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Abstract: This study investigates radiomic efficacy in post-surgical traumatic spinal cord injury (SCI),
overcoming MRI limitations from metal artifacts to enhance diagnosis, severity assessment, and
lesion characterization or prognosis and therapy guidance. Traumatic spinal cord injury (SCI) causes
severe neurological deficits. While MRI allows qualitative injury evaluation, standard imaging alone
has limitations for precise SCI diagnosis, severity stratification, and pathology characterization, which
are needed to guide prognosis and therapy. Radiomics enables quantitative tissue phenotyping by
extracting a high-dimensional set of descriptive texture features from medical images. However, the
efficacy of postoperative radiomic quantification in the presence of metal-induced MRI artifacts from
spinal instrumentation has yet to be fully explored. A total of 50 healthy controls and 12 SCI patients
post-stabilization surgery underwent 3D multi-spectral MRI. Automated spinal cord segmentation
was followed by radiomic feature extraction. Supervised machine learning categorized SCI versus
controls, injury severity, and lesion location relative to instrumentation. Radiomics differentiated
SCI patients (Matthews correlation coefficient (MCC) 0.97; accuracy 1.0), categorized injury severity
(MCC: 0.95; ACC: 0.98), and localized lesions (MCC: 0.85; ACC: 0.90). Combined T1 and T2 features
outperformed individual modalities across tasks with gradient boosting models showing the highest
efficacy. The radiomic framework achieved excellent performance, differentiating SCI from controls
and accurately categorizing injury severity. The ability to reliably quantify SCI severity and localiza-
tion could potentially inform diagnosis, prognosis, and guide therapy. Further research is warranted
to validate radiomic SCI biomarkers and explore clinical integration.

Keywords: radiomics; spinal cord injury; multi-spectral imaging; magnetic resonance imaging;
metal artifact

1. Introduction

Traumatic spinal cord injury (SCI) is a devastating condition affecting millions of
individuals worldwide. SCI profoundly impacts physical, psychological, and socioeco-
nomic well-being [1]. In the United States alone, approximately 17,800 new SCI cases
occur annually [2]. SCI can damage axons, neurons, glia, and blood vessels, resulting in
temporary or permanent sensory and motor deficits below the lesion level [3]. Most SCIs
occur at cervical levels, with common causes being motor vehicle collisions, falls, violence,
and sports activities [2].

Acute SCI can present with varying clinical manifestations depending on injury level
and severity. These include tetraplegia or paraplegia, sensory deficits, autonomic dysfunc-
tion affecting cardiovascular, respiratory, and bowel/bladder function, and neuropathic
pain. The severity and extent of these manifestations significantly influence patient out-
comes and rehabilitation strategies [4].

Magnetic resonance imaging (MRI) is the preferred modality for visualizing the spinal
cord and soft tissues [5]. Conventional MRI protocols enable the detection of cord com-
pression, signal changes, edema, hemorrhage, and morphologic alterations after injury.
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However, qualitative image evaluation has limitations in providing microstructural and
functional details needed to guide SCI prognosis and management [6].

Recent advances in quantitative MRI techniques have shown promise in characterizing
SCI pathology. Diffusion tensor imaging has demonstrated utility in assessing white matter
integrity and predicting functional outcomes [7,8]. Magnetization transfer imaging pro-
vides insights into myelin content [7,9], and functional MRI has revealed changes in brain
activity following spinal cord injury [10]. While these methods can extract precise biomark-
ers of post-traumatic cord integrity and function, they each probe specific physiological
phenomena in isolation.

