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Abstract: Neuropathic pain is a complex and debilitating condition resulting from nerve damage,
characterized by sensations such as burning, tingling, and shooting pain. It is often associated with
conditions such as multiple sclerosis (MS), Guillain-Barré syndrome (GBS), and diabetic polyneu-
ropathy. Conventional pain therapies frequently provide limited relief and are accompanied by
significant side effects, emphasizing the need to explore alternative treatment options. Phytochemi-
cals, which are bioactive compounds derived from plants, have gained attention for their potential
in neuropathic pain management due to their diverse pharmacological properties, including anti-
inflammatory, antioxidant, and neuroprotective effects. This review evaluates the mechanisms by
which specific phytochemicals, such as curcumin, resveratrol, and capsaicin, influence neuropathic
pain pathways, particularly their role in modulating inflammatory processes, reducing oxidative
stress, and interacting with ion channels and signaling pathways. While curcumin and resveratrol
are primarily considered dietary supplements, their roles in managing neuropathic pain require
further clinical investigation to establish their efficacy and safety. In contrast, capsaicin is an active
ingredient derived from chili peppers that has been developed into approved topical treatments
widely used for managing neuropathic and musculoskeletal pain. However, not all phytochemicals
have demonstrated consistent efficacy in managing neuropathic pain, and their effects can vary
depending on the compound and the specific condition. The pathophysiology of neuropathic pain,
involving maladaptive changes in the somatosensory nervous system, peripheral and central sen-
sitization, and glial cell activation, is also outlined. Overall, this review emphasizes the need for
continued high-quality clinical studies to fully establish the therapeutic potential of phytochemicals
in neuropathic pain management.

Keywords: neuropathic pain; phytochemicals; multiple sclerosis; Guillain-Barré syndrome; diabetic
neuropathy

1. Introduction

Neuropathic pain, a complex and often debilitating condition resulting from nerve
damage, is characterized by sensations such as burning, tingling, and shooting pain [1].
This condition is challenging to treat with conventional therapies, which often provide
limited relief and are associated with side effects that significantly impact patients’ qual-
ity of life [2]. Moreover, emotional, and psychological factors, including depression and
anxiety, frequently coexist with neuropathic pain, exacerbating pain perception and fur-
ther diminishing overall well-being [3]. Current pharmacological approaches, including
antidepressants, anticonvulsants, and opioids, frequently fail to achieve long-term efficacy
in neuropathic pain management [4]. Consequently, there is a growing urgency to explore
alternative treatment options that can offer both efficacy and safety.
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Phytochemicals, bioactive compounds derived from plants, have garnered significant
interest as potential agents for neuropathic pain management [5]. These compounds,
which include flavonoids, terpenoids, alkaloids, and phenolic acids, exhibit a range of
pharmacological properties, including antioxidant, anti-inflammatory, and neuroprotective
effects [6]. Notably, several phytochemicals can modulate pain pathways by influencing
mechanisms including oxidative stress, inflammation, and ion channel activity- all of which
play a role in neuropathic pain pathophysiology [7].

Recent research suggests that certain phytochemicals hold promising therapeutic po-
tential, potentially by targeting specific molecular mechanisms associated with neuropathic
pain [8]. For example, curcumin, resveratrol, and capsaicin have shown potential in preclin-
ical studies, showing effects such as modulation of inflammatory cytokines, reduction in
oxidative stress, and interaction with nociceptive receptors, which may contribute to pain
relief [9].

This paper aims to examine the mechanisms by which phytochemicals influence neu-
ropathic pain pathways and evaluate their therapeutic potential, addressing an important
question: Are we on the verge of discovering new solutions? This will be further discussed
in the sections that follow.

2. Phytochemicals: Definition and Classification

Phytochemicals are bioactive compounds found in plants that contribute to their color,
flavor, and disease resistance [10]. These compounds are not essential for basic plant growth,
but they can offer health benefits when consumed by humans. Phytochemicals are broadly
classified into two major categories: primary metabolites and secondary metabolites [11].
Primary metabolites, such as carbohydrates, proteins, and lipids, are involved in essential
growth processes. Secondary metabolites, on the other hand, are not directly involved in
growth but play a crucial role in plant defense mechanisms, helping to protect plants from
pests, diseases, and environmental stresses [11].

Secondary metabolites, which include alkaloids, flavonoids, terpenoids, phenolic
acids, and glucosinolates, are of particular interest due to their potential therapeutic ef-
fects [11]. These compounds are often studied for their antioxidant, anti-inflammatory,
and anticancer properties, and many have shown promise in treating or managing chronic
diseases, including neuropathic pain. Understanding the classification and properties of
phytochemicals is essential for exploring their potential role in pain management and other
health benefits [12,13].

3. Epidemiology and Economic Burden of Neuropathic Pain

Neuropathic pain affects millions globally, with epidemiological data indicating a
prevalence of approximately 7–10% in the general population [14,15]. Higher rates are
observed among specific groups, such as those with diabetes, multiple sclerosis (MS), and
postherpetic neuralgia [16]. Diabetic neuropathy alone impacts up to 50% of patients with
diabetes, making it one of the most common causes of neuropathic pain worldwide [17].

Beyond its high prevalence, neuropathic pain imposes a substantial economic burden,
encompassing both direct and indirect costs [18]. One study reported that the average
annual cost per patient for neuropathic pain management is approximately $4706, under-
scoring the need for more effective treatments to ease these financial pressures on patients
and health systems [19].

