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Abstract: Ischemic stroke (IS) remains a leading cause of mortality and long-term disability world-
wide, with limited therapeutic options available. Despite the success of early interventions, such
as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients
continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted,
encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood–brain barrier
disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Re-
cently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising
therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuropro-
tection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery
and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal
damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics
of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs
in IS treatment at the molecular level. This review also explores the recent advancements in EV
engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into
EVs to enhance their therapeutic efficacy.

Keywords: ischemic stroke; pathophysiology; extracellular vesicles; extracellular vesicle engineering

1. Introduction

Stroke is a neurological disorder caused by acute focal injury of the central nervous
system (CNS) with a vascular etiology [1]. According to the World Health Organization,
stroke is the second leading cause of death and the fourth leading cause of disability
worldwide [2,3]. Ischemic stroke (IS), which accounts for approximately 87% of all strokes,
has a steadily increasing incidence and is responsible for nearly half of all stroke-related
mortality [4]. IS is defined by neurological dysfunction resulting from focal cerebral, spinal,
or retinal infarction, most commonly due to cardioembolism or atherosclerosis in the aortic
arch or cervical arteries [1,5]. In clinical practice, the treatment of IS primarily involves
intravenous administration of alteplase, the only tissue-type plasminogen activator (tPA)
approved by the USFDA for thrombolysis, mechanical thrombectomy, or a combination of
both, as quickly as possible after the onset of ischemic events [5–7].

Although advancements in infrastructure and treatment technologies have enabled
rapid intervention for IS, more than one-third of patients continue to experience temporary
or permanent disabilities, such as motor function impairment or dementia [8,9]. These
post-stroke complications are closely correlated with both the severity and the frequency of
the stroke [10,11]. The primary mechanism of complications arises from damage to brain
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parenchymal cells due to nutrient-depleted hypoxia and reperfusion injury [12]. The under-
lying pathophysiological processes include excitotoxicity, oxidative stress, inflammatory
responses, disruption of the blood–brain barrier (BBB), and apoptosis [12–14]. Since the
1960s, numerous neuroprotective agents have entered clinical trials, but most candidates
failed to demonstrate sufficient efficacy, likely due to a lack of preclinical models that accu-
rately mimic the complex pathology of stroke, particularly in elderly populations [14–16].
Furthermore, clinical trials involving cell therapies aimed at tissue replacement or the
modulation of inflammation have faced significant challenges, including low therapeutic
efficacy and unexpected adverse events [17–20].

Over the last decade, increasing attention has been directed toward the potential of
extracellular vesicles (EVs) as an alternative therapeutic strategy for IS [21]. EVs secreted
by nearly all cell types facilitate intercellular communication by delivering their luminal
cargos to target cells [22]. Moreover, EVs derived from various cell types have been shown
to enhance neurogenesis [23], promote angiogenesis [24], attenuate inflammation [25,26],
and reduce oxidative stress [27], all of which are critical for the treatment of IS (Table 1).
Additionally, the luminal cargos of EVs from damaged tissues reflect disease progression,
allowing the EVs to serve as potential biomarkers in various neurological disorders, in-
cluding stroke [28,29]. Because they can cross the BBB, and their properties and cargos can
be modified relatively easily, EVs have emerged as attractive candidates for therapeutic
applications in CNS-related disease [30,31].

In this review, we briefly summarize the general characteristics of EVs, describe the
molecular mechanisms underlying the pathophysiology of IS, and discuss the naïve EV
cargos that target these mechanisms. We also discuss recent advances in EV engineering
that aim to improve the therapeutic efficacy of EVs.
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Table 1. Recent research on the use of naïve extracellular vesicles (EVs) for treatment of ischemic stroke (IS).

