6 pT/Hz1/2 at the mechanical resonance of ~975 Hz [186], which is only
about 1/3 of the AlN-based ME sensor [147].

To improve magnetic sensitivity, a 1000µm × 200µm poly-silicon (5µm)/Sc-doped
AlN (Al0.73Sc0.27N, 1 µm)/FeCoSiB (2 µm) cantilever ME sensor was developed in 2020 [226].
The 1.38-fold increase in the piezoelectric coefficient and the relative permittivity ratio
between AlScN and AlN [93] nearly doubles the magnetoelectric (ME) voltage coefficient,
from 734 ± 38 V/cm/Oe for AlN ME sensors to 1334 ± 84 V/cm/Oe for AlScN ME sen-
sors [226]. This enhancement is especially beneficial for applications that do not operate
at the noise limit, such as current sensors, where higher sensitivity can reduce demands
on the electronic system, thus lowering production costs [226]. However, the in-resonance
detection limit remains nearly unchanged at 60 ± 2 pT/Hz1/2 for AlScN-based sensors
compared to 62 ± 2 pT/Hz1/2 for AlN-based sensors, as the increased piezoelectric re-
sponse boosts both thermomechanical noise and voltage output. Outside of resonance,
however, the detection limit for AlScN-based devices shows a 1.85-fold improvement [226].
In addition to improving the properties of the piezoelectric layer, the magnetostrictive layer
was improved by direct deposition on the smooth surface of the Si/SiO2 cantilever instead
of on an AlN film [185]. The inverse bilayer ME sensor was enabled by reactive sputtering
of an Al target powered by a 250 kHz pulsing unit in a N2 environment without intentional
substrate heating. The room temperature deposition maintains the amorphous nature and
superior magnetic properties of FeCoSiB, which cannot be realized in the process flow
with high-temperature AlN deposition. A high-quality factor of 310 and ME coefficient
of 5 kV/cm/Oe was realized at an EMR of 867.8 Hz, leading to the lowest equivalent
magnetic noise of ~400 fT/Hz1/2.
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Starting from 2011, MFC has been used in both bulk ME sensors [227] and thin-film
ME sensors [147]. In 2012, Jahn et al. utilized the MFC to realize a 1000-times sensitivity
enhancement from unmodulated 1 µT/Hz1/2 @ 1 Hz to modulated 1 nT/Hz1/2@ 1 Hz.
However, this equivalent magnetic noise is much worse than 7.1 pT/Hz1/2 in direct
measurements due to the undesired additional noise under modulation from Barkhausen
noise originating from magnetization jumps of pinned domain walls near defects. To reduce
the magnetic noise, exchange bias stack 3× (5 nm Ta/3 nm Cu/8 nm Mn-Ir/FeCoSiB) was
first developed in 2013, which can realize a stable single domain state, indicating a well-
defined magnetization reversal by coherent magnetization rotation for the FeCoSiB layer up
to 100 nm with a ME coefficient of ~340 V/cm/Oe [212,228–231]. The structure of the stack
was not altered up to 250 ◦C [229]. In 2015, the Ta 5 nm/Cu 3 nm/MnIr 8 nm/FeCoSiB
200 nm exchanged bias stack-based cantilever ME sensor was first demonstrated under
MFC. Limits of detection of 180 pT/Hz1/2 @ 10 Hz and 300 pT/Hz1/2 @ 1 Hz using MFC
were realized, which is 3 orders of magnitude better than 10 nT/Hz1/2 @10 Hz for a ~3
µm thick non-biased stack [230]. Using this exchange bias multilayer stack, a generalized
numerical model was proposed to examine magnetic excess noise [232], which is the main
noise source that arises with a pumping signal. It was found that the magnetic excess noise
can be reduced by a DC-biased pump signal, thereby enhancing the signal-to-noise ratio
(SNR) and improving LOD.

In the parallel exchange-biased (PEB) antiferromagnetic/ferromagnetic (AF/FM) stack
demonstrated in 2012, limited magnetic domain control can only guarantee a single do-
main state for FeCoSiB thickness below 100 nm [212,228]. Due to the demagnetizing field,
magnetic domains still form in a thick FeCoSiB layer, which limits the maximum achiev-
able sensitivity and results in a poor LOD. In 2019, a cantilever ME sensor based on an
antiparallel exchange bias (APEB) stack was developed, which can lead to single magnetic
domain state formation without magnetic layer thickness restriction. The sensor struc-
ture and magnetic stack are shown in Figure 4a [181]. The Ta (25 nm)/Pt (150 nm)/AlN
(2000 nm)/Cr (5 nm)/Au (100 nm) was sputtered on top of double-sided polished 350µm-
thick thermally oxidized Si, while the APEB stack was deposited on the bottom. The stack
comprises 20 × [Ta(5 nm)/Cu(3 nm)/Mn3Ir(8 nm)/(Fe90Co10)78Si12B10(90 nm)/Ta(5 nm)/
Cu(3 nm)/Mn3Ir(8 nm)/(Fe90Co10)78Si12B10 (110 nm)]. The imbalance of the adjacent Fe-
CoSiB layer thickness leads to the difference in Zeemann energy and switching field of
the two adjacent layers, easing the antiparallel alignment of magnetization and facilitating
an antiparallel magnetostatic coupling of the two layers. The stack was first annealed at
300 ◦C with a 200 Oe field along the short axis of the cantilever to form PEB, as shown in
Figure 4b. A decaying sinusoidal AC magnetic field followed by a linear cooling process
was used to degauss the stack and transit PEB to APEB magnetization due to the mag-
netostatic interaction. The dominant bipolar APEB state was confirmed by the hysteresis
in Figure 4c and field-dependent MOKE images in Figure 4d. The domain rotations in
the APEB and PEB stack are shown in Figure 5a–d. In APEB, a single domain state was
observed on the top surface, while magnetic domains were observed on the edge in PEB
due to the demagnetizing effect. Applying a field along the long axis leads to a coherent
magnetization rotation in the APEB stack without domain wall activity visible. However,
in the PEB stack, immediate domain wall activity and compensated Néel wall structures
are clearly visible. The invisible weak domain wall activity makes the APEB sensor show a
significantly lower flat noise level than PEB (Figure 5f), even though the APEB stack has an
operational frequency shift and a lower maximum magnetic sensitivity in the absence of the
demagnetizing effect (Figure 5e). Under MFC, the noise performance of APEB is improved
by more than one order of magnitude relative to the PEB sensor. In contrast to the PEB
sensor, where the noise level increases steadily with a rising Hmod, the noise level of the
APEB sensor remains stable (Figure 5g). This means the noise level of the APEB sensor
is dictated solely by thermomechanical noise [178,223,233] independent of the detection
scheme, while the PEB sensor still suffers from the dominant magnetic noise. The rejection
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of magnetic noise in the APEB sensor makes it have a LOD as low as 60 pT/Hz1/2 at 10 Hz,
which is half that of the PEB sensor.
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Figure 4. Magnetically modulated cantilever ME sensor with antiparallel exchange bias (APEB) stack.
(a) The sketch illustrates the ME cantilever design with the magnetic field sensing axis indicated. A
cross-sectional view highlights the ME sensor’s structure, showing the Si substrate, a piezoelectric
AlN layer, a Pt and Au electrode, and the magnetostrictive layer. The magnetostrictive layer consists
of a repeated multilayer structure with Ta/Cu seed layers, an antiferromagnetic MnIr layer, and a
magnetostrictive FeCoSiB phase. This structure includes a 20× repeated two-layer configuration. Key
magnetic parameters are indicated, including the uniaxial anisotropy axis Ku, the exchange bias field
Heb, and the magnetic stray field distribution Hstray. (b) A diagram shows the temporal application
of temperature and magnetic field during the annealing process. (c) An inductive measurement
shows the magnetization loop along the alternating EB axis, with a magnetization loop from a parallel
exchange-biased (PEB) sample included for comparison. (d) Magnetic domain (MD) structures
at 300 ◦C after demagnetizing the sensor and achieving a stabilized magnetization state at room
temperature (RT) for the APEB sensor. The alignment of magnetization M, the EB field Heb in the
top layer, the sensor’s magnetic field sensing axis, and the magneto-optical sensitivity (MO) axis are
depicted. Reprinted with permission from Ref. [181]. Copyright 2019 AIP Publishing.

In addition to magnetic excess noise, acoustic and vibrational noise is inherent in
any acoustic mode and has a spectrum in the low-frequency region up to several kHz.
Even though it can be suppressed by the shielded chamber during tests, vibrational noise
cancellation is still necessary for practical applications. In 2016, a tuning fork consisting
of two identical cantilever ME sensors on top and at the bottom of a mounting block was
proposed to strongly reduce the acoustic and vibrational noise by canceling out vibrational
couplings by means of analog signal processing [187,234]. The sensors, which utilize
interdigital (ID) electrodes, comprise a multilayer stack of Ta (5 nm)/FeCoSiB (4 µm)/Si
(300 µm)/ZrO2 (300 nm)/PZT (2 µm)/Cr (5 nm)/Au (100 nm) and work on the first
bending mode at 958 Hz. A limit of detection of ~500 fT/Hz1/2 was realized for the
tuning fork without an artificially added wideband piezoelectric loudspeaker, which is
one order of magnitude better than 5 pT/Hz1/2 for a single cantilever ME sensor. With
the acoustic-disturbing source, the single ME sensor shows two orders of voltage noise
level and LOD decrease, while the turning fork ME sensor only degrades by a factor of
four. To address the wide dynamic range requirement due to the large carrier signal leak to
output under unbalanced magnetostriction characteristics, a carrier suppression technique
was recommended [235]. This technique successfully reduced the carrier signal leakage



Micromachines 2024, 15, 1471 19 of 59

by 60 dB and avoided oversteering the readout electronics, reducing the analog-to-digital
conversion challenges [235].

Micromachines 2024, 15, x FOR PEER REVIEW 18 of 61 
 

 

 
Figure 5. Magnetic domain behavior and noise performance of magnetically modulated cantilever 
ME sensor with antiparallel exchange bias (APEB) stack and PEB stack. (a) A full-sensor view of the 
APEB’s magnetic domain structure, with magnetization directions marked by arrows. Dashed ar-
rows denote the magnetization alignment in the second, non-visible FeCoSiB layer. (c) A full-sensor 
view for the PEB sensor, highlighting differences in magnetic domain patterns compared to APEB. 
(b,d) Provide high-resolution domain images of specific regions at the right cantilever edge (indi-
cated by red dashed boxes in (a,c)) for both APEB and PEB, respectively, illustrating domain behav-
ior with and without an applied magnetic field. (e) The magnetoelectric (ME) coefficient αME changes 
with bias field Hbias at the mechanical resonance frequency fres. (f) Frequency spectra of voltage noise 
density VME for both APEB and PEB sensors under the same modulation Hmod and signal fields Hsig. 
(g) Voltage noise dependency on Hmod, highlighting the sensitivity to modulation field strength. (h) 
and (i) Linearity plots of fres and magnetic frequency conversion (MFC) mode for an ME sensor with 
APEB and PEB phases, respectively. Noise floors and optimal Hbias and Hmod values for resonance 
and MFC modes are indicated, showing comparative sensor performance across configurations. Im-
age reproduced from [181]. 