In addition to direct healthcare expenses, indirect costs further compound the eco-
nomic strain, as reduced productivity, absenteeism, and, in severe cases, long-term disability
are common [20]. Many neuropathic pain patients experience functional impairments that
limit their ability to work or perform daily activities, leading to diminished quality of life.
Psychological comorbidities, including depression and anxiety, are also prevalent and add
to the condition’s personal and economic burdens [20,21].
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4. Mechanisms in Neuropathic Pain
4.1. Pathophysiology of Neuropathic Pain

Neuropathic pain arises from damage or dysfunction within the somatosensory ner-
vous system, leading to abnormal pain signaling. Unlike nociceptive pain, which results
from tissue injury and engages protective reflexes [22], neuropathic pain persists due to
maladaptive changes in both the peripheral and central nervous systems. These include
abnormal excitability and spontaneous discharges in injured and uninjured neurons, driven
by increased expression of voltage-gated sodium channels, resulting in continuous or
intermittent pain sensations, often described as burning, shooting, or stabbing [23].

A key feature of neuropathic pain is peripheral sensitization, where damaged nerves
release pro-inflammatory cytokines and chemokines that attract immune cells to the injury
site. This inflammation amplifies pain sensitivity by upregulating ion channels and altering
receptor functions in primary afferent neurons. Central sensitization involves heightened
responsiveness of neurons in the spinal cord and brain, facilitated by excitatory neurotrans-
mitters such as glutamate, which act on NMDA and AMPA receptors, increasing synaptic
plasticity and amplifying pain signals [24].

Glial cells, particularly microglia and astrocytes, play a crucial role in neuropathic pain
by releasing inflammatory mediators and altering synaptic transmission [25]. Microglia
become activated in response to nerve injury, releasing pro-inflammatory cytokines that
perpetuate central sensitization and worsen pain. Disruption of inhibitory pathways, such
as those involving GABA and glycine, exacerbates pain, as they fail to suppress nociceptive
signaling effectively [26].

Neuropathic pain is also associated with altered expression of ion channels and re-
ceptors involved in pain perception. Upregulation of TRPV1 receptors in sensory neurons
increases sensitivity to temperature and mechanical stimuli, further enhancing pain percep-
tion [27]. Prolonged peripheral input leads to long-term changes in gene expression in the
central nervous system, contributing to a chronic pain state [27].

4.2. Role of Inflammation and Oxidative Stress

Inflammation and oxidative stress are major contributors to the progression and
persistence of neuropathic pain. Following nerve injury, pro-inflammatory cytokines (e.g.,
TNF-α, IL-1β, and IL-6) are released, sensitizing peripheral nociceptors [28]. Inflammatory
cells infiltrate the injury site, exacerbating inflammation and promoting reactive oxygen
species (ROS) release as part of the immune response [29].

Oxidative stress, characterized by an excess of ROS and reactive nitrogen species
(RNS), damages cellular components such as lipids, proteins, and nucleic acids, impairing
mitochondrial function and disrupting neuronal energy balance [30]. ROS accumulation
in sensory neurons activates pathways that upregulate pro-inflammatory genes, further
sensitizing neurons [31].

Chronic activation of microglia and astrocytes amplifies central sensitization by releas-
ing additional pro-inflammatory cytokines, nitric oxide, and ROS, increasing excitatory
neurotransmission in the spinal cord [32]. Astrocytes increase glutamate release and reduce
its uptake, contributing to heightened pain perception and the maintenance of chronic
pain [32].

Oxidative stress also depletes endogenous antioxidants, such as glutathione, exacer-
bating cellular damage and perpetuating a cycle of neuroinflammation and oxidative stress
that sustains neuropathic pain [33].

4.3. Nociceptive Pathways and Pain Perception

Pain, particularly in neuropathic conditions, arises from the activation of pathways
carrying signals from sensory receptors to the brain. Nociceptive pain begins when no-
ciceptors detect harmful stimuli such as mechanical pressure, temperature extremes, or
chemical irritants [34]. These signals are transmitted via afferent nerve fibers to the spinal
cord, where they are modulated before being relayed to higher brain centers [34].
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Two main nociceptive fiber types are involved: A-delta fibers (myelinated, rapid
transmission of sharp pain) and C fibers (unmyelinated, slower transmission of dull, aching
pain) [35]. The combination allows for immediate and persistent pain responses, common
in neuropathic pain [35].

Upon reaching the spinal cord, nociceptive signals synapse with second-order neurons
in the dorsal horn, where neurotransmitters such as substance P, glutamate, and CGRP
amplify pain signals, contributing to central sensitization. This heightened sensitivity leads
to pain perception disorders such as hyperalgesia and allodynia [34].

Second-order neurons project to the thalamus, from where pain and temperature
signals are processed and relayed to cortical areas responsible for sensory discrimination
and emotional response [36].

In neuropathic pain, dysfunction within these pathways, often due to sustained
peripheral nerve damage and central sensitization, can lead to “rewiring” of nociceptive
circuits, making pain persistent and less responsive to conventional analgesics [37].

5. Neuropathic Pain in Neurological Conditions

Neuropathic pain is a common symptom across various neurological conditions,
including multiple sclerosis (MS), Guillain-Barré syndrome (GBS), and diabetic polyneu-
ropathy [16]. In MS, pain arises from the demyelination of nerve fibers, disrupting normal
sensory processing and leading to abnormal pain perception [38]. GBS, which involves
peripheral nerve damage and inflammation, can also trigger neuropathic pain, often ex-
perienced as tingling, burning, or shooting sensations [1,16]. Diabetic polyneuropathy, a
frequent complication of diabetes, is caused by nerve damage due to prolonged hyper-
glycemia, leading to debilitating pain that significantly impacts quality of life [39].

5.1. Guillain-Barré Syndrome (GBS)

Guillain-Barré Syndrome (GBS) is an acute inflammatory polyneuropathy that primar-
ily affects the peripheral nervous system, typically presenting as a monophasic illness [40].
It is characterized by rapid-onset muscle weakness and paralysis, often preceded by an
infection [41]. GBS is an immune-mediated disorder in which the body’s immune system
mistakenly attacks the myelin sheath or axons of peripheral nerves, leading to widespread
inflammation and demyelination. In addition to motor symptoms, pain is a common
feature of GBS, frequently manifesting as severe neuropathic pain that can persist even
after other neurological symptoms have improved [42].