Machine learning methods are increasingly being applied to spinal cord imaging anal-
ysis. Deep learning approaches have improved segmentation accuracy [11] and pathologic
finding detection [12]. Radiomics offers a more holistic approach by extracting multiple de-
scriptive features from medical images through high-throughput data characterization [13].
These methods have shown promise for prognosis in oncology [14]. Recently, radiomic
techniques have been explored in spinal cord studies, with Okimatsu et al. developing
a model using T2*-weighted MRI to predict neurological outcomes after acute cervical
SCI [15]. However, a key challenge is that SCI frequently requires surgical stabilization
involving metallic instrumentation. This hardware produces artifacts on conventional
postoperative MRI [16] that disrupt quantitative radiomic analyses.

This study aimed to implement a radiomic modeling approach to analyze MRI of the
instrumented spinal cord in SCI subjects. Multi-spectral imaging sequences were leveraged
to suppress metal artifacts and enable unobstructed radiomic feature extraction at instru-
mented levels [17]. We hypothesized that radiomic signatures could reliably categorize
SCI severity and lesion location. Successfully quantifying MRI traits in instrumented cords
could ultimately enable monitoring of traumatic changes to inform SCI diagnosis and
therapeutic regimens.

2. Materials and Methods

Reporting and analysis in this study followed the CheckList for EvaluAtion of Ra-
diomics research (CLEAR) documentation standard focusing on repeatability, reproducibil-
ity, and transparency of radiomic studies [18].

2.1. Study Cohorts

This study involved 12 subjects with traumatic SCI who underwent MRI scans at 1-14
months (mean 7.08 ± 4.03) following surgical stabilization at cervical levels using metallic
instrumentation. SCI severity was graded using the American Spinal Injury Association
(ASIA) Impairment Scale (AIS). The study also included 50 healthy controls with no SCI
or cord disorder history. Informed consent was obtained from all participants per our
Institutional Review Board protocol. Table 1 summarizes the cohort demographics.

Table 1. Characteristics of the study cohorts.

Cohorts Gender Count Age BMI ASIA: A ASIA: B ASIA: C ASIA: D

Healthy Female 25 47.52 ± 15.23 27.22 ± 7.18 - - - -
Male 25 48.50 ± 16.92 27.84 ± 4.67 - - - -
Total 50 48.02 ± 15.96 27.54 ± 5.98 - - - -

SCI Female 6 59.50 ± 18.62 25.57 ± 5.90 0 1 2 3
Male 6 48.50 ± 21.95 23.52 ± 2.68 2 1 1 2
Total 12 54.00 ± 20.24 24.54 ± 4.50 2 2 3 5

Imaging was performed at 3T (GE Signa Premier) using a 21-channel neurovascular
coil. Multi-spectral 3D fast spin echo MRI was acquired to suppress metal artifacts [17].
Isotropic 1.2 mm resolution T1- and T2-weighted volumes were obtained with 8 spectral
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bins. Imaging parameters were as follows: TR\TE for T1—750/8 ms; for T2—2100/60 ms;
and ARC 2 × 2 acceleration.

2.2. Image Analysis

The spinal cord was automatically segmented using a multi-step pipeline (Figure 1)
as described in [19]. First, N4 bias field correction was applied to remove image shading
artifacts. The Spinal Cord Toolbox (SCT) deep learning model [20] then performed initial
segmentation independently on both T1 and T2 volumes. However, these initial segmenta-
tions exhibited intermittent failures near metallic instrumentation where image artifacts
were present. To address these failures, the T1 data were registered to the T2 space using
SCT’s registration module. The segmentations were then integrated using a radial basis
function (RBF) algorithm, which creates a smooth interpolation between the T1 and T2
segmentations. The RBF approach was chosen for its robustness to local failures; when one
modality’s segmentation fails due to metal artifacts, the algorithm appropriately weights
the more reliable segmentation from the other modality in that region. This integrated
segmentation leverages complementary information from both imaging sequences to pro-
duce a more robust final result. The improved segmentation was then used by SCT to
automatically label the vertebral levels [19].
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Figure 1. The flowchart depicts the pipeline for segmenting the spinal cord as suggested in [19].