In addition to magnetic excess noise, acoustic and vibrational noise is inherent in any 
acoustic mode and has a spectrum in the low-frequency region up to several kHz. Even 
though it can be suppressed by the shielded chamber during tests, vibrational noise can-
cellation is still necessary for practical applications. In 2016, a tuning fork consisting of 
two identical cantilever ME sensors on top and at the bottom of a mounting block was 

Figure 5. Magnetic domain behavior and noise performance of magnetically modulated cantilever
ME sensor with antiparallel exchange bias (APEB) stack and PEB stack. (a) A full-sensor view of the
APEB’s magnetic domain structure, with magnetization directions marked by arrows. (c) A full-sensor
view for the PEB sensor, highlighting differences in magnetic domain patterns compared to APEB.
(b,d) Provide high-resolution domain images of specific regions at the right cantilever edge (indicated
by red dashed boxes in (a,c)) for both APEB and PEB, respectively, illustrating domain behavior
with and without an applied magnetic field. Dashed arrows denote the magnetization alignment in
the second, non-visible FeCoSiB layer. (e) The magnetoelectric (ME) coefficient αME changes with
bias field Hbias at the mechanical resonance frequency fres. (f) Frequency spectra of voltage noise
density VME for both APEB and PEB sensors under the same modulation Hmod and signal fields
Hsig. (g) Voltage noise dependency on Hmod, highlighting the sensitivity to modulation field strength.
(h) and (i) show linearity plots of fres and magnetic frequency conversion (MFC) mode for a ME
sensor with APEB and PEB phases, respectively. Noise floors and optimal Hbias and Hmod values
for resonance and MFC modes are indicated, showing comparative sensor performance across
configurations. Reproduced with permission from Ref. [181]. Copyright 2019 AIP Publishing.
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Electrically modulated cantilever ME sensors were first demonstrated in 2016 by
Hayes et al. [11] to mitigate the challenges of MFC in size and energy consumption, po-
tential crosstalk in sensor arrays and external interfering stray fields. In this method, the
low-frequency magnetic signal is shifted to match the mechanical resonance of the sensor,
while the electric modulation frequency is set to either the sum or difference of the reso-
nance and signal frequencies. The sensor consists of an exchange-biased magnetostrictive
multilayer, a non-linear piezoelectric actuation layer, and a linear piezoelectric sensing
layer, as shown in Figure 6a. The electric modulation field is applied to the unpoled PZT
layer showing a hysteretic, quadratic displacement with respect to applied DC voltage and
a non-linear piezoelectric coefficient for EFC, while the linear AlN layer is used to detect
the ME voltage, owing to its low loss tangent and high piezoelectric coefficient [236], as
shown in Figure 6b. The instantaneous slope of the PZT displacement curve determines
the piezoelectric conversion coefficients, which are reflected in the magnetostrictive layer’s
response to small magnetic fields. Consequently, the AlN output voltage carries a signal
resulting from the commutation between the high-amplitude carrier signal and the low-
amplitude magnetic signal, akin to magnetic frequency conversion. Using two distinct
piezoelectric layers provides the added advantage of natural electrical isolation between the
actuation voltage and the readout signal, enabling the potential for operation without the
need for compensation mechanisms. The high piezomagnetic coefficient of the exchange
biased layer at a zero-bias field removes the need to apply a DC bias field to operate at the
maximum magnetic sensitivity point. EFC was realized by applying a modulated voltage
signal at mechanical resonance (fres = f mod = 689 Hz) on the PZT layer when the magnetic
field signal (1 µT, f AC = 2 Hz) was applied in parallel. The output spectrum of the voltage
signal at the AlN layer shows the maximum carrier signal peak at fres from electromechan-
ical coupling to the PZT layer and two sidebands at f mod ± 2 Hz. A limit of detection of
~5 nT/Hz1/2 was obtained, as shown in Figure 6c. When the modulation frequency is set to
fres − fAC = 669 Hz, the LOD slightly increases to ~10 nT/Hz1/2 due to thermal noise [237],
as shown in Figure 6d,e. The advantage of EFC is that it allows the sensor to function
at substantially higher resonance frequencies, which are difficult to reach with magnetic
excitation due to the high magnetic field amplitudes needed. Higher resonance frequencies
are beneficial for achieving wider bandwidths and reducing cross-sensitivity to acoustic
noise and vibrations. A limitation of this approach arises from the resonator’s high-quality
factor, which confines resonance amplification to a narrow frequency range of typically
only a few Hz.

In addition to the AlN layer, the readout can also be performed by a pickup coil wound
around the sensor [238–240]. In 2018, a mechanically decoupled pickup coil was used to
detect the electrically modulated signal at quasi-DC frequencies from a 2 µm AlN/2 µm
FeCoSiB cantilever [12]. The 15th flexural mode at 515.7 kHz and the 19th torsional mode
(U mode) at 520.7 kHz were used to modulate the detected signal at 0.2 Hz, showing a LOD
of 1.2 nT. Utilizing this U mode, a cantilevered mesoscopic ME structure was electrically
excited [10], as shown in Figure 7a,b. The pickup coil senses the modulated magnetic field
owing to the inverse ME effect under a modulated voltage on the piezoelectric layer, which
was buffered by a low-noise, unity-gain buffer amplifier as the final voltage signal output.
By tuning the capacitance, the voltage signal from the U-mode mechanical resonance can be
boosted by about one order of magnitude, as shown in Figure 7c,d. As shown in Figure 7e,
multiple magnetic domains form along the magnetic easy axis, leading to notable magnetic
noise due to the Bakhusen jump and degraded sensor performance. Despite this, the
U mode mechanical resonance (Figure 7f) exhibits a much sharper peak, with a quality
factor (QUM) near 1000, which is about an order of magnitude higher than typical flexural
modes. In flexural modes, oscillation losses are largely due to air damping [241,242],
particularly in long cantilevers whose Q factor rarely exceed a few hundred in ambient
conditions. In contrast, the U mode benefits from inherently reduced air damping, as fewer
air molecules are displaced, allowing it to achieve a higher Q factor and, therefore, superior
resonance sharpness and efficiency. The U mode demonstrates the highest sensitivity to
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small magnetic fields, particularly under moderate excitation levels [13]. The sensitivity
and voltage noise spectrum are shown in Figure 7g,h respectively. The sensitivity at zero
field shows a linear increase with a rising carrier voltage. At low frequencies (<20 Hz),
two regimes are identified based on carrier amplitude. Below 200 mV, the noise increases
only slightly, while above 200 mV, the noise surges by nearly seven times for an additional
100 mV of excitation. As shown in Figure 7i, a magnetic LOD of 210 pT/Hz1/2 @ DC was
realized. Further increasing the signal frequency leads to the improvement of the LOD
from 70 pT/Hz1/2 @ 10 Hz to 50 pT/Hz1/2 @ 53 Hz.
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Figure 6. Electrically modulated ME sensors with AlN layer for voltage output. (a) The schematic
shows a magnetoelectric (ME) composite sample with three active layers: an exchange-biased FeCoSiB
layer serving as the magnetostrictive phase, an AlN layer as the linear piezoelectric phase for readout,
and an unpoled PZT layer as the nonlinear piezoelectric phase for excitation. (b) Displacement–
voltage characteristic curve of the ME cantilever showing responses of both piezoelectric phases
under a DC electric field. (c) The sensor output spectrum from the AlN layer when the PZT layer is
excited at its mechanical resonance frequency of f mod = 689 Hz. (d) Sensor output spectrum from
the AlN layer with the carrier signal frequency f res = f mod = 669 Hz, applied at 20 Hz below the
mechanical resonance. (e) A linearity test under a 10 Hz magnetic field demonstrates that the noise
floor reaches approximately 10 nT/

√
Hz. Reproduced with permission from Ref. [11]. Copyright

2016 AIP Publishing.

In 2024, a low noise exchange bias stack was first used to reduce magnetic noise
in an EFC U-mode cantilever ME sensor with a pick-up coil for the voltage output [13],
as shown in Figure 8a,b. The advanced layer stack design was performed for magnetic
flux closure, where each Ta/Cu/MnIr layer was exchange-coupled to a FeCoSiB layer, as
shown in Figure 8c. The B-H loop is shown in Figure 8d. Around zero magnetic field, a
small hysteresis opening becomes visible due to individual local switching of magnetic
domains at edges or individual switching of domains in the different layers with areas
of different effective anisotropy in the multilayer. The observed nonlinear magnetization
curve constrains the dynamic range of the sensor. In the multilayer exchange bias stack, no
closure domains develop, indicating a dominant stray field coupling between the magnetic
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layers. This potentially leads to a reduction of magnetic noise by reducing the domain wall
density, as shown in Figure 8e. Furthermore, the exchange bias pins the magnetic domain
walls and, thus, reduces or eliminates domain wall mobility. As shown in Figure 8f, the
sideband voltage amplitude increases linearly with the magnetic test signal from 50 pT to
100 nT, where a constant sensitivity of 85 kV/T across the test fields was demonstrated
from 10 to 70 Hz. The detection limits are improved by an order of magnitude to less than
8 pT/Hz1/2 at 10 Hz and 18 pT/Hz1/2 at DC, as shown in Figure 8g.
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Figure 7. Electrically modulated U-mode ME sensors with a picking-up coil for voltage output.
(a) Schematic setup: a composite, embedded in a pickup coil, is shown. The piezoelectric (PE) plate
capacitor functions as the input, while the tuned pickup coil, coupled with an amplifier, provides the
output signal. (b) Circuit representation: the ME composite is modeled as a radiative capacitor. The
pickup coil generates a signal that is buffered by a low-noise, unity-gain buffer amplifier, enhancing
signal integrity. (c) Frequency response analysis: the self-resonant frequency of the pickup coil (with
quality factor Q∼150) and the mechanical resonance frequency (with quality factor Q∼1000, labeled
as UM) are shown. Tuning the system maximizes voltage output at resonance, with de-tuning options
also analyzed. (d) Wide frequency response: a broad response shows coil resonance effects and two
distinct voltage peaks correspond to mechanical resonances of the system. (e) MOKE microscopy
image: the full cantilever length is captured after magnetic field decay, showing magnetization along
the thermally induced magnetic easy axis (Ku). Applied magnetic fields (H) align with the hard axis,
while the left end of the cantilever is fixed to the PCB. (f) Vibrometry measurements showing the
U-mode at 514.8 kHz. (g) Sensitivity at zero field showing a linear increase with rising carrier voltage
amplitude. (h) Voltage noise characteristics versus carrier amplitude. At low frequencies (<20 Hz),
two regimes are identified based on carrier amplitude. Below 200 mV, noise increases only slightly,
while above 200 mV, noise surges by nearly seven times for an additional 100 mV of excitation. Inset
shows the noise spectra for 80 mV and 220 mV cases; the 220 mV excitation exhibits a noticeable
pedestal and increased broadband noise. (i) LOD is assessed across different test frequencies, showing
an exponential noise increase towards the carrier, which limits sensor performance. Reproduced from
Ref. [10].
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Figure 8. Low-noise inverse ME sensor based on electrically modulated U mode and exchange
bias stack with a pickup coil. (a) Schematic of cantilever sensors in the inverse magnetoelectric
configuration, featuring a simplified pickup coil covering the cantilever’s entire free length except
where it connects to the circuit board. The measurement and bias field directions are shown by the
blue arrow, while the orange arrow indicates the magnetic field direction applied during annealing.
(b) Finite Element Method (FEM)-derived deflection of the cantilever in the U mode, depicted
with amplified amplitude to illustrate bending. (c) Diagram of the advanced layer stack design
for magnetic flux closure, showing Ta/Cu/MnIr layers, with each exchange-coupled to a FeCoSiB
layer. The arrows represent potential magnetic flux closure and the preferred magnetization direction
without cantilever excitation. (d) BH-Looper hysteresis curves for heat-treated single-layer (SL) and
multi-layer (ML) samples (8 × 500 nm exchange bias layers) measured along the cantilever’s long axis,
both with a total FeCoSiB thickness of 4 µm. (e) Magneto-optical Kerr micrographs of demagnetized
domain patterns in SL and ML samples along the long axis, with sensitivity axis oriented along the
cantilever’s short side. (f) Sideband amplitude response at several magnetic test signal amplitudes at
10 Hz, demonstrating extended linear behavior. (g) Equivalent magnetic noise density with limit of
detection (LOD) calculated at 10 Hz (blue), 33 Hz (black), and 70 Hz (green), showing noise reduction
and improved LOD at higher frequencies with a constant sensitivity of 85 kV/T across test fields
from 10 to 70 Hz. Reproduced from Ref. [13].
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In 2015, the delta-E effect was first used in a cantilever-based ME sensor [243]. The
cantilever ME sensor is composed of 2 µm AlN and 2 µm FeCoSiB [243]. Operating in the
first or second transversal bending mode at 7.6 kHz or 47.4 kHz, a limit of detection of 140
pT·Hz−0.5 @ 20 Hz under a magnetic bias field and 1 nT·Hz−0.5 @ 20Hz without an external
bias field was achieved [243]. Since the oscillation and vibration magnitude are small
and linear, the interference between different modes can be rejected. In 2016, the adapted
electrodes were developed to improve the sensitivity and reduce the dynamic range [221].
Different electrode designs of Ξ0, Ξ1 and Ξ2 were placed on top of the AlN (2 µm)/polySi
(50 µm)/FeCoSiB (2 µm) cantilever ME sensor, as shown in Figure 9a,b. The first and second
transverse bending modes can be excited, whose deflections are displayed in Figure 9c. The
electrode design Ξ0 demonstrates high efficiency in the primary mode, Φ1, which is evident
from its steep admittance change and significant phase shift, indicating robust energy
coupling in this mode. However, its performance diminishes in the secondary mode, Φ2,
where the response is less pronounced. In contrast, the adapted designs Ξ1 and Ξ2, which
incorporate dedicated electrodes for each mode, provide enhanced operational efficiency
across both modes. This design strategy ensures effective coupling for both Φ1 and Φ2,
optimizing the sensor’s performance across a broader frequency range. The sensor was
mounted on a silicon frame, as shown in Figure 9d. The dynamic range in the second mode
shows a significant enhancement of 16 dB when transitioning from Ξ0 to Ξ2, indicating
improved sensitivity and performance in this mode. The noise spectrums of different
electrode designs at different modes are shown in Figure 9e,f. At low frequencies, noise
levels increase due to resonance amplification, yet the second mode demonstrates superior
performance above 20 Hz. This performance enhancement is especially pronounced with
the optimized electrode design, Ξ2, which achieves a noise level below 100 pT/Hz1/2. This
optimization makes Ξ2 highly effective for maintaining low noise levels in the second mode,
enabling greater sensitivity and stability across a broader operational frequency range.
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Figure 9. Multimode delta-E effect magnetic field sensors with adapted electrodes. (a) Schematic
cross-section of the cantilever beam, (b) top view of the cantilever showing the various electrode
designs, (c) calculated deflection of the cantilever in the first and second transverse bending modes
according to Euler–Bernoulli beam theory, and (d) photograph of the sensing cantilever mounted
within a silicon frame. Effective noise level for the (e) first and (f) second modes. Reproduced with
permission from Ref. [221]. Copyright 2016 AIP Publishing.