Pathophysiology and Clinical Presentation of Pain in GBS

Pain in GBS is often overlooked in clinical practice, leading to inadequate treatment
and a diminished quality of life for patients [43]. It arises from inflammation, demyelination,
and axonal degeneration of peripheral nerves [44].

In GBS, the immune system primarily targets the myelin sheath of peripheral nerves,
causing demyelination [45]. This disruption leads to erratic and hypersensitive nerve signal-
ing in sensory neurons, resulting in hyperalgesia and allodynia [1]. In severe cases, axonal
degeneration disrupts nerve conduction, intensifying pain even in the absence of external
stimuli [46]. Prolonged nerve injury can also lead to central sensitization, where nociceptive
input from damaged nerves sensitizes spinal cord neurons, amplifying pain [47]. Addi-
tionally, changes in sodium channels due to demyelination and inflammation contribute to
hyperexcitability and erratic pain signaling [48].

The pain in GBS varies significantly, with many patients describing it as sharp, burning,
or stabbing, commonly in the lower extremities but also affecting the back and upper
limbs [49]. This pain is often resistant to standard analgesics, complicating management.
Myalgia, joint pain, and radicular pain may also be present, disrupting sleep and quality
of life. Nerve sensitization can increase sensitivity to touch, heightening discomfort and
anxiety [46,50,51].
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5.2. Multiple Sclerosis (MS)

Multiple Sclerosis (MS) is a chronic autoimmune disorder where the immune system
attacks the central nervous system, causing inflammation, demyelination, and axonal
degeneration [52]. Neuropathic pain affects 50–75% of MS patients and severely impacts
their quality of life [53,54]. According to the MS Atlas 2020, around 2.8 million people
worldwide are living with MS [55], underscoring the need for effective management
strategies for this population. MS patients, especially those with additional conditions such
as seizures or epilepsy, often experience a significant reduction in their quality of life [56].

Neuropathic pain in MS differs from nociceptive pain, originating from nerve damage,
and can manifest as dysesthetic pain (burning, tingling), allodynia (pain from non-painful
stimuli), and hyperalgesia (increased pain sensitivity) [56]. This chronic pain often worsens
fatigue, sleep issues, and depression, complicating treatment approaches [57].

Mechanisms of Neuropathic Pain in MS

The mechanisms of neuropathic pain in MS involve both peripheral and central
components. At the periphery, demyelination disrupts nerve conduction, causing sensory
neuron hyperexcitability and spontaneous pain signals. Immune-mediated inflammation
releases pro-inflammatory cytokines, sensitizing peripheral nociceptors. Changes in ion
channel expression, especially increased sodium and calcium channel activity, further
enhance neuronal excitability and pain signaling [58].

Central sensitization also plays a role, as prolonged nociceptive input from damaged
peripheral nerves alters spinal cord and brain pain responses, resulting in hyperactivity of
dorsal horn neurons and an exaggerated pain response [37].

5.3. Diabetic Polyneuropathy (DP)

Diabetic polyneuropathy affects about 50% of people with diabetes [59], with 25%
experiencing pain as the primary symptom [60]. It is caused by prolonged hyperglycemia,
which leads to nerve damage through oxidative stress, inflammation, and impaired cir-
culation [60,61]. Symptoms include numbness, tingling, burning sensations, and sharp
pain, particularly in the extremities, severely affecting daily activities and emotional well-
being [21]. The condition also increases the risk of falls, infections, and other complications,
underlining the importance of effective management [62].

Impact of Diabetes on Nerve Health

In individuals with diabetes, nerve health is greatly affected by both metabolic and
vascular factors. Chronic hyperglycemia leads to the accumulation of advanced glycation
end products (AGEs), which damage nerve fibers and impair normal nerve function [63].
Oxidative stress, resulting from elevated glucose levels, further contributes to neuronal
injury as ROS accumulate and disrupt nerve tissue and repair processes [64]. Vascular
complications, such as reduced blood flow and endothelial dysfunction, worsen nerve
damage by limiting nutrient and oxygen supply to the nerves. Over time, this leads to the
progressive deterioration of nerve function seen in diabetic polyneuropathy [64].

6. Neuropathic Pain Management

Neuropathic pain is often treated with antiepileptic drugs (AEDs) such as gabapentin
and pregabalin, which reduce nerve excitability via calcium channel binding. Other AEDs,
such as lamotrigine and carbamazepine, block sodium channels, while lacosamide enhances
sodium channel inactivation. Valproate and clonazepam affect GABAergic neurotransmis-
sion, and topiramate combines sodium channel blockade with enhanced GABA function.
However, AEDs can cause cognitive and motor impairments, and serious side effects such
as blood disorders may occur [65].

Amitriptyline, an antidepressant, is sometimes used, but its effectiveness is limited. It
may provide pain relief in about 25% more patients than placebo, though side effects make
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it less ideal for long-term use [66]. Tricyclic antidepressants (TCAs), such as nortriptyline,
may enhance pain relief when combined with other agents such as morphine [67].

Duloxetine is effective for diabetic peripheral neuropathy, regulating pain pathways
by inhibiting serotonin and norepinephrine reuptake. It is well-tolerated, though higher
doses can lead to more side effects, with serious adverse effects being rare [68].

For resistant cases, opioids and tramadol are prescribed. Tramadol offers modest pain
relief but has common side effects such as dizziness and nausea, and opioids carry risks of
tolerance, dependence, and other side effects [69,70].

Topical agents, such as lidocaine patches, and NSAIDs, are options, though NSAIDs
are less effective for neuropathic pain [71]. Combination therapies, such as pregabalin with
TNF-α blockers, enhance anti-nociceptive effects and treatment tolerability [72].