EV Source Major Cargo
Molecules

In Vitro Stroke
Model

In Vivo Stroke Model
Major Targeted

Molecules/Pathway Outcome Reference
Animal Model Administration

Route Dosage Time Point of
Administration

Rat BM-MSCs - - Rat tMCAO
model (2 h) Tail vein 100 µg 24 h -

Enhanced neurite remodeling
Enhanced neurogenesis

and angiogenesis
[23]

Human
iPSC-derived

MSCs
- OGD/R-HUVECs

(8 h)
Rat tMCAO
model (2 h) Tail vein 1 × 1011

particles
4 h STAT3 Enhanced angiogenesis

Reduced autophagy [24]

HUVECs miR-1290 OGD/R-neurons
(1.5 h)

Mouse tMCAO
model (1 h)

Intracranial
(AP: 2.0 mm,

ML: 1.7 mm, DV:
1.35 mm)

5 µg Immediately
(0 h) - Reduced apoptosis [25]

Human NSCs - Glucose-free H/R
model (1.5 h) - - - - -

Reduced apoptosis and
oxidative stress

Enhanced axonal elongation
Enhanced angiogenesis

[32]

Rat BM-MSCs - OGD/R-microglia
(1–5 h)

Rat tMCAO
model (1.5 h) Tail vein 120 µg 2 h cysLT2R

ERK1/2
Mitigated microglia

M1 polarization [33]

Human BM-MSCs - - Mouse tMCAO
model (0.5 h) Tail vein Released by

2 × 106 MSCs
Immediately

(0 h) -
Reduced apoptosis

Reduced peripheral immune
cell inflitration

[34]

Astrocytes miR-34c OGD/R-N2a cells
(-)

Rat tMCAO
model (-) Tail vein - -

TLR7
NF-κB/MAPK

pathway

Reduced apoptosis
and inflammation [35]

Human ESCs

TGF-β
and

Smad2
and

Smad4

- Mouse tMCAO
model (1 h) Tail vein 1 × 109 particles

2 h and day 1, 2
(3 times)

TGF-β/Smad
pathway

Reduced apoptosis
and inflammation

Reduced peripheral immune
cell inflitration

[36]

UC-MSCs circBBS2
H/R model of
SH-SY5Y cells

(4 h)

Rat tMCAO
model (2 h) Tail vein 50 µg 4 h and day 1, 2

(3 times) miR-494 Reduced ferroptosis by
upregulation of SLC7A11 [37]

Mouse AD-MSCs miR-760-3p OGD/R-N2a cells
(4 h)

Mouse tMCAO
model (1 h) Intranasal 10 µg Day 1, 3, 5

(3 times) CHAC1 Reduced ferroptosis [38]
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Table 1. Cont.

EV Source Major Cargo
Molecules

In Vitro Stroke
Model

In Vivo Stroke Model
Major Targeted

Molecules/Pathway Outcome Reference
Animal Model Administration

Route Dosage Time Point of
Administration

Rat BM-MSCs - OGD/R-BV2 and
PC12 cells (6 h)

Rat tMCAO
model (2 h) Tail vein

80 µg (low)
100 µg

(medium)
120 µg (high)

2 h -

Shift of microglial polarization
state toward M2 phenotype

Reduced pyroptosis
and inflammation

[39]

Mouse AD-MSCs miR-25-3p OGD/R-neurons
(10 h)

Mouse tMCAO
model (1 h) Femoral vein 10 µg Immediately

(0 h) or 12 h p53-BNIP3 signaling Reduced autophagy [40]

Human BM-MSCs - - Mouse tMCAO
model (0.5 h) Femoral vein EVs released by

2 × 106 MSCs
Day 1, 3, 5
(3 times) -

Neuroprotection
Enhanced neurogenesis

and angiogenesis
Modulated peripheral

immune response

[41]
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2. General Characteristics of EVs

EVs are non-replicative, membrane-bound particles enclosed by a lipid bilayer that are
naturally released by cells [42]. EVs are generally categorized into three main types based
on their size and biogenesis: exosomes (40–200 nm), microvesicles (200–1000 nm), and
apoptotic bodies (500–2000 nm) [43]. Exosomes are formed by the inward budding of the
endosomal membrane, leading to the generation of intraluminal vesicles. The intraluminal
vesicles are released into the extracellular space through the fusion of multivesicular bodies,
also known as late endosomes, with the plasma membrane [44]. Microvesicles and apoptotic
bodies are produced and released by the outward budding of the plasma membrane in
normal and apoptotic cells, respectively [45]. As different types of EVs often share surface
markers and biogenesis mechanisms, the International Society for Extracellular Vesicles
recommends using the term “EV” as a general nomenclature for vesicles released from
cells, classifying them into small and large EVs based on their size [46].