NPR ME Sensor

A 215 MHz self-biased ME MEMS magnetic sensor, based on a FeGaB/Al2O3 nano-
plate resonator with precisely engineered inter-digital electrodes (IDEs), utilizes a high-
quality ME MEMS resonator (quality factor, Q = 735) that is highly sensitive to DC magnetic
fields near the electromechanical resonance (EMR), enabling an ultra-sensitive LOD of
approximately 300 pT [180]. Upon applying a DC magnetic field to the ME heterostructure,
the magnetostrictive strain in the FeGaB layer alters its Young’s modulus through the ∆E
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effect, resulting in shifts in EMR frequency and admittance of the MEMS ME resonator. This
energy-efficient self-biased micro-scale MEMS magnetic sensor, based on a magnetostric-
tive/piezoelectric heterostructure, is compatible with CMOS fabrication and is promising
for DC and low-frequency AC magnetic sensing applications.

As illustrated in Figure 10a, a DC magnetic field was generated by Helmholtz coils and
applied along the length direction. Figure 10b reveals the sensor’s layered structure. The
AlN piezoelectric layer is flanked by FeGaB/Al2O3 magnetostrictive layers and Pt IDEs.
The active sensing area (100 µm × 200 µm) is fully covered by IDEs and magnetostrictive
material, as shown in the SEM image in Figure 10c. In this configuration, the extensional
vibration mode is excited in the AlN film, with the EMR frequency given by:

f0 =
1

2W0

√
Eeq

ρeq

where W0 is the pitch width between IDEs, and Eeq and req represent the equivalent Young’s
modulus and density, calculated as Eeq = ∑ Eivi and Eeq = ∑ Eivi, respectively, with Ei, ri,
and vi being the Young’s modulus, density, and volume ratio of each layer in the sensor.
A high EMR frequency of 215 MHz was achieved by optimizing the IDE pitch width,
which facilitated strong ME coupling due to a flat magnetostrictive piezoelectric interface.
Furthermore, the removal of the underlying Si substrate minimized the substrate clamping
effects, enhancing both ME coupling and sensitivity.
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Figure 10. (a) Schematic and (b) layered structure of the ME sensor. Scanning electron microscopy
images of the (c) fabricated MEMS ME sensor and the (d) cross-section. Reproduced from Ref. [180].

Figure 11a depicts the measured admittance and its modified Butterworth–van Dyke
(MBVD) model fit for the ME magnetic sensor, revealing an EMR frequency of 215 MHz.
From the MBVD fit, a quality factor Qm of 735 and an electromechanical coupling coefficient
k2

t of 1.54% were extracted, with the k2
t being comparable to values for traditional AlN

nano-plate resonators with similar electrode designs, while the Qm is substantially higher
than those typically observed in low-frequency ME magnetic sensors. Figure 11b presents
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the MBVD equivalent circuit for the AlN/FeGaB MEMS magnetic sensor, where Rs, C0, and
Rop represent the electrode resistance, ME resonator capacitance, and substrate parasitic
resistance, respectively. Meanwhile, CM, LM, and RM correspond to motional capacitance,
inductance, and resistance [180].
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Figure 11. (a) MBVD model fitting for admittance curve of the ME sensor. (b) The equivalent MBVD
circuit of the ME resonator. (c) Admittance curves of the ME resonator under different DC bias
magnetic fields. (d) EMR frequency and peak admittance amplitude at the resonance frequency
versus DC magnetic fields. Reproduced from Ref. [180].

In Figure 11c, the admittance response to various DC magnetic fields indicates strong
ME coupling, as both the EMR frequency and admittance amplitude are affected by the ∆E
effect. Figure 11d shows the resonance frequency and peak admittance at varying DC bias
fields, where both initially decrease before increasing, correlating with the magnetic loss
associated with domain wall activity. A minimum Qm of 250 was reached at a transition
field of 15 Oe.

NPR Array ME Sensor

Bio-implanted ME sensors are crucial for the contactless monitoring of nerve activity
and disorders in magnetomyography [8,9]. In addition to sensing and recording neural
signals with high spatial resolution and superior LOD in a wide range, the ME sensors
need to efficiently harvest wireless energy to power themselves without batteries and
transmit recorded neutral activity data to outside receivers. In 2017, an ultracompact NPR
ME antenna was demonstrated, showing a LOD of 40 pT at 60.7 MHz [15]. However,
the off-resonance operation at 1 MHz shows a poor LOD above 0.1 µT. Increasing the
number of sensor elements is an effective way to boost the magnetic sensing capability.
In 2021, a smart dual-band NPR array ME sensor/antenna was fabricated, as shown in
Figure 12a,b [14]. The ME sensor consists of three parallel 500 nm AlN/500 nm FeGaB NPR
ME resonators and has a width mode of 63.6 MHz. Each resonator shows an ultracompact
size of 250 µm × 50 µm. The total size of the ME sensor is 250 µm × 174 µm. To boost
the magnetic sensitivity at low frequencies, a MFC technique was applied by a 9.4 µT
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modulation AC magnetic field at 1 kHz. As shown in Figure 12, a sideband modulation
signal of 6.2 × 10−7 V/Hz1/2 was detected at 63.301 MHz, and a 470 pT LOD @ 1 kHz
was demonstrated in Figure 12e. The LOD as a function of the modulation frequency is
shown in Figure 12e. Sub-pico-Tesla LOD was maintained from 100 Hz to 1000 Hz, while
the LOD degrades fast below 100 Hz due to the dominant 1/f noise. This performance
allows the sensor to sense the hundreds of pT-level neutral magnetic field signals at the
pial surface [205]. Moreover, the dual-band ME sensor has a thickness mode of 2.53 GHz,
which can be used for wireless energy transfer. The high wireless power transfer efficiency
with an overwhelming figure of merit (FOM) over other micro-coils make the self-biased
and passive dual-band ME sensors/ultra-high frequency (UHF) antennas promising for
implantable biomedical magnetic sensing applications [14].
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Figure 12. Self-biased NPR array dual-band ME sensor/antenna. (a) A 3D schematic of the ME
sensor/antenna. (b) Optical image of a fabricated smart ME antenna. (c) Power spectrum of
the reflected signal from the ME antenna after demodulation and lowpass filtering. (d) Zoom-
in modulation signal at 1 kHz. (e) Modulated voltage as a function of modulated signal mag-
netic flux density, showing a 470 pT LOD. (f) LOD as a function of modulation signal frequency.
(g) Power transfer efficiency as a function of distance between transmission and receiving antennas.
Reproduced from Ref. [14].

3.2. SAW Thin-Film ME Sensor

There are many SAW-based chemical, temperature, and biosensors available in the
literature. In the current review, only SAW-based sensors that have both the piezoelectric
and magnetostrictive layers are included. There are two types of SAW-based sensor
concepts available, either a delay line [244] or a resonator [245]-type approach. Most of the
demonstrated sensors work with the delay line configuration.

Such sensors consist of interdigital transducers (IDTs), typically made from Cr/Au,
Al, or Ti/Au materials, on top of a piezoelectric layer/substrate (quartz, LiNbO3, and
LiTaO3) and a magnetostrictive layer (for sensing). The basic physics behind the operation
of SAW-based magnetic field sensors is the delta-E effect [21]. An electric signal on the IDTs
produces an acoustic wave at one end of the sensor, and the acoustic wave travels along
the delay line. A highly responsive magnetostrictive layer is present between two delay
lines. The magnetostrictive layer changes Young’s modulus (∆E) or shear modulus (∆G)
when an external sensing magnetic field (Hsense) is present. The change in modulus causes
a change in the velocity with which the acoustic wave travels. Finally, at the other end of
the device, the output IDTs convert this acoustic wave into electrical signals. The delta-E
effect causes a phase shift of the acoustic waves, and this phase shift is a function of the
Hsense. The sensitivity of the sensor is determined by the phase shift that can be caused by
a magnetic field change and is reported with the unit of ‘◦/mT’.

Though the initial SAW-based magnetic sensors were demonstrated in 1987 [244], only
a few investigations followed up. This could be due to the availability and advancement in
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MEMS, piezoelectric, and magnetostrictive materials. Many different studies have been
published in the last decade with a focus on SAW-based magnetic field sensing. Here, we
report a few important ones.

An experimental study showed an increased sensitivity at low magnetic fields when
the magnetic layer was changed from Ni to CoFeB (which exhibits increased magnetostric-
tion) along the delay line of the sensor [245]. Zhou et. al. realized a SAW-based magnetic
sensor using 200 nm TbCo2/FeCo on top of a LiNbO3 substrate. They use a Rayleigh wave
that travels through the delay line. They report a change in the velocity of the wave as
a function of the magnetic field. The discussed theoretical model agreed well with the
experimental results [246].