Radiomic feature extraction was performed within cord segmentation using PyRa-
diomics [21]. A total of 1374 features describing intensity, shape, and texture patterns
were generated from original and filtered images, including wavelet, square, square root,
logarithm, exponential, gradient, and local binary patterns.

2.3. Classification Framework

Three classification tasks were the following: (1) differentiating SCI cases from healthy
controls, (2) SCI severity (severe AIS A-B vs. non-severe AIS C-D), and (3) lesion zone
(above, at, or below instrumentation level). For each target, models were trained using T1,
T2, or combined T1 + T2 radiomic features to compare performance. Evaluation metrics
were accuracy, the Matthews correlation coefficient (MCC), the F1 score, and the area under
the ROC (receiver operating characteristic) curve (AUC).

The radiomic feature sets were input into a supervised machine learning pipeline to
differentiate SCI subjects from controls and categorize injury severity and cord location
relative to the injury site. The dataset was divided into training (70%), validation (15%), and
testing (15%) subsets. An automated modeling framework (H2O AutoML [21]) evaluated
various classifiers (random forest, XGBoost, neural networks, etc.) using 5-fold cross-
validation on the training data. To address class imbalance in the dataset, oversampling
of minority classes was applied during the training process, ensuring more equitable
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representation and mitigating bias toward the majority class. This approach improves the
generalization and reliability of the models, especially for minority class predictions.

Feature selection was automatically performed within the H2O AutoML framework,
which identified GBM as the optimal model. The framework leveraged GBM’s inherent
feature importance calculation, where features were weighted based on their contribution
to decision tree splits and the associated reduction in squared error across the ensem-
ble. Feature importance scores were normalized to a [0, 1] range, enabling systematic
identification of the most influential radiomic markers while automatically suppressing
less informative features during model optimization. This automated feature selection
streamlined the modeling process while maintaining robust predictive performance [22,23].

3. Results

Figure 2 depicts sample T1- and T2-weighted MRI images and the segmented cord on
an instrumented slice. As shown in Figure 3, a combined T1 and T2 feature set achieved
strong performance in discriminating between healthy controls and SCI patients, with
0.97 MCC, 0.98 F1 score, 1.00 accuracy, and 1.00 AUC. For predicting injury severity,
the T1 + T2 model again achieved robust performance with 0.95 MCC, 0.98 F1 score,
0.98 accuracy, and 0.99 AUC. The T2 model achieved 0.86 MCC and 0.94 accuracy. For
lesion zone classification, the T1 + T2 model performed best with 0.85 MCC, 0.90 F1 score,
0.90 accuracy, and 0.98 AUC. The T2 model achieved 0.81 MCC and 0.88 accuracy.
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Gradient boosting machine (GBM) models achieved the top performance for most
tasks. The only exception was the zone classification task using T1 features, for which
XGBoost was optimal.

Overall, the combined T1 + T2 models outperformed individual modalities across
tasks. The models demonstrated excellent discrimination for SCI vs. controls and good
predictive performance for injury severity. The results were strong but comparatively lower
for the more challenging three-class zone classification task.
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Figure 3. Comparison of accuracy, F1 score, area under the curve (AUC-ROC), and mean per-class
error across radiomic classification tasks using T1, T2, and combined T1/T2 feature sets. The tasks
include categorizing cohorts into healthy or spinal cord injury (SCI) groups, determining injury
severity levels, and distinguishing between cord zones relative to the injury site.

4. Discussion

This preliminary study demonstrates the potential of a radiomic modeling approach
for instrumented spinal cord MRI analysis in traumatic SCI. A key advance was the use of
multi-spectral imaging to suppress instrumentation artifacts that can distort quantitative
feature extraction. The study’s reproducibility is strengthened by the implementation of
standardized tools and protocols, including multi-spectral imaging optimized for metal
artifact suppression [17], validated automated spinal cord segmentation [19], and stan-
dardized radiomic feature extraction following established guidelines [18]. Radiomic
SCI characterization could offer advantages over both qualitative evaluation alone and
standard diffusion/functional MRI methods that assess specific microstructural or physio-
logical properties in isolation. The high throughput radiomic feature set provides a more
comprehensive phenotypic profiling of overall cord tissue traits linked to injury.