EV biogenesis involves several key pathways, one of which requires the endosomal
sorting complexes required for transport (ESCRT) protein complex. This complex plays
a crucial role in cargo recruitment and sorting during EV formation [47]. EVs can also be
produced by ESCRT-independent mechanisms, such as the ceramide-based sphingomyeli-
nase (SMase) pathway or the tetraspanin-dependent pathway [48,49]. Tetraspanins (e.g.,
CD63, CD81, and CD9), ESCRT-associated proteins (e.g., Alix, TSG101, and Syntenin), and
heat shock protein 70 (HSP70) are incorporated into EVs during biogenesis and serve as
conventional markers for identifying EVs [42]. EVs are also capable of encapsulating a vari-
ety of bioactive molecules, including proteins, lipids, and nucleic acids (double-stranded
DNAs, mRNAs, and microRNAs [miRNAs]), which they subsequently deliver to target
cells [50]. In the CNS, EVs secreted by stimulated cortical neurons are preferentially taken
up by neurons rather than glial cells [51]. Additionally, glioblastoma-derived EVs can
modulate the local immune environment by transferring the miRNAs miR-451 and miR-21
to monocytes and macrophages in the brain [52].

Once secreted, EVs interact with recipient cells either by being taken up directly or by
activating receptors on the plasma membrane [53,54]. The direct uptake of EVs can occur by
various mechanisms, including clathrin- or caveolin-mediated endocytosis, phagocytosis,
micropinocytosis, lipid raft-mediated endocytosis, and membrane fusion [55]. Specific EV
surface proteins, such as MFG-e8 and CD209, play critical roles in facilitating EV uptake
by interacting with corresponding surface proteins on recipient cells [56,57]. EV surface
proteins can also prevent uptake by nontarget cells; for example, EVs expressing CD47
can evade clearance by monocytes, allowing them to persist and function in an endocrine
manner [58].

3. The Molecular Pathophysiology of IS and the Therapeutic Potential of EVs

The complications associated with IS arise from pathophysiological changes within the
CNS triggered by restricted nutrient and oxygen supply, resulting in the activation of glial
cells and the irreversible loss of brain parenchymal cells [12]. Omics data analyses have
demonstrated that EVs, particularly those derived from mesenchymal stem cells (MSCs),
carry a diverse array of anti-inflammatory or antiapoptotic cargos, while simultaneously
promoting neurogenesis and angiogenesis for tissue repair [59]. In this section, we explore
the molecular mechanisms driving IS pathologies and discuss the therapeutic potential of
naïve EV cargos to mitigate these processes.

3.1. Excitotoxicity

Excitotoxicity refers to nerve cell damage or death caused by excessive stimulation by
neurotransmitters. IS begins with a reduction in cerebral blood flow, leading to a decrease
in ATP levels that disrupts transmembrane ionic gradients (Figure 1A). This disruption
triggers anoxic depolarization and the excessive release of neurotransmitters into the ex-
tracellular space [60]. The released neurotransmitters cannot be sufficiently cleared due
to the insufficient ATP supply, resulting in their continued accumulation in the extracellu-
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lar environment. Glutamate, an excitatory neurotransmitter, induces calcium ion (Ca2+)
influx by activating N-methyl-D-aspartate receptors (NMDARs), kainate receptors, and α-
amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) [61]. The Ca2+

overload is further exacerbated by Ca2+ release from the endoplasmic reticulum through
the mGluR–PLC pathway, calcium-dependent protease (e.g., calpain)-mediated cleavage
of the sodium–calcium exchanger (NCX), and the activation of other Ca2+-permeable
channels, such as acid-sensing ion channels (ASICs) and TRPM7 [62–65]. Excessive Ca2+