Love waves, which are purely shear transverse-polarized waves, are widely utilized
in magnetic field sensing, owing to ultra-sensitive response of the incorporated functional
magnetic thin film to the target stimulus. A simulation for the structural sensitivity to the
guiding layer (SiO2) thickness was investigated, and an optimal guiding layer thickness of
4.5 µm was determined and deposited on a ST-cut quartz substrate (Figure 13a) [22]. On
top of this, a 200 nm FeCoSiB soft magnetic layer was deposited. The total sensitivity of the
sensor depends on three different parameters, S = Smag·Sstr·Sgeo, where Smag corresponds
to the change in modulus for a change in magnetic field, limited by the magnetostriction
of the material. The Sstr gives the change in the velocity for a change in modulus. It is
limited by how well the acoustic wave is confined, and finally, Sgeo gives the change in
the phase shift of the acoustic wave for a change in velocity. For the device fabricated the
authors report a sensitivity of 504◦/mT. The magnetic noise floor was plotted as a function
of frequency and the LOD is frequency-dependent (Figure 13b). At 10 Hz a LOD of 250
pT/Hz1/2 and at 100 Hz a LOD of 80 pT/Hz1/2 have been demonstrated with a bandwidth
of 50 kHz [22]. The total sensitivity of the SAW sensor can be enhanced by increasing one
of the three sensitivity parameters. The authors investigated magnetic films with multiple
thicknesses of 25–400 nm [247]. As anticipated, the Smag increases with the thickness, but
the insertion losses also increase at a higher thickness, which influences the LOD. Higher
thickness leads to higher insertion losses, which in turn, increases noise and LOD [247].
They report that, for magnetic field sensing, it is best to keep the thickness between 50 and
250 nm.
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Figure 13. (a) Schematic of the wideband SAW-based magnetic sensor. The sensor is built on a ST–cut
quartz substrate, with SiO2 guiding layer, and FeCoBSi as a sensing layer. (b) The image shows the
frequency vs. amplitude density. The authors report a LOD of 80 pT/Hz1/2 at 100 Hz, a bandwidth
of 50 kHz, and a dynamic range of 120 dB. Reprinted from Ref. [22].
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To further enhance the LOD of the SAW-based sensor, a well-defined magnetic film
orientation is essential. In a 2020 study, the authors investigate different configurations
to enhance the magnetic orientation 1) by depositing the magnetic film under an in-situ
magnetic field (180 Oe) or 2) by depositing film without any field and conducting a magnetic
field (1300 Oe) annealing at 270 ◦C for 30 min after film deposition (Figure 14a,b) [23]. They
analyzed the magnetic properties, sensitivity, and LOD of the different configurations.
They report the highest sensitivity of 2000◦/mT (at 0.1 mT bias field) for the magnetic
field SAW sensor with the in-situ field for magnetic film deposition (Figure 14c). For the
annealed film after deposition, a sensitivity of 17◦/mT (at 10 mT bias field) was obtained
for the corresponding magnetic field SAW sensor. The reason for this difference is that, by
depositing the film under an in-situ field, the precise orientation of the magnetic domains
with low total anisotropy can be realized, which leads to high sensitivity. They also
investigate the corresponding phase noise from which they report different LODs for
different configurations. Once again, the configuration deposited with an in-situ field
gives the best LOD of 70 pT/Hz1/2 at 10 Hz and 25 pT/Hz1/2 at 100 Hz (Figure 14d). It
is reported that the noise at low frequency is dominated by the magnetic noise, and a
multi-layer approach is further proposed to reduce the noise.
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quency. In the study, an anti-parallel alignment of an exchange-biased magnetostrictive 
layer is investigated on an ST–cut quartz substrate. The exchange bias with Ta (5 
nm)/FeCoSiB (100 nm)/NiFe (6 nm)/MnIr (8 nm)/Ta (5 nm) layers was used to reduce the 
fluctuations that are caused by magnetic domain wall motion. An XRD pattern shows that 
the MnIr has a strong (111) texture, which is essential to achieve strong exchange bias, 
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magnetic layer was obtained by depositing the film in situ in the magnetic field. After the 
first layer deposition, the sample was rotated by 180°, and the second layer was deposited 

Figure 14. (a) The illustration of a Love-Wave-based magnetic sensor based on a ST–cut quartz
substrate. (b) The magnetization loops of different configurations of stacks. Note that the one
deposited under the in-situ field has low anisotropy (red) compared to the one with post annealing
after film deposition (blue). (c) The measured sensitivity as a function of the applied DC bias field
for the configuration deposited with in-situ magnetic field. (d) LOD as a function of frequency for
different magnetic orientation configurations. The lowest LOD is from the device with the magnetic
stack deposited with an in situ magnetic field. Reprinted with permission from Ref. [23]. Copyright
2020 AIP Publishing.
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A 2023 study from Schell et al. showed an exchange bias-based SAW magnetic
field sensor (Figure 15a) [25] to reduce the previously discussed magnetic noise at a low
frequency. In the study, an anti-parallel alignment of an exchange-biased magnetostrictive
layer is investigated on a ST–cut quartz substrate. The exchange bias stack with Ta (5
nm)/FeCoSiB (100 nm)/NiFe (6 nm)/MnIr (8 nm)/Ta (5 nm) layers was used to reduce
the fluctuations that are caused by magnetic domain wall motion. A X-Ray Diffraction
(XRD) pattern shows that the MnIr has a strong (111) texture, which is essential to achieve
strong exchange bias. The (111) texture is realized by using a 6 nm NiFe seed layer. The
anti-parallel alignment of the magnetic layer was obtained by depositing the film under an
in-situ magnetic field. After the first layer deposition, the sample was rotated by 180◦, and
the second layer was deposited (Figure 15b). Such anti-parallel exchange-biased magnetic
configuration showed a reduced magnetic domain wall density (Figure 15c) compared to
a single layer, with the top of the magnetic layer showing a single domain state over the
complete film. The sensor was characterized at different powers (0, 10, 15, and 24 dBm).
Such anti-parallel exchange bias stacks lead to an increased sensitivity of up to ~2000◦/mT
from 0 to 15 dBm and achieved the highest sensitivity of 3250◦/mT at 24 dBm. At a higher
excitation power, the increase in sensitivity also increases the insertion losses, which further
reduces the LOD. The LOD as a function of the excitation power is shown in Figure 15d
for different excitation powers. For both 10 Hz and 100 Hz of the carrier frequency, the
LOD first decreases and has a minimum between 5 and 10 dBm and then increases. The
authors report a LOD of 28 pT/Hz1/2 at 10 Hz and 10 pT/Hz1/2 at 100 Hz (Figure 15e) at
5dBm, which is a factor of 2.5 lower compared to the single-layer stack. However, they
point out that the mechanism of the influence of the excitation power on the phase noise
needs further investigations for better understanding.
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pT/Hz1/2 above 10 kHz. Even though the LOD is higher than the SAW sensors produced 
on quartz, the CMOS compatibility could make such a device more practical in industrial 
applications. 

A multifunctional sensor that is operated both in Rayleigh and Love wave mode was 
demonstrated by Yang et al. The sensor consists of a ZnO and SiO2 guiding layer on top 
of a quartz substrate. The ZnO is used here for insulating and impedance-matching pur-
poses. The Rayleigh mode, on the other hand, is sensitive to temperature change, with a 
sensitivity of −37.9 ppm/°C. The temperature difference is insensitive to the Love wave. 
The authors use the Love wave mode for the magnetic field sensing, which is different 

Figure 15. (a) The SAW sensor design consisting of a ST–cut quartz substrate, a SiO2 guiding
layer and an anti-parallel exchange biased magnetostrictive layer (for sensing). (b) The layer
stack of the magnetostrictive layer; it consists of two layers of (Ta/FeCoSiB/NiFe/MnIr/Ta) that
are antiparallel to each other. The NiFe/MnIr induces the exchange bias in the FeCoSiB layer.
(c) The magneto-optical Kerr effect microscope images from the top on a single FeCoSiB layer and
a two-layer anti-parallel exchange bias stack. The image clearly shows the significant reduction in
the domain wall density. (d) LOD plotted as a function of excitation power at 10 Hz and 100 Hz.
Note that the LOD has the lowest value at 5 dBm for both frequencies. (e) Frequency spectrum of
LOD with 5 dBm power. The LOD decreases as frequency increases, and an impressive LOD below
5 pT/Hz1/2 is achieved at 1 kHz. Reprinted from Ref. [25].
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The efforts above focus on SAW-based devices based on quartz substrates. A CMOS-
compatible SAW-based magnetic field sensor was proposed by Meyer et al. [24]. The
sensor used magnetron-sputtered AlScN as a piezoelectric material, showing a LOD of
72 pT/Hz1/2 above 10 kHz. Even though the LOD is higher than the SAW sensors
based on quartz, the CMOS compatibility could make such a device more practical in
industrial applications.

A multifunctional sensor that is operated both in Rayleigh and Love wave mode was
demonstrated by Yang et al. The sensor consists of a ZnO and SiO2 guiding layer on top of
a quartz substrate. The ZnO is used here for insulating and impedance-matching purposes.
The Rayleigh mode, on the other hand, is sensitive to temperature change, with a sensitivity
of −37.9 ppm/◦C. The Love wave is insensitive to the temperature difference. The authors
use the Love wave mode for the magnetic field sensing, which is different from the previous
approaches. Here, the authors measure the shift in the resonant frequency caused by the
sensing magnetic field. They demonstrate a sensitivity of −170.4 kHz/mT for magnetic
field sensing. A wireless sensor read-out system for magnetic field measurement is also
investigated. It works as the sensing magnetic field detunes the SAW resonator, which
can be remotely measured using a reader [248]. More recently, Hu et al. have performed
FEM modeling and demonstrated a SAW-based self-biased magnetic field sensor. The
authors report a strong dependence of resonant frequency on AC magnetic field when
the in-plane uni-axial anisotropy is at an optimal angle (8◦) to the SAW propagation. A
high sensitivity of 630.4 kHz/Oe was measured, showing a capability of detecting vector
magnetic fields [249].

SAW-based magnetic field sensors are a very active research area with many devel-
opments in the last 15 years. Currently, an impressive LOD of 10 pT/Hz1/2 has been
demonstrated at 100 Hz, with a bandwidth of up to 1 MHz [250]. The aim is to further
reduce LOD into the femto-tesla range, which is pivotal to bio-medical applications. How-
ever, to achieve this, there are still some challenges to specifically reduce the 1/f noise at
low frequencies. Going forward, this noise can be reduced by achieving precise control of
the magnetic layer (by using materials with a high piezomagnetic coefficient (CoFeC [142]
or FeGaC [145] or materials with low losses [251–253]) and using piezoelectric materials
with high electromechanical coupling and low dielectric and mechanical damping (LiNbO3
and LiTaO3, which have large piezoelectric coefficients compared to quartz, Table 2).

4. Magnetoelectric Antennas
4.1. BAW ME Antenna

Antennas are an integral part of electrical circuits that enable the transfer of infor-
mation. Conventionally, the antennas are made from conductors, have sizes that are
comparable to the electromagnetic wavelength λ0 of the frequency signal they are trans-
mitting and can be scaled down at maximum to λ0/10 [254]. This size is too large for
certain applications, where the space is limited, e.g., in mobile phones and medical devices.
Moreover, conventional antennas, when mounted parallel to the ground surface, suffer
from the ground plane effect, which results in a reduced antenna gain. In such applications,
magnetoelectric (ME) antennas are very attractive alternatives. As such, antennas operate
at their acoustic resonance, which is determined by their physical size and acoustic velocity,
rather than their electromagnetic resonance. The acoustic wavelength is five orders of
magnitude smaller than the electromagnetic wavelength at a given frequency. Additionally,
the ME antennas do not suffer from the ground plane effect, and the in-phase magnetic
image current further enhances the antenna gain by 3 dB [19].