Non-pharmacological approaches, including physical therapy, occupational therapy,
and complementary treatments such as transcutaneous electrical nerve stimulation (TENS),
can improve mobility and quality of life [73]. Neuromodulation techniques, such as spinal
cord stimulation and transcranial magnetic stimulation (TMS), are being explored for
patients who do not respond to traditional treatments [74].

Non-pharmacological approaches, such as physical and occupational therapy, TENS,
spinal cord stimulation, and transcranial magnetic stimulation (TMS), may improve the
quality of life for some patients [73,74]. Lifestyle changes, including glycemic control and
physical activity, are important for preventing further nerve damage [75]. Patient education
on self-management and adherence is crucial for long-term care [76].

Recent research also highlights AMPK dysfunction in pain mechanisms, particularly
in Guillain-Barré syndrome, with therapies such as metformin showing potential neuropro-
tective effects [77].

Figure 1 represents a schematic illustration of the mechanisms of neuropathic pain in
diabetic neuropathy, MS, and GBS. It shows distal peripheral nerve damage due to high
glucose levels in diabetic neuropathy, demyelination and abnormal signaling in MS, and
an autoimmune response affecting peripheral nerves in GBS.
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7. Phytochemicals in Neuropathic Pain Management
7.1. Flavonoides

Flavonoids are a crucial class of secondary metabolites, distinguished by a benzopy-
rone structure with phenolic or polyphenolic groups. These compounds contribute sig-
nificantly to plant medicinal properties and biological functions [13,78]. Flavonoids, such
as Narirutin, a natural compound derived from Citrus unshiu, demonstrate significant
therapeutic potential in neuropathic pain management. Specifically, Narirutin exerts its
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antinociceptive effects by selectively targeting Nav1.7 voltage-gated sodium channels, a
mechanism that highlights its promise as a small-molecule treatment option [79].

Flavonoids, such as diosmin, quercetin, and 6-methoxyflavanone, modulate a range
of biological pathways that are critical for the management of neuropathic pain. These
mechanisms include modulation of inflammatory cytokines, neurotransmitter systems, and
oxidative stress responses. Diosmin, a glycoside found in citrus fruits and derived from
hesperidin, exhibits antioxidant, antidiabetic, anti-inflammatory, and anticancer properties.
Its anti-inflammatory effects are linked to its ability to suppress overexpression of NF-κB,
TNF-α, COX-2, and iNOS [80]. Diosmin may also inhibit neuroinflammation by modulating
glial cell activity and reducing the production of pro-inflammatory cytokines such as IL-1β.
In chronic constriction injury (CCI) models in mice, diosmin has shown potential in treating
neuropathic pain through the NO/cGMP/PKG/KATP channel pathway, modulation of
glial cells, and inhibition of spinal cytokines such as IL-1β, resulting in analgesic effects via
dopaminergic and opioidergic pathways [81].

Quercetin has been shown to exert antinociceptive effects in diabetic neuropathic pain
(DNP), likely through modulation of the opioidergic system [82]. Additionally, quercetin
reduces microglia and astrocyte activation, mitigating neuroinflammation, which is crucial
for preventing the progression of chronic pain. By inhibiting pathways such as TLR4/NF-
κB and modulating apoptotic markers, quercetin promotes neuroprotection and reduces
neuronal damage, ultimately improving memory and cognitive function in models of
neuropathic pain [83].

6-Methoxyflavanone (6-MeOF) has shown potential in attenuating diabetic neuro-
pathic pain and vulvodynia through interaction with GABAergic and opioidergic systems,
which likely contributes to its analgesic properties and reduction in allodynia and vulvody-
nia in animal models [6].

The combination of Berberine and Tocopherol provides a multifaceted approach to
managing diabetic neuropathy through a combination of antioxidant effects and modula-
tion of glucose metabolism. Berberine enhances insulin secretion and peripheral glucose
utilization, while tocopherol protects neuronal cells from oxidative damage, supporting
neuroprotective and anti-inflammatory effects in pain management [84].

7.2. Terpenoids

Terpenoids are gaining attention for their potential in neuropathic pain management,
thanks to their diverse pharmacological properties. These compounds modulate neuro-
transmitter systems, receptor activity, and inflammatory pathways, making them promising
candidates for chronic pain syndromes [85].

A significant feature of terpenoids is their ability to interact with cannabinoid receptors,
particularly CB2, which are crucial for pain modulation. These compounds may act as
modulators of pain signaling pathways without inducing the psychoactive effects typically
associated with cannabinoid therapies. These compounds may act as modulators of pain
signaling pathways without inducing the psychoactive effects typically associated with
cannabinoid therapies [86,87].

Caryophyllene, a notable terpenoid, plays a significant role in managing MS-related
neuropathic pain and inflammation by selectively binding to CB2 receptors, modulating
pain pathways, and exerting anti-inflammatory effects. It offers pain relief without the psy-
choactive effects of other cannabinoids, making it an alternative to opioid treatments with
significant risks of dependence and adverse effects [88]. Limonene, commonly derived from
citrus fruits, demonstrates analgesic effects by enhancing serotonin and norepinephrine
levels in the CNS, altering pain signal perception in the brain [89,90]. Myrcene, found
in cannabis and hops, is known for its sedative and muscle-relaxant properties, poten-
tiating cannabinoid receptor signaling to enhance analgesic effects, particularly in MS
patients [88,91]. Pinene also has the potential to improve cognitive function and memory,
which benefits chronic pain sufferers who often experience cognitive decline [92].
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7.3. Alkaloids