accumulation generates free radicals and initiates cell death pathways, ultimately leading
to neuronal cell death [66]. Notably, NMDARs containing the GluN2B subunit can directly
activate various cell death signals in neurons [66].
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Figure 1. Schematic overview of disease progression and molecular pathophysiology in ischemic
stroke. As cerebral blood flow (CBF) decreases, the supply of nutrients and oxygen to the brain tissue
is reduced, leading to a decrease in intracellular ATP levels and the formation of reactive oxygen
species (ROS). The reduction in ATP levels causes membrane depolarization, resulting in excessive
glutamate release at the synapses and triggering excitotoxicity (A). Concurrently, mitochondrial ROS



Pharmaceutics 2024, 16, 1492 7 of 29

formation due to reduced oxygen, along with intracellular calcium overload from excitotoxicity
and nNOS activation via N-methyl-D-aspartate receptors (NMDARs), induces oxidative/nitrosative
stress. Notably, the peroxynitrite (ONOO-) generated in this process causes severe cellular damage
through DNA fragmentation and lipid peroxidation (B). Activated astrocytes and microglia secrete
proinflammatory cytokines, such as IL-1β and TNF-α, and danger-associated molecular patterns
(DAMPs) released from dead cells further trigger inflammation. Oxidative/nitrosative stress and
inflammation result in damage to brain endothelial cells, facilitating the infiltration of peripheral
immune cells, which exacerbates the pathological process (C). The reperfusion of CBF contributes
to the worsening pathology via similar mechanisms. Key molecules or pathways targeted by the
extracellular vesicles (EV) are highlighted in red color. Green boxes indicate molecules with enzymatic
functions. The schematic illustration was created with BioRender.com.

The potential use of EVs to treat IS by reducing extracellular glutamate concentrations
has not been fully investigated. Recent studies showed that EVs derived from microglia and
neurons deliver miR-124 to astrocytes, leading to the upregulation of astrocytic glutamate
transporter-1 (GLT-1) expression, which enhances the clearance of extracellular glutamate
in normal conditions and in glioma (Figure 1A) [67,68]. Additionally, EVs originating from
astrocytes were found to contain glutamate transporters, suggesting a potential role in
scavenging extracellular glutamate [69]. Although investigations of therapeutic EVs remain
in the early stages, the results so far suggest that EVs might be useful in treating IS by
reducing extracellular glutamate levels.

3.2. Oxidative/Nitrosative Stress

Oxidative stress in IS typically manifests in three distinct phases [70]. Initially, oxygen
and glucose deprivation lead to the decoupling of the mitochondrial respiratory chain,
resulting in the accumulation of reduced intermediates and the generation of reactive
oxygen species (ROS) (Figure 1B). The second phase involves the production of hydrogen
peroxide (H2O2) as a result of xanthine oxidase (XO) activation. The final phase generally
occurs during reoxygenation and is associated with NADPH oxidase (NOX) activation and
a subsequent increase in Ca2+ concentrations. Concurrently, nitric oxide (NO) production,
driven by the activation of the NMDAR (especially those containing the GluN2B subunit)–
PSD95–neuronal nitric oxide synthase (nNOS) complex, further contributes to oxidative
stress in the third phase [71]. Oxidative stress can also arise during excitotoxicity, primarily
by ROS generation due to NOX and phospholipase A2 (PLA2) activation in response to
Ca2+ influx [72,73]. The ROS and reactive nitrogen species (RNS) generated during IS can
directly damage DNA, proteins, membranes, and other cellular compounds, ultimately
leading to cell death [74]. For instance, NO and superoxide anions produced by nNOS
and NOX activation combine to form highly reactive peroxynitrite, which induces DNA
fragmentation, lipid peroxidation, and the disruption of the BBB [75].