The active component of a bulk acoustic wave resonator is a ME composite, which
consists of a piezoelectric and magnetostrictive material. The piezoelectric layer of a ME
antenna is sandwiched between the top and bottom electrode, while a magnetostrictive
layer is deposited on top of the sandwiched stack. The resonator can function as an antenna
in the following way. As a transmitter, the RF signal is fed to the piezoelectric layer via top
and bottom electrodes. The signal appropriately deforms the materials via piezoelectric
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effect, and the strain is transmitted to the magnetostrictive material through the coupling
between the two materials. The magnetostrictive material oscillates accordingly due to
inverse magnetostriction (Villari effect) and radiates electromagnetic waves. Alternatively,
the resonator functions as a receiver as a high-frequency magnetic field is radiated on top
of the magnetostrictive layer, which deforms due to the magnetostriction effect. The strain
of the magnetostrictive layer is transferred to the piezoelectric layer and generates the
proportional voltage due to the inverse piezoelectric effect. The BAW ME antennas can pri-
marily be classified into two different types based on their operation configuration, namely
(1) thin-film bulk acoustic resonators (FBARs) and (2) solidly mounted resonators (SMRs).

4.1.1. FBAR

Strain-mediated BAW-based ME antennas were first theoretically reported by Yao
et al. [255] and Chen et al. [256]. The authors report a novel strain-mediated antenna that
has a better radiation performance compared to conventional antennas. Experimentally,
MEMS-based FBAR ME antennas were first reported by Nan et al. in 2017 [15]. Two
different resonators were proposed, including a nanoplate resonator (NPR) which has
a rectangular structure (oscillating along the width), and a FBAR (oscillating along the
thickness). Both of the resonators consist of a piezoelectric AlN layer and a magnetostrictive
FeGaB layer. Air cavities are formed below the resonators by etching substrates, in order to
have excellent acoustic localization. Such a design, though challenging to fabricate, allows
for better oscillation of the resonator. The resonance frequency of the NPR is 60.5 MHz,
as determined by the width of the NPR. A RF coil was used to excite the antenna at its
resonant frequency (Figure 16a). The NPR structure demonstrated α = 6 kV/cm Oe with
an induced peak voltage of 180 µV. A control device was also demonstrated where the
magnetostrictive FeGaB layer was replaced with Cu. This showed a peak-induced voltage
of 18 µV, which is a factor of 10 below the ME NPR counterparts (Figure 16b–e).

The FBAR antenna demonstrated a clear resonance peak at 2.53 GHz (Figure 16f,g).
The frequency is much higher compared to the NPR, as it is resonating along the thickness,
which is one order of magnitude smaller compared to the width of the NPR. The ME FBAR
antenna showed a gain of −18 dBi calculated by the gain transfer method. The authors
compare the resonator performance with a control device, where the FeGaB layer is replaced
with Al while keeping the rest the same. The control sample shows almost no transmission
peaks, as is evident in the S21 and S12 peaks (Figure 16i,j). Thus, the transmission seen in
the ME antenna directly results from the magnetic component (FeGaB).

Recent efforts to increase the gain of the FBAR antennas were demonstrated by using
an antenna array [19]. This work also highlights ground plane immunity and a 3 dB gain
enhancement when the ME FBAR antennas were mounted on top of ground planes of
various sizes (GP1-GP5, Figure 17a,b). Typically, when conventional antennas are placed
close to or in-plane with large conductive substrates, they suffer from the ground plane
effect, leading to suboptimal antenna performance. This is primarily due to the generation
of image currents in the ground plane that are out of phase, which greatly degrades the
antenna’s radiation efficiency. In contrast, ME antennas rely on magnetic radiation and
generate in-phase image currents instead of out-of-phase image currents, which results in a
3 dB gain enhancement, regardless of the ground plane size (GP1–GP5).

The study investigated different ME antenna arrays that have different topologies
including 1 × 1, 1 × 2, 1 × 3, 2 × 2, 3 × 2, 2 × 3, and 3 × 3 (Figure 17c). Increasing the
number of antennas proportionally increases the volume of the magnetostrictive material
and the total available magnetic moment for radiation. The authors expected that, as the
number of antennas increased, the gain, radiation, and bandwidth would improve, since
different structures have slightly varying thicknesses. The antennas consist of an AlN
piezoelectric layer, with a multi-layer stack of FeGaB/SiO2 used as the magnetostrictive
layer. The resonant frequency of the antennas in the array falls between 2.51 and 2.53 GHz,
demonstrating excellent fabrication control.
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and the Butterworth–van Dyke mode, and the inset shows the various parameters. (c) Admittance 
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log-induced voltage in the piezoelectric layer of the control device; the inset shows a zoomed-in 
view of the red circle. (f) Shows the set-up of a FBAR antenna that uses a horn antenna to excite the 
magnetostrictive layer. At the bottom, an SEM picture of the close-up of the FBAR antenna high-
lighting the individual layers (AlN, FeGaB, and Au). (g) Return loss curve (S22) of the ME FBAR 
antenna. The inset shows the simulated displacement of the ME FBAR device at resonance. (h) Re-
turn loss curve (S22) of the control FBAR device when the magnetic layer is replaced with a non-
magnetic Al layer. (i) Shows the transmission (S12) and receiving (S21) behavior of the FBAR antenna. 
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of the peaks compared to the ME FBAR. Image taken from [15]. 
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an antenna array [19]. This work also highlights ground plane immunity and a 3 dB gain 
enhancement when the ME FBAR antennas were fabricated on top of ground planes of 
various sizes (GP1-GP5, Figure 17a,b). Typically, when conventional antennas are placed 
close to or in-plane with large conductive substrates, they suffer from the ground plane 
effect, leading to suboptimal antenna performance. This is primarily due to the generation 
of image currents in the ground plane that are out of phase with the antenna’s radiation 

Figure 16. (a) The illustration of the NPR antenna and the measurement setup. The high-frequency
magnetic field is generated by the RF coil. On the bottom, a SEM picture of the antenna is shown with
different individual layers (AlN, FeGaB, and Au). (b) The admittance curve and the Butterworth–van
Dyke mode, and the inset shows the various parameters. (c) Admittance curve of a control device,
where the magnetic layer is replaced with Cu. (d) The ME coefficient (right) and ME-induced voltage
in the piezoelectric layer as a function of frequency. (e) Analog-induced voltage in the piezoelectric
layer of the control device; the inset shows a zoomed-in view of the red circle. (f) The set-up of a
FBAR antenna that uses a horn antenna to excite the magnetostrictive layer. At the bottom, a SEM
picture of the close-up of the FBAR antenna highlighting the individual layers (AlN, FeGaB, and Au).
(g) Return loss curve (S22) of the ME FBAR antenna. The inset shows the simulated displacement of
the ME FBAR device at resonance. (h) Return loss curve (S22) of the control FBAR device when the
magnetic layer is replaced with a non-magnetic Al layer. (i) The transmission (S12) and receiving (S21)
behavior of the FBAR antenna. (j) Transmission (S12) and receiving (S21) curves of the control FBAR
device; note the sharp reduction of the peaks compared to the ME FBAR. Reprinted from Ref. [15].

The authors observed a non-linear increase in gain as a function of the antenna number
(Figure 17d), mainly due to the mismatched input impedance as the resonator number
increases. Nevertheless, the array with nine individual device elements showed the highest
gain at −17.3 dBi, representing a 10 dBi enhancement compared to the single resonator. The
radiation pattern of the ME antenna arrays follows that of a single ME antenna, with only
the gain being enhanced while maintaining the same directionality. The increase in antenna
size for the 3 × 3 array does not result in a proportional gain enhancement, indicating the
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need for further optimization. However, these efforts to realize such ME antenna arrays
could enable multiband or wideband antennas for applications in wireless communication,
power transfer, and implantable biomedical devices.
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Figure 17. (a) Return loss curve (S11) of the ME FBAR antenna with a resonant frequency of
1.95 GHz and an 8.4 MHz bandwidth mounted on different sizes of ground planes (GP1–GP5).
(b) Transmission (S21) curves of the ME FBAR antennas along with a control device (mounted on top
of a 2 cm × 2 cm plastic substrate). Note the 3 dB gain enhancement of the ME FBAR mounted on
GP vs. control device. (c) Optical images of four ME FBAR antenna array configurations. (d) Gain
enhancement of different antenna configurations, showing a non-linear increase in gain as a function
of antenna number. Reprinted from Ref. [19].

ME antenna bi-layer structures were also investigated for other applications. A Neu-
roRFID investigated by Zaeimbashi et al. consists of a compact ME antenna array with three
NPRs that could simultaneously be used as energy harvesters and magnetic field sensors.
The dual-band device has created a huge interest in the biomedical community [14]. The
resonators have two resonating modes, one along the thickness and the other along the
width of the oscillator. Like the previous FBAR antennas, an air gap between the substrate
and the resonator is created to allow for strong acoustic wave excitation. As the thickness
of the AlN is 500 nm, which is significantly lower than its width of 50 µm, it has a higher
resonance frequency in the thickness mode at 2.5 GHz compared to the width mode at
63.6 MHz. The thickness mode was used for energy harvesting and showed a FOM of
3721, and the width mode was used for magnetic field sensing and allowed for a LOD of
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470 pT/Hz1/2 (for details please check NPR array ME sensor section). Other devices such as
a low-frequency MEMS-based ME magnetic sensor operating at 224 Hz were investigated.
The resonating structure is a 70 µm diameter disk. The devices show a LOD of 800 pT at
1 µV at a resonance frequency of 224 kHz [257].

4.1.2. SMR

The SMR antennas differ from FBAR antennas by having no air gap between the
resonator and the substrate. In the FBAR operation, acoustic localization is achieved by the
air gap. However, in the case of the SMR, a so-called Bragg reflector is used to achieve the
localization. The Bragg reflector consists of alternating layers of materials with high and
low acoustic impendence and acts as an acoustic mirror. The antennas are fabricated on
top of the Bragg reflector to isolate the resonator during excitation. The SMR has multiple
advantages compared to the FBAR, such as no need to release the resonator in fabrication
and increased device robustness.

The concept of SMR-based ME antennas was first proposed by Liang et al. in 2020 [16]
and was more elaborately investigated in 2023 (Figure 18) [20]. The antennas were fabri-
cated on top of a Bragg reflector (layered stack of W and SiO2). A SEM cross-section reveals
the different layers of the antenna (Figure 18a,b). A highly textured ZnO with a Full Width
Half Maximum (FWHM) of 2.29 was used as a piezoelectric material, while a 10-layer stack
of (FeGaB (45 nm)/SiO2 (5 nm)) was used as a magnetostrictive layer. The antennas were
excited with the help of a high-frequency magnetic field Hrf from a horn antenna along
different directions. The maximum gain of −18.8 dBi is demonstrated when the Hrf is
parallel to the easy axis direction, and it shows the lowest gain when the Hrf is parallel to
the hard axis of the antenna. The authors also show an increased power-handling capability,
with the 1 dB compression point at 30.4 dBm for the SMR, compared to 7.1 dBm for the
FBAR counterpart (Figure 18c). Such high power-handling capabilities would allow SMR
antennas to be supplied with higher input power, which could allow for the generation of
stronger electromagnetic (EM) waves. A similar SMR-based antenna was reported by Ma
et al., who demonstrated a SMR antenna working at 4.97 GHz with −25.1 dBi gain capable
of 5G communication [258].
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Figure 18. (a) Cross-sectional view of the SMR ME antenna showing the different layers. The Bragg
reflector (3 × W/SiO2), Pt (bottom electrode), ZnO, and FeGaB layers are evident. (b) Optical image
of the SMR ME antenna. The GSG pads are used to feed the signal during transmission mode or read
out the signal in the receiving mode of the antenna. (c) The power-handling capability of the SMR
ME antenna compared to the FBAR ME antenna. The SMR has a 1 dB compression point at 30.4 dBm
while the FBAR has it at 7.1 dBm. Reprinted from Ref. [20].