The radiomic framework reliably differentiated severe and non-severe SCI categories,
achieving robust classification performance. This ability to determine injury severity, which
has significant implications for prognosis and therapy, demonstrates clinical utility.

While global accuracy metrics were relatively high across tasks, lower MCC and F1
scores imply that some degree of inter-class imbalance likely exists in the dataset. This
imbalance means majority classes were more successfully predicted than minority classes.
Techniques such as oversampling of the minority classes or cost-sensitive learning could
address this and improve MCC and F1 metrics. Additionally, discrimination power was
weaker for more nuanced tasks like severity level or subtle zone differences. These findings
warrant focused efforts on feature engineering and model tuning targeting MCC and
F1 improvements.

When assessing the advantages of combined T1 and T2 features versus prolonged scan
times, the MCC is particularly informative in the presence of class imbalance. For cohort
differentiation, the MCC increase from 0.92 to 0.97 with combined features is substantial.
However, the 0.92 baseline already indicates robust predictive power. In efficiency-focused
clinical settings, marginal T1 + T2 benefits may not outweigh longer scans, especially for
resource optimization.

For severity classification, the MCC rose slightly from 0.86 to 0.95 with combined
features. Although showing an increase, the 0.86 T2 baseline is respectable. The slight
absolute MCC increase may have limited utility depending on clinical use. T2 could suffice
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when efficiency is critical and acceptable severity discrimination is achievable. However,
for applications where severity subtleties carry high stakes, the T1 + T2 approach may
provide value despite a longer scan time.

For multiclass zone classification, the more substantial MCC boost from 0.81 to 0.85
with T1 + T2 features could justify extra scan time. While context-dependent, this degree of
performance lift may warrant dual-acquisition protocols.

The ability to quantitatively characterize post-surgical cord changes through radiomics
could provide valuable prognostic information. By reliably categorizing injury severity
and location, this approach could help predict functional outcomes, guide rehabilitation
strategies, and monitor treatment response. Future longitudinal studies could establish
relationships between radiomic features and functional recovery patterns, potentially
enabling more personalized treatment planning.

A limitation of this study is the small cohort size, which may impact the general-
izability of the results. Future studies with larger and more diverse patient cohorts are
warranted to validate the findings and further enhance model robustness and accuracy
across different populations. Moreover, although the multi-spectral imaging technique
used in this study effectively reduces metallic artifacts, it is important to acknowledge
its limitations, particularly in cases with complex or extensive metallic instrumentation.
Residual artifacts, while minimized, can still interfere with image quality and may impact
the accuracy of radiomic feature extraction. This is especially relevant for texture-based
features, which are sensitive to subtle intensity and spatial variations. Such artifacts could
introduce variability or bias in the radiomic data, potentially affecting the reliability of
the extracted features and subsequent model predictions. While the results of this study
demonstrate the potential of radiomic analysis in postoperative spinal cord injury assess-
ment, the influence of residual artifacts warrants further investigation. Future work could
explore advanced artifact reduction techniques or post-processing methods to enhance
radiomic feature robustness, particularly in challenging cases. Additionally, incorporating
quality assurance metrics to quantify artifact levels could help identify and mitigate their
impact during the analysis pipeline.

In summary, T1 + T2 improved performance metrics across tasks. However, clinical
value versus efficiency tradeoffs depend on the classification specifics and performance
requirements. Further feature engineering or integrating other imaging modalities could
refine model performance. More extensive longitudinal studies are essential to fully
explore clinical utility. Overall, radiomic modeling shows promise for quantitative SCI
MRI, potentially guiding diagnosis and management.
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