Oxidative stress in IS can be mitigated by overexpression and nuclear translocation of
the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. In the nucleus, Nrf2
binds to the antioxidant response element (ARE), promoting the expression of antioxidant
enzymes, such as heme oxygenase (HO-1), glutathione peroxidase (GPx), catalase (CAT),
and superoxide dismutase (SOD) [76,77]. Recent studies showed that neural stem cell
(NSC)-derived EVs can stimulate Nrf2 translocation and increase the expression of SOD1,
CAT, and GPx-1, thereby reducing intracellular ROS levels in neuronal hypoxia/reperfusion
models (Figure 1B) [32]. Additionally, EVs from minipig adipose-derived MSCs (AD-MSCs)
were shown to decrease the expression of iNOS, NOX-1, and NOX-2 and reduce oxidized
proteins in a rat model of acute IS [78]. Furthermore, human AD-MSC-derived EVs were
found to reduce ROS production in H2O2-treated endothelial cells to levels comparable to
those in control cultures and restore mitochondrial respiratory chain function by delivering
miR-146a-5p [79]. Recent studies demonstrated that EVs from young human donors are
enriched with GST or NAMPT and can ameliorate age-related tissue damage by enhancing

BioRender.com
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antioxidant capacity [80,81]. These findings highlight the potential of stem-cell-derived
EVs in IS therapy by restoring the antioxidant balance and counteracting oxidative stress.

3.3. Inflammation and Ischemia/Reperfusion (I/R) Injury

As IS progresses, excitotoxicity and excessive ROS/RNS generation occur from the
center of the infarction (ischemic core). This process escalates with reperfusion, leading to
brain cell death and the release of various danger-associated molecular patterns (DAMPs)
such as ATP, heat shock protein (HSP), and high mobility group box 1 (HMGB1) [82].
Microglia and astrocytes are subsequently activated by DAMPs, oxidative stress, and other
inflammatory signals. Along with other brain cells, such as neurons and endothelial cells,
the activated microglia and astrocytes release proinflammatory cytokines (e.g., TNF-α,
IL-1β, and IL-6), chemokines (e.g., MCP-1 and MIP-1a), matrix metalloproteinases (MMPs),
ROS, and NO, which collectively induce inflammation (Figure 1C) [82–84]. These released
molecules stimulate the expression of cell adhesion molecules (e.g., ICAM-1 and E/P-
selectin) in endothelial cells, initiating the infiltration of peripheral immune cells, including
leukocytes, monocytes, and lymphocytes [85]. Neutrophils, the first leukocytes to infiltrate,
release large amounts of proinflammatory mediators and neutrophil extracellular traps,
which further exacerbate brain injury by intensifying inflammation, releasing ROS/NO,
and disrupting the BBB [86]. For instance, MMP-9 contributes to BBB disruption by
degrading endothelial cell tight junction proteins (e.g., claudin-5) and cerebrovascular basal
lamina proteins (e.g., collagen-4), resulting in detrimental effects including brain edema
and hemorrhagic transformation [87]. The complement cascade also plays a role in this
process; for example, C3a, an anaphylatoxin, and the C1 protein complex exacerbate I/R
injury by promoting leukocyte infiltration and activating endothelial cells [88,89].

The inflammatory reactions in IS are mediated by various signaling pathways. Mem-
bers of the mitogen-activated protein kinase (MAPK) family, including extracellular signal-
regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38, as well as the
NF-κB subunits p65/RelA and p50, are activated in response to external signals, such as
DAMPs, ROS, and inflammatory cytokines, leading to the upregulation of proinflammatory
mediators that exacerbate IS pathology (Figure 1C) [90–94]. Additionally, Toll-like receptors
(TLRs), which serve as upstream regulators of MAPKs and NF-κB, induce inflammation by
responding to DAMPs [95].