Over the last seven years, after the initial experimental evaluation of the BAW FBAR
antennas, there have been significant breakthroughs in the field of ME antennas. The
current research has been established for making antenna arrays with increased gain and
SMR-based robust devices with high power-handling capability. However, for further
enhancement of the antenna’s properties, two approaches can be realized. (1) A more
detailed understanding of the micromagnetic dynamics driven by acoustic wave excitation
must be realized, in particular, the correlation between the magnetic noise and the antenna’s
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properties during transmission and receiving modes. If the magnetic noise plays a major
role, this can be reduced by incorporating exchange bias layers in the magnetic field layer.
(2) Using materials with low losses can enhance the efficiency of the antennas. It is well
demonstrated in the literature that AlN is a CMOS-compatible piezoelectric layer that has
very low losses (tan δ: 0.025% ± 0.011, [75]). On the other hand, typical magnetostrictive
materials have magnetic damping on the order of 10−4–10−3. Replacing them with yttrium
iron garnets (which have a very low damping in the order of 10−5 [259]) would increase
the radiation efficiency.

4.2. SAW ME Antenna

SAW-based ME antennas are a relatively new area of focus with only a couple of
studies published to our knowledge [260,261]. A great advantage of using such SAW-based
devices is that they can operate in the medical implant communication services (MICS)
band (402–405 MHz), which is predominately used for implant communication. BAW-
based NPR antennas that can operate in the MICS band were investigated previously, but
the resulting structures are 8 µm wide, which are challenging to fabricate [262]. Realizing
such 400 MHz FBAR antennas is challenging, as the thickness needed for a piezoelectric
layer to excite is approximately 14 µm, which is challenging to achieve using physical vapor
deposition techniques, such as sputtering or evaporation. Hence, SAW-based antennas
provide an attractive alternative. In a recent 2024 study, Zhang et al. [261], showed a
SAW-based antenna fabricated on top of a LiNbO3 substrate with FeGaB as the magne-
tostrictive component. As shown in Figure 19a–d, the antenna has (measured from the
image 5 mm × 1.5 mm, [261]) increased in area by a factor of 16 compared to the bulk
acoustic resonator (BAR) (SMR—0.67 mm × 0.67 mm, measured from [20]) counterparts.
The proposed design showed an increased gain of −28 dBi at 430 MHz while using a
FeGaB layer of 670 nm. Another new method was proposed to enhance the radiation
of a SAW-based antenna operating at 1.87 GHz. The authors report an enhancement of
efficiency by 70.95 ± 6.4% when a magnetic field was applied [260].
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(b) The optical image of the SAW-based ME antenna. (c,d) Device testing schematic and the associated
radiation pattern of the SAW ME antenna. Reprinted with permission from Ref. [261]. Copyright
2024 IEEE.
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SAW-based ME antennas are relatively new, and there have been limited investigations.
Their large size in comparison with BAW ME antennas gives them a relative disadvantage.
More considerations into device miniaturization and increased gain must be taken.

4.3. Very-Low-Frequency Antennas

Very-low-frequency (VLF: 3–30 kHz) electromagnetic (EM) waves can penetrate dense
conductive media such as earth and water, which makes them ideal for applications such
as underwater communications and navigation, subterranean mapping, underground
communication, and ionospheric remote sensing [19]. However, the long wavelength
(10 km~100 km) of VLF signals requires antennas to be large and have high power con-
sumption. The development of magnetoelectric (ME) antennas based on bulk and surface
acoustic wave resonators has significantly reduced VLF antenna size, scaling down from
several square kilometers to just a few square centimeters [263–265].

The VLF ME antenna concept was first put forward by Sun and Li [266] in 2016, and
a practical device was reported by Dong et al. in 2020 [263]. A communication system
operating at very low frequency (VLF) that employs a magnetoelectric (ME) transmitter
alongside a ME receiver was demonstrated, utilizing a pair of ME heterostructures func-
tioning at their electromechanical resonance (EMR) frequency. The structure and image of
the device are depicted in Figure 20a,b, respectively. This VLF antenna features Metglas
as its ferromagnetic component and lead zirconate titanate (PZT-5) as the piezoelectric
element. By applying an electric field to the PZT fibers’ surface, a surface acoustic wave
(SAW) is generated, with the resonance frequency being determined by the pitch of the
interdigitated electrode (IDE) fingers. The magnetic domain’s rotation, controlled by ME
coupling, acts as the radiation source for the antenna. A notable peak at 23.95 kHz was
observed, with a signal-to-noise ratio (SNR) of 92.3 dB measured, as illustrated in Figure 20c.
The system attained a low limit of detection (LOD) of 180 fT, indicating a high electric field
sensitivity suitable for long-range communication (Figure 20d,e). The expected magnetic
field produced by the ME transmitter is shown in Figure 20e and modeled through a
near-field electric and magnetic dipole approach for the piezoelectric and magnetostric-
tive phases. With a LOD of 260 fT/Hz1/2, a communication range reaching up to 120 m
was accomplished [263]. It is anticipated that a range between 2.5 and 10 km could be
achievable with a compact array consisting of 100 elements. Lastly, Figure 20f reveals that,
as the driving voltage increased from 0.5 to 120 V, there was a rise in both the radiation
intensity and the power consumption. The power consumption reached approximately
300 mW when the voltage reached 60 V. Despite this advancement in VLF communication,
the bandwidth and efficiency of VLF ME antennas are still constrained by relatively low
resonance frequencies at VLF. The authors also introduce a direct antenna modulation
(DAM) by using a non-linear response. With a carrier signal at EMR frequency and a
magnetic modulation signal frequency of 100 Hz, the antenna achieved 29 dB SNR at a
16 m communication distance [263].

In 2022, Dong enhanced the magnetoelectric (ME) antenna by incorporating a higher Q-
factor mechanical resonator using Metglas/PZT-8/Metglas, and by increasing the number
of ME antennas in an array, he achieved a total radiation field of 200 nT at 1 m using
12 antenna array [264]. In the same year, Hu et al. developed a VLF antenna with a
Metglas/PMN-PT structure, obtaining a giant converse magnetoelectric coefficient of
6 Oe·cm/V at 6.3 kHz [267]. In 2023, Du et al. demonstrated the feasibility of using
ME antennas for portable underwater communication, reaching a maximum underwater
propagation distance of 2.2 m [268]. Also in 2023, Fu et al. introduced a bias-free VLF ME
antenna with the structure of annealed Metglas/Metglas/PZT/Metglas/annealed Metglas,
which exhibited a high direct magnetoelectric coefficient (αDME = 107 V/cm·Oe) and a
converse magnetoelectric coefficient (αCME = 9 G/V) without the need for biased magnetic
field [269].
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Figure 20. The VLF ME antenna: (a) A 3D model showing each layer. (b) An optical top view
photograph with the antenna’s dimensions. (c) The measured received signal at the resonance
frequency along with the noise floor. (d) The measured output voltage as the bias field decreases,
showing the limit of detection. (e) Predicted and measured magnetic field distribution as a function
of distance. (f) Radiation field and power consumption of the ME transmitter under varying driving
voltages. Reprinted with permission from Ref. [263]. Copyright 2020 IEEE.

5. Magnetoelectric BAW/SAW Devices for Non-Reciprocity and NV− Center Excitation
5.1. Magnetoacoustic SAW Non-Reciprocal Isolators

Recent advances in integrated nonreciprocal components, such as isolators and cir-
culators, have enabled a gamut of wireless communication/sensing modalities that are
otherwise not possible [270–277]. For instance, isolators can be used to protect on-chip
high-power amplifiers from back reflection. Integrated circulators in conjunction with self-
interference (SI) cancellation technology can enable the feasibility of in-band full-duplex
operation for future wireless systems and networks. Conventional circulators are based
on the constructive or destructive interferences of electromagnetic signals under magneto-
optical Faraday rotation in ferrite materials at different signal ports [278]. The constructive
interference at the first port in one circuitry direction and the destructive interference at the
second port enable the functionality of signal transmission along one circuitry direction
and forbid the other direction [278]. The isolators can be easily realized by adding a per-
fectly matching load at one of the circulator ports. These ferrite-based isolators/circulators
exhibit low insertion loss (<1 dB) and a high power-handling capability of up to tens of
watts [279]. However, the operation requirement of a kOe-level bias field necessitates
the setup of strong permanent magnets or electromagnets, which make the commercial
isolators/circulators bulky and expensive, with high power consumption, manufactur-
ing complexity, and potential electromagnetic interference. The extremely high growth
temperature of thick ferrite material makes the fabrication of these isolators/circulators
incompatible with semiconductor manufacturing techniques.

Emerging efforts in non-magnetic integrated CMOS isolators/circulators have shown
great potential for full-duplex transceivers based on circulators and SI cancelers for wireless
applications [278,279]. However, the non-magnetic integrated CMOS isolators/circulators
exhibit high DC power consumption, ranging from tens to hundreds of milliwatts. For
instance, recently proposed non-magnetic CMOS circulators [270,271,275,276] based on
transistor modulation suffer from high power consumption (40–200 mW), making them
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non-amenable for low-power applications. Additionally, current integrated CMOS non-
reciprocal components exhibit low bandwidths due to their reliance on resonant ring
structures [270,271,275,276]. However, when bandwidth is prioritized, their power han-
dling is compromised [276,280]. Therefore, integrated nonreciprocal technology targeting
low-power applications while exhibiting integrated high-efficiency, high-linearity, and high-
isolation does not exist today and is of great importance for the future IoT-driven world.

In recent years, magnetoacoustic isolators have been widely investigated, which
exhibit substantial nonreciprocity with remarkable power efficiency and CMOS compat-
ibility, showing great potential for low-power and wideband full-duplex wireless radio
systems. Magnetoacoustic non-reciprocal isolators comprise a magnetic stack between
two interdigital transducers on a piezoelectric substrate. By applying a RF voltage on the
transmitting IDT, a surface acoustic wave can be generated and propagate toward the other
IDT. When the surface acoustic wave passes through the magnetic stack, it can interact with
the non-reciprocal spin wave (SW) in the magnetic stack via various mechanisms, including
magnetoelastic coupling [281–283], magnetorotation coupling [284–286], spin-rotation cou-
pling [287–289], and gyromagnetic coupling [290]. Among them, magnetoelastic coupling
and magnetorotation coupling are strong and widely used for magnetoacoustic isolators.
Magnetoelastic coupling refers to the change of magnetization precession under a strain or
vice versa, while magnetorotation coupling arises from reorientating magnetic anisotropy
and dipolar shape anisotropy during SAW-driven lattice rotational motion. The interaction
between SAW and non-reciprocal SW generates magnetoacoustic waves that exhibit a much
higher backward loss rate than the forward one or vice versa. The dramatic difference
between the damping rate of the forward and backward magnetoacoustic waves allows the
signal transmission in one direction and dampens that in the other direction, contributing
to a magnetoacoustic isolator.

Ongoing research strives to enhance non-reciprocity strength and bandwidth while
maintaining high transmission between device ports. Even though the SAW-SW coupling
is inherently non-reciprocal due to helicity mismatch between fixed counterclockwise
magnetization precession and reversible lattice rotational motion chirality [284,291,292],
this non-reciprocity is typically weak and less than 3 dB/mm [291–293] in a magnetic stack
with reciprocal spin wave dispersive relation, such as a single magnetic film.