Alkaloids, organic compounds containing nitrogen, are found in plants, fungi, and
bacteria and include well-known analgesic compounds such as tetrahydropalmatine, ma-
trine, and tetrandrine [93,94]. Capsaicin is particularly effective in managing neuropathic
pain by selectively activating the TRPV1 receptor, which initially excites sensory neurons
before leading to desensitization. This process depletes neuropeptides such as substance P,
reducing pain transmission [95]. Capsaicin’s role in managing neuropathic pain is enhanced
by its capacity to alter neuropeptide release in the dorsal horn of the spinal cord, which
disrupts pain signaling pathways at both peripheral and central levels [96]. Capsaicin
is commonly used in high-concentration topical formulations, such as the 8% capsaicin
patch (Qutenza), approved for localized neuropathic pain conditions such as postherpetic
neuralgia and diabetic peripheral neuropathy [97,98]. Tetrahydropalmatine (THP) mod-
ulates neurotransmitter systems by enhancing dopaminergic and serotonergic activity,
contributing to pain relief and improving mood. THP also reduces glutamate release in
the CNS, which may attenuate excitotoxicity and neuronal damage, common features of
chronic pain states [99]. Matrine has demonstrated neuroprotective effects, particularly in
MS, by crossing the blood-brain barrier and supporting myelin restoration while reducing
pro-inflammatory cytokine levels. It helps rectify neurotransmitter imbalances, alleviating
symptoms such as mechanical allodynia and thermal hyperalgesia without significant
adverse effects on motor coordination [100,101].

7.4. Other Relevant Phytochemicals

In addition to their anti-inflammatory effects, resveratrol, curcumin, gingerol, and
alpha-lipoic acid have been extensively studied for their neuroprotective effects and po-
tential in modulating neurotransmitter activity, enhancing their role in managing neuro-
pathic pain.

Resveratrol and curcumin are both popular natural substances commonly used as
dietary supplements [102]. Resveratrol has shown potential in alleviating neuropathic pain
through its anti-inflammatory, antioxidant, and neuroprotective effects. Studies suggest it
modulates pain pathways by inhibiting pro-inflammatory cytokines and regulating neuroin-
flammation. In animal models, resveratrol reduced pain sensitivity and improved motor
function, likely by interacting with pathways such as NF-κB and Nrf2, which are involved
in inflammation and oxidative stress [103]. Resveratrol’s impact on neuroinflammation
and oxidative stress plays a significant role in preventing neuronal injury and reducing
pain. Although these effects hold promise, more clinical trials in humans are required to
confirm the therapeutic potential of resveratrol for neuropathic pain treatment [103].

Curcumin, due to its anti-inflammatory and antioxidant properties, may help alleviate
side effects associated with cancer treatments such as chemotherapy and radiotherapy,
including reducing gastrointestinal, cardiovascular, kidney, and ototoxicity, as well as
easing symptoms such as nausea, vomiting, and loss of appetite [104]. Curcumin inhibits
NLRP3 inflammasome activation, modulating both central and peripheral inflammation,
which plays a critical role in neuropathic pain management. By reducing this pathway
and mitigating GSK-3β activation, it helped reduce pain and improve motor function in
mice with neuropathic pain [105]. Additionally, curcumin supports neuronal survival
by activating key signaling pathways such as AMPK and sirtuins [106]. Furthermore,
curcumin supplementation is safe and well-tolerated, with no adverse effects reported in
an adolescent with Déjérine-Sottas disease [107]. Nano-curcumin supplementation (80 mg)
has shown positive effects on depression and anxiety symptoms, though its impact on
stress levels remains unclear [108].

Ginger has demonstrated antidiabetic and analgesic effects in management of DNP [109].
By reducing inflammation and modulating neuroinflammation, ginger enhances its po-
tential to alleviate pain associated with diabetic neuropathy. Furthermore, by influencing
serotonin receptors, it may help improve mood regulation, contributing to its overall
analgesic effects in DNP [109,110].
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Below, Table 1 presents a summary of the most commonly studied phytochemicals in
neuropathic pain, their mechanisms of action, and their effects.

Table 1. Mechanisms of action of phytochemicals in neuropathic pain management.

Phytochemical Mechanism of Action References Structural Formula Category Type of
Study Study Results

Narirutin
Selectively inhibits

Nav1.7 voltage-gated
sodium channels

[79]
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7.3 ± 0.5 g in control) 
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latency: 13.2 ± 0.5 s (vs. 
10.6 ± 0.4 s in control)  

p < 0.05 

Diosmin 

Reduces 
inflammation (NF-
κB, TNF-α, COX-2), 

alleviates 
neuropathic pain 

via 
NO/cGMP/PKG/KA

TP pathway and 
spinal cytokine 

inhibition (IL-1β) 

[80,81] Flavonoid In vivo 

Inflammatory Markers: 
RF, TNF-α, ACPA, IL-17 
decreased by 77%, 65%, 

67%, and 72%, 
respectively; Oxidative 

Stress: LPO decreased by 
38%; Western Blot: NF-κB 

p50/p65 down by 
45%/38%, iNOS by 46%, 

Nrf2 up by 224% 

Quercetin 

Antioxidant, anti-
inflammatory, 

modulates immune 
responses 

[82,83] Flavonoid In vivo 

Reduced Bax/Bcl-2 ratio, 
reduced Cyto. c 

expression; Caspase-3 
activity reduced in cortex 

and hippocampus (p < 
0.05); 8 mice/group for 

western blot, 5 
mice/group for confocal 
microscopy; enhanced 
neuronal survival (p < 

0.05) 

6-
Methoxyf
lavanone 
(6-MeOF) 

Interacts with 
GABA-ergic and 

opioidergic systems 
[6] Flavonoid In vivo 

Significant attenuation of 
nociception at 10 and 30 

mg/kg after 30 and 60 min 

Flavonoid In vivo

Mechanical withdrawal threshold:
10.5 ± 0.8 g (vs. 7.3 ± 0.5 g in control)

Thermal withdrawal latency:
13.2 ± 0.5 s (vs. 10.6 ± 0.4 s in

control)
p < 0.05

Diosmin

Reduces inflammation
(NF-κB, TNF-α, COX-2),

alleviates neuropathic
pain via

NO/cGMP/PKG/KATP
pathway and spinal
cytokine inhibition

(IL-1β)