Various magnetic stacks with non-reciprocal spin wave dispersion have been theoreti-
cally investigated and experimentally demonstrated, including interfacial Dzyaloshinskii–
Moriya interaction (iDMI) stacks (e.g., CoFeB/Pt) [285], dipolar coupled stacks (e.g.,
FeGaB/SiO2/FeGaB) [294], and Ruderman–Kittel–Kasuya–Yosida (RKKY) synthetic anti-
ferromagnets (e.g., CoFeB/Ru/CoFeB) [295], where the key parameters of the correspond-
ing magnetoacoustic isolators are summarized in Table 4. The iDMI stack is typically
composed of a magnetic layer and a heavy metal layer, such as a perpendicular mag-
netic anisotropy (PMA) Ta/CoFeB/MgO/Al2O3 stack [284]. The nonreciprocal behavior
originates from iDMI and SAW-SW helicity mismatch (HM), the interaction between
the chirality of rotational lattice distortions and the magnetization influenced by mag-
netic anisotropies. However, the bandwidth of such non-reciprocity is typically narrow
(10~100 MHz) [296]. Non-reciprocity has also been demonstrated in interlayer dipolar
coupling (IDC) stacks which are composed of two magnetic layers spaced by several
nm thick insulating or conductive layers. As the spacer layer thickness decreases, the
initially uncoupled reciprocal Damon–Eshbach spin wave (SW) modes in the two thin
magnetic layers become coupled through the dipolar stray fields of the spin waves [297].
This coupling gives rise to symmetric (in-phase) modes and the antisymmetric (out-of-
phase) modes [298,299]. The giant non-reciprocity of 48.4 dB/mm has been achieved at
1.435 GHz in the FeGaB (20 nm)/Al2O3 (5 nm)/FeGaB (20 nm) IDC stack with magnetiza-
tion perpendicular to the non-collinear uniaxial anisotropy field directions (~60 degrees to
the SAW propagation direction) [294], as shown in Figure 21. Phase non-reciprocity has
also been realized at the same frequency and bias field condition [300].
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of 1435 MHz when a growth field (HG) was oriented at 60°. Acoustically Driven Ferromagnetic Res-
onance (ADFMR) plots were generated for hybridized SAW/SW traveling in the (A) +z direction and 
(B) −z direction. Resonance absorption, highlighted in blue on the color scale, was observed at the
ADFMR frequency in directions orthogonal to the growth field, where strong magneto-acoustic in-
teraction took place. (C) Field sweeps at ϕ=150° for forward (blue) and reverse (orange) SAW prop-
agation. (D) Field sweeps at ϕ=330° for forward (blue) and reverse (orange) propagation. The isola-
tion was determined by the difference between forward and reverse sweeps under identical static

Figure 21. Experimental results on the giant nonreciprocity effect of hybridized SAW/SW in the
FeGaB/Al2O3/FeGaB multilayer stack on the piezoelectric lithium niobate substrate at the frequency
of 1435 MHz when a growth field (HG) was oriented at 60◦. Acoustically Driven Ferromagnetic
Resonance (ADFMR) plots were generated for hybridized SAW/SW traveling in the (A) +z direction
and (B) −z direction. Resonance absorption, highlighted in blue on the color scale, was observed at
the ADFMR frequency in directions orthogonal to the growth field, where strong magneto-acoustic
interaction took place. (C) Field sweeps at ϕ = 150◦ for forward (blue) and reverse (orange) SAW
propagation. (D) Field sweeps at ϕ = 330◦ for forward (blue) and reverse (orange) propagation. The
isolation was determined by the difference between forward and reverse sweeps under identical
static field conditions. The nonreciprocal power isolation of 48.4 dB was observed. Reprinted
with permission from Ref. [294]. Copyright 2020 The American Association for the Advancement
of Science.

For extremely thin (<1 nm) conductive spacer layers, it is necessary to account for
interlayer RKKY exchange interactions [301,302]. RKKY antiferromagnetic exchange in-
teraction has been theoretically proposed to have a wide non-reciprocal transmission
band [296] and giant isolation strength suitable for wideband non-reciprocal RF isola-
tors, circulators, and phase shifters [303]. Recently, this wide non-reciprocity has been
experimentally demonstrated in a CoFeB/Ru/CoFeB RKKY stack [304], as shown in
Figure 22a,b. A wideband non-reciprocity from 2 to 7 GHz was realized in the CoFeB
(16 nm)/ Ru (0.55 nm)/CoFeB (14 nm) stack, as shown in Figure 22c. The maximum
non-reciprocity reached 10 dB for a 100 µm long magnetic stack at 4.86 GHz, correspond-
ing to 100 dB/mm giant non-reciprocity. By optimizing the thickness of the CoFeB layer,
250 dB/mm giant non-reciprocity was achieved in the CoFeB (16 nm)/Ru (0.55 nm)/CoFeB
(5 nm) stack [295], as shown in Figure 22d. Although synthetic antiferromagnetic (SAFM)
structures have been quite successful, selecting a proper magnetic layer thickness is not triv-
ial due to the trade-off between the IDC and RKKY requirements regarding the magnetic
layer thickness. High IDC benefits from thicker magnetic layers or higher wavenum-
bers to enhance spin wave (SW) nonreciprocity. However, increasing the layer thickness
weakens the RKKY antiferromagnetic coupling. Recently, the magnetoacoustic coupling
between the shear horizontal waves in 36◦-rotated or 42◦-rotated Y-cut X-propagation
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LiTaO3 substrates and spin waves in ferromagnetic or anti-magnetostrictive bilayers has
been investigated [305–307]. A giant non-reciprocity ranging from 60 dB/mm [305] to
82 dB/mm [307] has been realized when the bias field is applied perpendicular to the
SAW propagation direction. The magnetoacoustic coupling in ferromagnetic bilayers [305]
and anti-magnetostrictive bilayers [306,307] provides another practical and technologically
simple system to realize transmission non-reciprocity for RF isolators/circulators.
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nm)/Ru (0.46 nm)/CoFeB (20 nm) stack. (d) A 250 dB/mm giant non-reciprocity achieved in CoFeB 

Figure 22. Wideband and giant nonreciprocity experimentally demonstrated in CoFeB/Ru/CoFeB
RKKY stack. (a) Schematics of magnetoacoustic device. (b) SAW and SW dispersive relation near
wide-band resonance region. (c) Wideband non-reciprocity from 2 to 7 GHz realized in CoFeB
(20 nm)/Ru (0.46 nm)/CoFeB (20 nm) stack. (d) A 250 dB/mm giant non-reciprocity achieved in
CoFeB (16 nm)/Ru (0.55 nm)/CoFeB (5 nm) stack. Image (a–c) is reprinted with permission from
Ref. [304]. Copyright 2024 American Chemical Society; Image (d) is reprinted with permission from
Ref. [295]. Copyright 2023 American Chemical Society.

As shown in Table 4, the demonstration of magnetoacoustic isolators typically yields
a high insertion loss above 25 dB owing to high-order mode SAW harmonics, which is
far from practical applications. Future work should be put into reducing insertion loss by
utilizing fundamental mode IDT electrodes. In addition, a self-biased magnetic stack with
a high magnetic anisotropy field should be developed to eliminate the need for a biased
magnetic field, which necessitates the permanent magnet or electromagnet and makes the
magnetoacoustic isolator bulky with high power consumption and electronic noise.
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Table 4. Summary of the experimentally demonstrated non-reciprocal magnetoacoustic isolators.

Magnetic Stack Piezoelectric
Substrate Mechanism

DC Bias
Field B0

(mT)

Operation
Frequency

f (GHz)

Magnetic
Stack

Length l
(um)

Off Magnetoa-
coustic

Resonance
Insertion Loss

IL0 (dB)

On Magnetoa-
coustic

Resonance
Insertion Loss

ILm (dB)

Non-
Reciprocity
(dB/mm)

Ref.

Ta/CoFeB(1.6 nm)
Y-cut

Z-propagation
LiNbO3

SAW-SW
HM, iDMI 110 6.1 - - - - [284]

CoFeB(5 nm)/Pt
Y-cut

Z-propagation
LiNbO3

SAW-SW
HM, iDMI 21 6.77 750 71 87.5 28 [285]

FeGaB(20 nm)/
Al2O3(5 nm)/
FeGaB(20 nm)

Y-cut
Z-propagation

LiNbO3

IDC 1 1.435 2200 60 65 22 [294]

NiFe(20 nm)/
Au(5 nm)/

CoFeB(5 nm)

Y-cut
Z-propagation

LiNbO3

IDC 21 6.87 500 89 89.8 74 [297]

CoFeB(20 nm)/
Ru(0.46 nm)/
CoFeB(20 nm)

128◦-rotated
Y-cut

X-propagation
LiNbO3

IDC, RKKY 5 1.4 1000 29 33 37 [308]

Pt/Co(2 nm)/
Ru(0.85 nm)/

Co(4 nm)/
Pt

Y-cut
Z-propagation

LiNbO3

IDC, iDMI,
RKKY 60 6.77 750 81 81.75 3 [309]

CoFeB(16 nm)/
Ru(0.55 nm)/
CoFeB(5 nm)

128◦-rotated
Y-cut

X-propagation
LiNbO3

IDC, RKKY 20 5.08 150 81 81.135 250 [295]

Ta(2 nm)/Ru(2 nm)/
CoFeB(16 nm)/
Ru(0.55 nm)/

CoFeB(14 nm)/
Si3N4(3 nm)

Y-cut
Z-propagation

LiNbO3

IDC, RKKY 13.8
3

4.86
6.96

100
45.6
57.8
90.3

45.6
57.8
90.3

60
100
70

[304]

FeCoSi-B(10 nm)/
NiFeCu(10 nm)

36◦-rotated
Y-cut

X-propagation
LiTaO3

substrate

IDC 9 2.33 500 54 69 60 [305]

Ni (16 nm)/Ti (8 nm)/
FeCoSiB(16 nm)/

Ti (10 nm)

42◦-rotated
Y-cut

X-propagation
LiTaO3

IDC 5.7 2.333 500 53 55 82 [307]

5.2. Magnetoacoustic BAW/SAW Devices for NV− Center Excitation

Negatively charged nitrogen-vacancy (NV−) centers in diamonds, comprising a ni-
trogen atom and a nearby lattice vacancy, are quantum spin defects with unique prop-
erties [310]. These centers exhibit extended coherence times exceeding 100 µs at room
temperature [311], exceptional fidelity [312], and facile optical initialization and readout of
quantum states [313]. Combined with their responsiveness to magnetic excitations over a
wide temperature range, these features make NV− centers highly promising for quantum
computing, communication, and information-processing applications [314–316], as well as
for use as non-invasive nanoscale magnetic sensors [317–319].

The coherent manipulation of NV− centers can be achieved via alternating current
(AC) magnetic fields, electric fields [320], and strain waves [321], enabling their function as
hybrid quantum transducers and computational units. Unlike direct AC magnetic field
excitation via microwave antennas, spin wave (magnon) excitations offer long-distance,
coherent control of NV− centers over scales ranging from hundreds of microns to mil-
limeters. Moreover, magnons can deliver 100 times stronger local driving fields with
identical power inputs [322–324]. This power-efficient approach minimizes off-resonant
spin wave noise at high power [325] while preserving the long coherence times required for
magnon-mediated entanglement and communication between NV− center qubits. These
properties facilitate the development of on-chip quantum processors and computational
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units. Furthermore, NV− centers can couple to terahertz optical photons, supporting their
potential as microwave-to-optical quantum transducers that convert GHz qubit excitations
into terahertz photons [326] for long-distance quantum information transfer. Together,
the magnon–NV− and NV−–optic–photon couplings serve as foundational elements for
hybrid quantum networks [327–331].

Phonons, with their extended lifetimes in solid-state systems, also represent excel-
lent information carriers for quantum and coherent information processing. The small
wavelengths of acoustic waves render phonons particularly suitable for on-chip quantum
systems [332]. Strain wave-driven magnon excitations, which are more power-efficient than
microwave-driven methods, can significantly reduce the size of NV−-center-based quantum
transducers. In strong coupling regimes, magnon–phonon interactions lead to magnon–
polaron hybrid states, enabling efficient information transduction between magnon and
phonon systems. This process paves the way for phonon–magnon–NV–photon hybrid
quantum transduction platforms.