[80,81]
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inflammatory, 
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expression; Caspase-3 
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Flavonoid In vivo

Inflammatory Markers: RF, TNF-α,
ACPA, IL-17 decreased by 77%, 65%,

67%, and 72%, respectively;
Oxidative Stress: LPO decreased by
38%; Western Blot: NF-κB p50/p65
down by 45%/38%, iNOS by 46%,

Nrf2 up by 224%

Quercetin

Antioxidant,
anti-inflammatory,

modulates immune
responses

[82,83]
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Modulates glucose
metabolism,

inflammation, and lipid
levels
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lipid levels 

[84] Flavonoid In vivo 

Effect on Body Weight: 
211 ± 0.8 g (20 mg/kg) and 
250 ± 1.4 g (40 mg/kg) vs. 
Diabetic control (161 ± 1.0 

g) 
Fasting Blood Glucose: 

Reduction in glucose (p < 
0.001) vs. Diabetic control 

(421 ± 2.0 mg/dL) 
Serum Insulin Level: 

Increased to 11.73 ± 0.18 
µIU/mL (20 mg/kg and 40 

mg/kg) vs. Diabetic 
control (6.773 ± 0.07 
µIU/mL) Thermal 

Hyperalgesia: Increased 
pain threshold (dose-
dependent, p < 0.001) 

Mechanical Hyperalgesia: 
Increased pain threshold 

(dose-dependent, p < 
0.001) Antioxidant 

Enzymes (GSH and SOD): 
GSH: 0.51 ± 0.02 µM/mg 

protein, SOD: 15.96 ± 0.15 
U/mg protein Lipid 

Peroxidation (TBARS): 
Reduced to 3.16 ± 0.069 
nmol/mg protein (vs. 

Diabetic control: 6.53 ± 
0.15 nmol/mg protein) 

AGEs (Advanced 
Glycation End-products): 

Reduced to 2.48 ± 0.02 
RFU/mg protein (vs. 

Diabetic control: 3.72 ± 
0.02 RFU/mg protein) 

Nitrite Level: Significant 
reduction, but 

Gabapentin more 
effective 

Flavonoid In vivo

Effect on Body Weight: 211 ± 0.8 g
(20 mg/kg) and 250 ± 1.4 g

(40 mg/kg) vs. Diabetic control
(161 ± 1.0 g)

Fasting Blood Glucose: Reduction in
glucose (p < 0.001) vs. Diabetic

control (421 ± 2.0 mg/dL)
Serum Insulin Level: Increased to

11.73 ± 0.18 µIU/mL (20 mg/kg and
40 mg/kg) vs. Diabetic control

(6.773 ± 0.07 µIU/mL) Thermal
Hyperalgesia: Increased pain

threshold (dose-dependent, p < 0.001)
Mechanical Hyperalgesia: Increased

pain threshold (dose-dependent,
p < 0.001) Antioxidant Enzymes

(GSH and SOD): GSH:
0.51 ± 0.02 µM/mg protein, SOD:
15.96 ± 0.15 U/mg protein Lipid

Peroxidation (TBARS): Reduced to
3.16 ± 0.069 nmol/mg protein (vs.

Diabetic control:
6.53 ± 0.15 nmol/mg protein) AGEs
(Advanced Glycation End-products):

Reduced to 2.48 ± 0.02 RFU/mg
protein (vs. Diabetic control:

3.72 ± 0.02 RFU/mg protein) Nitrite
Level: Significant reduction, but

Gabapentin more effective
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Table 1. Cont.

Phytochemical Mechanism of Action References Structural Formula Category Type of
Study Study Results

Alpha-Tocopherol
Antioxidant, protects cell
membranes, modulates

immune responses
[84]
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AGEs (Advanced 
Glycation End-products): 
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RFU/mg protein 

Nitrite Level: Significant 
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dependent) 

Caryophy
llene 

Binds to CB2 
receptors, 

modulates pain 
pathways 

[88] Terpenoid In vivo 

- BCP (1–100 µM) 
significantly increased IL-
10 and decreased IFN-γ 
production 
- No change in IL-4 levels 
after MOG35–55 
stimulation 
- CB2 selective antagonist 
AM630 (50 µM) blocked 
BCP’s 
immunomodulatory 
effect. 
- In EAE model, clinical 
score peaked at 3.5 on day 
19 post-immunization 
- 25 mg/kg BCP reduced 
motor paralysis and 
weight loss. 
- BCP (50 mg/kg) 
significantly reduced 
mechanical hyperalgesia 

Flavonoid In vivo

Effect on Body Weight: 250 ± 1.4 g
(1000 mg/kg) vs. Diabetic control

(161 ± 1.0 g)
Fasting Blood Glucose: Reduction in
glucose (dose-dependent, p < 0.001)
Serum Insulin Level: Increased to

11.73 ± 0.18 µIU/mL (20 mg/kg and
40 mg/kg)

Thermal Hyperalgesia: Increased pain
threshold (dose-dependent)

Mechanical Hyperalgesia: Increased
pain threshold

Antioxidant Enzymes (GSH and SOD):
GSH: 0.51 ± 0.02 µM/mg protein, SOD:

15.96 ± 0.15 U/mg protein
Lipid Peroxidation (TBARS): Reduced

to 3.16 ± 0.069 nmol/mg protein
AGEs (Advanced Glycation
End-products): Reduced to

2.48 ± 0.02 RFU/mg protein
Nitrite Level: Significant reduction

(dose-dependent)

Caryophyllene
Binds to CB2 receptors,

modulates pain
pathways

[88]
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modulates pain 
pathways 