Recent advancements have demonstrated the magnetoelectric control of NV− centers
through magnetoelectric coupling in CoFeB/300 µm PMN-PT heterostructures [333], as
depicted in Figure 23. The application of an external voltage (V) to the PMN-PT substrate
induces changes in its electrical polarization, which generates lattice strain. This strain is
transferred to the CoFeB film, altering its magnetic anisotropy, as illustrated in Figure 23a,d.
When a fixed external magnetic field (Hext) is applied along the [100] x-axis, increasing the
voltage from V = Voff to V = Von reverses the polarization (Pz), tuning the magnon band into
resonance with the NV− electron spin resonance (ESR) transitions, as shown in Figure 23b,e.
This magnon band shift arises from the coupling between electric, elastic, and magnetic
orders within the multiferroic heterostructure. Specifically, as the voltage increases from
50 V to 200 V, the anisotropy field (Hk) decreases consistently from Hk = 30 Gauss to
Hk = −22 Gauss, signifying a flipping of the magnetic easy axis from the x to the y direction,
accompanied by the reversal of Pz (Figure 23c). Concurrently, the lowest spin relaxation
rate (Γ1) increases significantly from 25.1 ± 2 [ms]−1 at V = Voff to 102.8 ± 9 [ms]−1 at
V = Von, corresponding to a remarkable 400% tuning of Γ1. This pronounced tunability
of Γ1 underscores the potential of magnetoelectric control to facilitate robust interactions
between magnons and NV− centers in a highly energy-efficient manner.

Surface acoustic wave (SAW) resonators are particularly advantageous for fostering
strong magnon–phonon interactions, as they efficiently concentrate acoustic energy on the
surface, facilitating robust coupling with spin waves. Furthermore, their planar structures
simplify the fabrication process compared to bulk acoustic wave resonators. Recent ad-
vancements in SAW-driven magnon resonance have demonstrated highly localized and
efficient control of NV− centers, achieving Rabi frequencies comparable to those induced by
microwave excitation but with over 1000 times greater power efficiency [322,323]. In a key
experiment, a 20 nm Ni or Co film was positioned between interdigital transducers (IDTs)
operating at a fundamental frequency of 287 MHz [334]. The resulting power absorption
exhibited a fourfold symmetry, peaking at ϕ = 45 degrees, as illustrated in Figure 24a. This
absorption could be tuned using a biased magnetic field applied at 45 degrees, as shown in
Figure 24b. At the fifth harmonic frequency of 1429 MHz, the power absorption exceeded
that observed at both the fundamental and third harmonic frequencies. At this 1429 MHz
frequency, a direct photoluminescence (PL) change in NV− centers was detected, aligning
closely with their excited state resonance frequency (Figure 24c). The observed PL change
is attributed to ferromagnetic resonance (FMR), as no PL signal was recorded at high fields
near the IDT. The intensity of the NV− PL change diminished with the increasing distance
from the leading edge of the magnetic film, which is consistent with signal absorption as
the excitation propagates through the magnetic layer, as depicted in Figure 24d. To enhance
the performance of magnetoelectric SAW (ME SAW) devices, it is imperative to utilize
magnetic materials with low damping and strong magnetoelastic coupling. Additionally,
the confinement and focus of surface acoustic wave energy are crucial for achieving effi-
cient and localized control of NV− centers via SAW-driven magnetic resonance. Recent
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innovations include the application of Gaussian focusing techniques in SAW devices, which
suppress acoustic diffraction loss and significantly enhance the quality factor (Q) to 22,400
at cryogenic temperatures (~30 K) [335]. Moreover, Bragg reflectors have been employed to
enable strong magnon–phonon coupling, achieving a cooperativity of 1.2 [336]. Advancing
the acoustic wave confinement and focusing strategies represents a promising research
direction. Such efforts will support the development of strong magnon–phonon interac-
tions and enable the coherent control of NV− centers, paving the way for hybrid quantum
transducers that integrate magnons, phonons, NV− centers, and photons.
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Figure 23. Magnetoelectric control of NV− center by CoFeB/PMN-PT BAW resonator. (a,d) Schematic
illustration of the quantum spin defects (QSD)-magnon hybrid sample fabricated by dispersing
nanodiamonds containing ensembles of NV− centers on a thin ferromagnetic film of CoFeB on a 300
µm thick PMN-PT ferroelectric substrate. (b,e) Maps of normalized B as a function of ω−k for both
Von and Voff. The black lines enveloping the colormap are the calculated magnon dispersion lines for
bulk modes (k∥M) and surface modes (k⊥M). The dashed colored lines represent the NV− ESR lines
ωNV. (c) FMR frequency (ω0

m) (data in black lines) as a function of applied voltage extracted from
the experimental results for a fixed external magnetic field Hext = 57 G along x-axis. The color map
represents the calculated values of the magnetic noise spectral density Gm(ω, V) for an effective NV−

height dNV = 77 nm. The dashed colored lines represent the maximum spread of the NV− ESR lines
ωNV. The inset shows the detailed measurements of the magnetic anisotropy field as a function of
applied voltage. (f) Measured relaxation rates Γ1 as a function of applied voltage for a fixed Hext =
57 G along the x-axis. The inset shows a schematic illustration of the magnetic anisotropy field for
the two different voltages for a fixed Hext. The dashed line represents the theoretical fit of relaxation
rates Γ1. These figures are reproduced from Ref. [333].
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Figure 24. Energy-efficient and local control of NV− centers by SAW-driven magnon resonance.
(a) Plot of power absorption as a function of applied magnetic field for a 20 nm nickel ADFMR device
at 1429 MHz. The x component of the field is taken to be parallel to the direction of SAW propagation,
and the y component is in-plane and perpendicular to the direction of SAW propagation. The color
bar indicates absorption in decibels per millimeter. (b) Line-cut along the angle of highest absorption
(45◦) showing a large field-dependent attenuation at 287, 861, and 229 MHz. The insets show the
photograph of IDTs, magnetoelastic film, and clusters of nanodiamonds on the measured device.
(c) Change in PL normalized to the DC level for NV− centers located off the ferromagnetic pad (red),
and NV− centers on the pad with zero field (blue) and a high (35.8 mT) applied bias field (green)
(d) NV− PL change in a 20 nm nickel sample as a function of longitudinal position from the edge of
the ferromagnet closest to the excitation IDT at zero applied magnetic field. These figures are repro-
duced with permission from [334]. Copyright 2018 The American Association for the Advancement
of Science.

6. Conclusions and Outlook

Based on a magnetostrictive/piezoelectric composite, BAW and SAW ME devices have
revolutionized sensing, RF, and quantum technologies. BAW and SAW ME devices enable
multiple functionalities, including ultra-sensitive magnetic sensing, high-gain wireless
communications, extremely efficient wireless power transfer, non-reciprocal RF isolation
and circulation, and energy-efficient excitation of quantum defects.

Over the past decade, ME sensors have garnered significant attention as promising
tools for magnetic sensing applications. Utilizing magnetic/electrical frequency conversion
and the delta-E effect, intensive efforts have been put into applying novel piezoelectric or
magnetostrictive materials or stacks, improving piezoelectric or magnetostrictive material
properties, electrode or sensor structure designs, and identifying and reducing thermal,
magnetic [337], and acoustic noise [338]. Tens of pT magnetic noise performances have
been realized in the low-frequency band for detecting bio-magnetic signals. Thin-film ME
sensors offer low-profile, high spatial resolution, and contactless measurement options
compared to electrode-based systems. Demos in magnetocardiography (MCG) and mag-
netic particle mapping (MPM), magnetoneurography (MNG), and magnetomyography
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(MMG) have been developing [7,8,14,15,339–342]. However, a sensitivity gap still exists
between thin-film ME sensors and leading magnetometers, like SQUIDs and optically
pumped magnetometers (OPMs). To narrow this gap, it is crucial to develop low-noise,
soft magnetostrictive thin films with giant piezomagnetic coefficients and piezoelectric
materials with a high mechanical quality factor [343], since the SNR of ME sensors in
resonance mode increases by Qm

1/2 and the SNR increases by Qm
3/2 for the delta-E op-

eration scheme [233,242,343]. In addition, acoustic mode optimization is also important.
It has been demonstrated that second-order bending modes increase magnetic sensitivity
compared to first-order modes due to the lesser impact of inhomogeneous internal stray
fields and the weighting of local properties [344]. ME resonators with innovative structures
and vibration modes at higher frequencies and high-quality factors can significantly boost
signal-to-noise ratios (SNR). Controlling intrinsic noise in ME sensors also requires care-
fully managing magnetic domain activity, which can be achieved through engineering the
magnetic layers and optimizing the excitation fields. Novel acoustic noise rejection and
signal-processing techniques should be developed to reduce the need for bulky acoustic
shielding chambers and reduce electronic noise, which is now limiting the performance
of ME sensors. ME sensor array technology should also be investigated with effective
crosstalk and interference rejection to increase screen time and ensure data accuracy and
diagnosis reliability. Next-generation ME sensors should aim to reach detection limits in
the femto-Tesla range across a wider frequency range (from 0.01 Hz to 1 kHz), which is
achievable with innovative ME sensor designs and advanced noise-cancellation techniques.

Compared to conventional electrical antennas, whose sizes are limited by electromag-
netic wavelength in meter-level at GHz frequencies, ME antennas exhibit an ultra-compact
size, ground plane immunity and 3 dB gain enhancement owing to magnetic dipole ra-
diation. FBAR, SMR, and SAW ME antennas with different resonator structures and
BAW/SAW acoustic modes have been demonstrated, with advancement in antenna gain,
power-handling capability, radiation efficiency, and ground plane immunity. ME anten-
nas with multiple functional bands for wireless communication, energy harvesting, and
magnetic field sensing have been developed. Future work should be put into ME antenna
array technologies to further increase the antenna gain and widen the bandwidth with ME
resonator disks with different resonance frequencies. In addition, magnetic stacks with high
self-biased resonance frequencies and piezoelectric materials with high electromechanical
coupling should be integrated to realize strong magnon–phonon coupling at a zero-bias
field, which has been theoretically demonstrated to boost antenna gain, radiation efficiency,
and bandwidth [345]. To realize this, low-damping magnetic materials should be used
in ME antennas with a CMOS-compatible integration method. For instance, integrating
YIG films via ion implantation [346–349] onto piezoelectric layers should be explored for
developing energy-efficient ME antennas.

Wideband and giant non-reciprocity have been demonstrated in magnetoacoustic
devices where the Rayleigh surface acoustic wave interacts with non-reciprocal spin
waves in magnetic stacks, including interfacial DMI stacks (e.g., CoFeB/Pt) [285], dipolar-
coupled stacks (e.g., FeGaB/SiO2/FeGaB) [294], and RKKY synthetic antiferromagnets
(e.g., CoFeB/Ru/CoFeB) [295]. Future efforts need to be put into the investigation of
non-reciprocal spin waves with other SAW modes, like Sezawa mode [350], reducing the
insertion loss by fundamental mode SAW, self-biased non-reciprocity without the need
for external magnets, and system design of multiple magnetoacoustic devices, to realize
wideband non-reciprocity from 2 to 16 GHz.

Efficient control of quantum defects such as NV− centers has been realized in BAW and
SAW devices with 1000 times less power than microwave excitation. Future research should
aim to achieve a heterogeneous integration of low-loss magnetic materials in ADFMR
devices to facilitate NV− center manipulation within diamond crystals. This approach
seeks to preserve the spin wave amplitude and propagation distance while enhancing the
relaxation time (T1) and coherence time (T2) of the NV− centers and ensure that quantum
information, initially transferred from acoustic phonons and stored in magnons, maintains
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sufficient longevity without significant decay or loss due to relaxation or decoherence.
Extended T1 and T2 ensure the robust amplitude and extended propagation distance of
spin waves and enable the long-distance transmission of quantum information across
diverse storage and processing platforms through magnons. Fundamental mode SAW near
2.87 GHz should be utilized to excite spin waves in a magnetic stack for the excitation of
NV− center ground states, which have a much longer lifetime than the excited states. A
careful design should be conducted to ensure that magnetoacoustic devices have strong
absorption at the frequency and magnetic field that align with the spin resonance of
NV− centers.
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