[88] Terpenoid In vivo 

- BCP (1–100 µM) 
significantly increased IL-
10 and decreased IFN-γ 
production 
- No change in IL-4 levels 
after MOG35–55 
stimulation 
- CB2 selective antagonist 
AM630 (50 µM) blocked 
BCP’s 
immunomodulatory 
effect. 
- In EAE model, clinical 
score peaked at 3.5 on day 
19 post-immunization 
- 25 mg/kg BCP reduced 
motor paralysis and 
weight loss. 
- BCP (50 mg/kg) 
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mechanical hyperalgesia 

Terpenoid In vivo

- BCP (1–100 µM) significantly
increased IL-10 and decreased IFN-γ
production
- No change in IL-4 levels after
MOG35–55 stimulation
- CB2 selective antagonist AM630
(50 µM) blocked BCP’s
immunomodulatory effect.
- In EAE model, clinical score peaked at
3.5 on day 19 post-immunization
- 25 mg/kg BCP reduced motor
paralysis and weight loss.
- BCP (50 mg/kg) significantly reduced
mechanical hyperalgesia

Limonene
Interacts with serotonin

and norepinephrine
systems

[89,90]
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Limonene 

Interacts with 
serotonin and 

norepinephrine 
systems 

[89,90] Terpenoid In vivo 

BDNF: Decreased in Str 
(significantly lower than 
C, p < 0.05), increased in 
Str + Lim (higher than 
Str). 
IL-1β: 5.33 ± 0.42 (Str), 
3.16 ± 0.41 (C), 2.85 ± 0.24 
(Lim), 4.07 ± 0.1 (Str + 
Lim) − significantly 
reduced in Str + Lim 
compared to Str. 
Caspase-1: 0.55 ± 0.06 (Str 
+ Lim), 0.32 ± 0.04 (Lim) − 
significantly higher in Str 
+ Lim than Lim, p = 0.009. 
IL-6: No significant 
differences (p > 0.05). 

Mycrene 
Modulates 

cannabinoid 
receptors 

[88,91] Terpenoid In vivo 

- Nociception (secondary 
allodynia): 1 mg/kg dose 
improved nociception by 
211.0 ± 17.93%; 5 mg/kg 
dose improved 
nociception by 269.3 ± 
63.27%.  
- Blockade of CB 
receptors: CB1 antagonist 
AM281 blocked 
myrcene’s analgesic effect 
(p < 0.001), CB2 antagonist 
AM630 blocked it (p < 
0.0001). 
- Leukocyte Rolling: 
Myrcene reduced 
leukocyte rolling at 60 
min (p < 0.0001). 
- CB2 Antagonist 
Blockade: AM630 reduced 
leukocyte rolling (p < 
0.05). 
- Chronic Pain: Repeated 
myrcene administration 
increased paw 
withdrawal threshold (p < 
0.0001). 

Terpenoid In vivo

BDNF: Decreased in Str (significantly
lower than C, p < 0.05), increased in
Str + Lim (higher than Str).
IL-1β: 5.33 ± 0.42 (Str), 3.16 ± 0.41 (C),
2.85 ± 0.24 (Lim), 4.07 ± 0.1 (Str + Lim)
− significantly reduced in Str + Lim
compared to Str.
Caspase-1: 0.55 ± 0.06 (Str + Lim),
0.32 ± 0.04 (Lim) − significantly higher
in Str + Lim than Lim, p = 0.009.
IL-6: No significant differences
(p > 0.05).

Mycrene Modulates cannabinoid
receptors [88,91]
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improved nociception by 
211.0 ± 17.93%; 5 mg/kg 
dose improved 
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63.27%.  
- Blockade of CB 
receptors: CB1 antagonist 
AM281 blocked 
myrcene’s analgesic effect 
(p < 0.001), CB2 antagonist 
AM630 blocked it (p < 
0.0001). 
- Leukocyte Rolling: 
Myrcene reduced 
leukocyte rolling at 60 
min (p < 0.0001). 
- CB2 Antagonist 
Blockade: AM630 reduced 
leukocyte rolling (p < 
0.05). 
- Chronic Pain: Repeated 
myrcene administration 
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withdrawal threshold (p < 
0.0001). 

Terpenoid In vivo

- Nociception (secondary allodynia):
1 mg/kg dose improved nociception by
211.0 ± 17.93%; 5 mg/kg dose
improved nociception by
269.3 ± 63.27%.
- Blockade of CB receptors: CB1
antagonist AM281 blocked myrcene’s
analgesic effect (p < 0.001), CB2
antagonist AM630 blocked it
(p < 0.0001).
- Leukocyte Rolling: Myrcene reduced
leukocyte rolling at 60 min (p < 0.0001).
- CB2 Antagonist Blockade: AM630
reduced leukocyte rolling (p < 0.05).
- Chronic Pain: Repeated myrcene
administration increased paw
withdrawal threshold (p < 0.0001).
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Table 1. Cont.

Phytochemical Mechanism of Action References Structural Formula Category Type of
Study Study Results

Pinene Modulates cannabinoid
receptors [92]

Nutrients 2024, 16, 4342 13 of 22 
 

 

Pinene 
Modulates 

cannabinoid 
receptors 

[92] Terpenoid In vivo 

IL-1β (skin): 
α-Pinene 1 mg/kg: 62.68 ± 
4.54 
α-Pinene 5 mg/kg: 45.74 ± 
1.48 
α-Pinene 10 mg/kg: 47.75 
± 4.44 
TNF-α (skin): 
α-Pinene 1 mg/kg: 92.02 ± 
4.84 
α-Pinene 5 mg/kg: 56.36 ± 
6.02 
α-Pinene 10 mg/kg: 61.23 
± 3.25 
SOD (skin): 
α-Pinene 1 mg/kg: 27.91 ± 
2.88 
α-Pinene 5 mg/kg: 41.49 ± 
1.75 
α-Pinene 10 mg/kg: 47.42 
± 3.02 

Capsaicin 

Desensitizes TRPV1 
receptors, 

modulates pain 
signaling 

[95–97] Alkaloid In vivo 

Axon reflex flare 
abolished during 
capsaicin, recovered to 
~50% after 49 days. All 
sensations recovered 
completely within 7 
weeks in healthy subjects. 
Analgesia lasted for 
months in spontaneous 
neuropathic pain patients 
treated with 8% capsaicin. 

Tetrahydr
opalmati
ne (THP) 

Modulates 
dopaminergic and 

serotonergic 
activity, decreases 
glutamate release 

[98] Alkaloid 
In vivo 
In vitro 

- THP (5 mg/kg, 10 
mg/kg) alleviates 
mechanical allodynia and 
heat hyperalgesia in CFA-
induced inflammatory 
pain rats (observed on 
Day 9) 
- 2.5 mg/kg did not 
significantly relieve pain  
- Gait parameters: THP 
treatment significantly 
reversed CFA-induced 
reductions in contact area 
and print length (Day 7) 
- 100 µM THP promoted 
significant apoptosis in 
astrocytes and microglia 
- 10 mg/kg THP reduced 
spinal cord inflammatory 
cytokines (TNF-α, IL-1β) 
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Table 1. Cont.

Phytochemical Mechanism of Action References Structural Formula Category Type of
Study Study Results

Curcumin
Modulates inflammation,
oxidative stress, and ion

channels
[103–107]
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The structural formulas for all compounds in the table are sourced from PubChem (National Center for Biotech-
nology Information, 2024). Accessed 3 December 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/.
Specifically, for each compound, the following PubChem IDs were used: Narirutin (CID 442431), Diosmin (CID
5281613), Quercetin (CID 5280343), 6-Methoxyflavanone (6-MeOF) (CID 147157), Berberine (CID 2353), Tocopherol
(CID 14985), Caryophyllene (CID 5281515), Limonene (CID 22311), Myrcene (CID 31253), Pinene (CID 6654),
Capsaicin (CID 1548943), Tetrahydropalmatine (THP) (CID 5417), Matrine (CID 91466), Resveratrol (CID 445154),
Curcumin (CID 969516), Gingerol (CID 443793), Alpha-lipoic acid (CID 864) [111].

8. Clinical Trials of Phytochemicals

Clinical trials evaluating the effectiveness of phytochemicals in managing neuropathic
pain have produced mixed results, which vary based on formulation, dosage, and specific
patient conditions. As previously mentioned, high-concentration capsaicin patches (8%)
have been extensively studied in patients with diabetic neuropathy and postherpetic
neuralgia [96,97]. These trials indicate that capsaicin effectively desensitizes nociceptive
neurons through the modulation of TRPV1 receptors, providing significant pain relief that
can persist for up to 12 weeks after a single application [112]. The side effects are generally
limited to localized reactions, making capsaicin a viable option for managing localized
neuropathic pain [113].

Similarly, clinical studies involving oral curcumin supplements have shown promis-
ing yet variable results in patients with chronic pain syndromes, including neuropathic
pain. Many trials report reductions in pain scores and improvements in quality of life,
which can be attributed to curcumin’s anti-inflammatory and antioxidant properties [114].
However, challenges related to its low bioavailability have led to the investigation of newer
formulations, such as curcumin nanoparticles, to enhance its efficacy [115].

Several studies are also exploring the potential of combining phytochemicals, such
as curcumin and resveratrol, with conventional medications to enhance analgesic effects.
These combination therapies may leverage synergistic mechanisms, leading to improved
pain relief and reduced side effects [116].

Research on resveratrol is more limited, but early-phase clinical trials suggest that it
may help alleviate neuropathic symptoms by targeting oxidative stress and inflammatory
pathways [117,118]. Small-scale studies indicate modest pain relief and improved patient-
reported outcomes, particularly in cases of diabetic neuropathy. However, further trials
with larger cohorts are necessary to validate these findings [103,119,120].

Polydatin (PLD) has shown promise in treating neuropathic pain by reducing oxidative
stress and inflammation. Studies suggest that PLD enhances antioxidant activity (e.g.,
catalase and glutathione), reduces nitrite levels, and regulates matrix metalloproteinase

https://pubchem.ncbi.nlm.nih.gov/
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(MMP) activity, which helps protect neuronal tissue after spinal cord injury. These effects
contribute to pain relief and improved sensory-motor function [121].

Clinical trials also suggest that cannabinoids may provide relief in conditions such as
multiple sclerosis-related neuropathy and diabetic neuropathy by modulating inflammatory
and oxidative stress pathways. However, results have been mixed, and further research is
required to identify the most effective formulations and dosages. Early studies highlight
their potential as an adjunct to conventional therapies, but larger, high-quality trials are
needed to confirm these findings [2].

It is important to note that research on curcumin and other phytochemicals in the treat-
ment of neuropathic pain is still in its developmental phase. Given the limited clinical trial
data, further high-quality studies are needed to establish their clinical efficacy and safety.

9. Conclusions

Some phytochemicals have shown promising potential in managing neuropathic pain
by targeting mechanisms such as inflammation reduction, alleviating oxidative stress, and
modulating pain signaling pathways. These plant-derived compounds offer a lower-risk
alternative to conventional treatments, which are often limited by side effects and subopti-
mal long-term efficacy. However, challenges remain in their routine clinical application,
including improving bioavailability, ensuring consistent efficacy, and developing standard-
ized treatment protocols. While phytochemicals are not yet a definitive solution, they
represent a significant advancement in neuropathic pain management and hold promise as
complementary or alternative therapies. Ongoing research and high-quality clinical trials
are essential to validate their therapeutic potential. However, are we on the verge of new
solutions? The answer is cautiously optimistic.

This cautious optimism is due to the growing body of evidence that supports the
efficacy of certain phytochemicals despite the limitations and gaps in current clinical
trials. While it is clear that more research is needed to establish these compounds as main-
stream treatments, their ability to offer a lower-risk alternative to conventional medications
presents a compelling reason to continue exploring their full potential.
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