Recent findings suggest that EVs secreted by various cell types may target inflamma-
tory pathways and offer therapeutic benefits in IS. For example, MSC-derived EVs reduced
inflammation in a rodent model of transient middle cerebral artery occlusion (tMCAO),
potentially by reversing the CysLT2R-ERK1/2–mediated M1 polarization of microglia
or by inhibiting immune cell infiltration from the blood [33,34]. Furthermore, astrocyte-
derived EVs carrying miR-34c alleviated I/R injury in in vitro models of oxygen–glucose
deprivation/reperfusion and in vivo tMCAO models by downregulating TLR7, NF-κB,
and MAPK pathways (Figure 1C) [35]. Anti-inflammatory effects can also be achieved
by activating regulatory T cells that secrete anti-inflammatory cytokines, such as IL-10
and TGF-β. Embryonic stem cells also release EVs containing TGF-β, Smad2, and Smad4
and were shown to reduce peripheral immune cell infiltration and neuroinflammation by
promoting regulatory T cell expansion [36].

It is important to note that certain molecules and cells that promote inflammation and
I/R injury might paradoxically play beneficial roles in IS under specific conditions. For
example, ERK1/2 activated by brain-derived neurotrophic factor (BDNF) was shown to
inhibit apoptosis by reducing caspase-3 activity in hypoxic–ischemic brain injury [96]. Ad-
ditionally, MMP-9 and proliferating microglia were shown to contribute to neurovascular
remodeling during the later stages of cerebral ischemia [97,98]. Therefore, the therapeu-
tic application of EVs harboring immunomodulatory agents in IS requires the careful
consideration of the target signaling molecules and the time window for treatments.
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3.4. Ischemic Brain Cell Death

Various molecular mechanisms contribute to ischemic brain cell death (Figure 2) [99].
One major pathway involves either the activation of the Ca2+-dependent protease cal-
pain [100,101] or the induction of the mitochondrial permeability transition due to Ca2+

overload and oxidative stress [102,103]. These processes activate the intrinsic apoptosis
pathway by causing the release of cytochrome C or apoptosis-inducing factor (AIF) from
mitochondria. Additionally, signaling molecules, such as death-associated protein kinase
1 (DAPK1), JNKs, p38, and Notch, which are activated during IS, can induce p53 activa-
tion [104]. Once activated, p53 promotes the transcription of proapoptotic genes, such
as PUMA and NOXA, which can directly interact with Bcl-xL to permeabilize the outer
mitochondrial membrane, ultimately triggering mitochondrial apoptosis [105–107].

Extracellular factors released during inflammatory responses, including TNF-α [108],
Fas ligand (FasL) [109,110], and TNF-related apoptosis-inducing ligand (TRAIL) [110,111],
can induce caspase-8 activation through ligand–receptor interactions, initiating both the
extrinsic and the mitochondrial apoptosis pathways (Figure 2) [112,113]. However, caspase
activity may also be reduced under IS conditions [114,115]. In such cases, external signals,
particularly TNF-α, prompt the formation of the necrosome complex, which consists of
receptor-interacting protein kinase (RIPK) 1, RIPK3, and mixed lineage kinase domain-like
pseudokinase (MLKL), and induces necroptosis [115–117].

Under the acidic conditions of the ischemic brain, the intracellular free iron level
increases as a result of ferritinophagy and iron dissociation from transferrin [118,119]. The
accumulation of free iron, combined with ROS, enhances lipoxygenase-mediated lipid
peroxidation, resulting in the formation of lipid hydroperoxides that trigger ferropto-
sis [120]. Additionally, excessive intracellular Ca2+ activates cytosolic PLA2, promoting
the production of arachidonic acid (AA) (Figure 2) [121]. The AA is then esterified into
phosphatidylethanolamines by acyl-CoA synthetase long-chain family member 4 (ACSL4),
further contributing to ferroptosis [122]. Conversely, GPx-4 utilizes glutathione (GSH) as a
substrate to reduce lipid hydroperoxides, thereby inhibiting an iron-dependent cell death
ferroptosis [123]. Excessive extracellular glutamate in IS inhibits the cystine/glutamate
antiporter (System Xc-), impairing the uptake of cystine, an essential precursor of GSH,
thereby reducing GPx-4 activity and increasing susceptibility to ferroptosis (Figure 2) [124].
Moreover, DNA damage caused by excitotoxicity and ROS/RNS activates poly (ADP-
ribose) polymerase 1 (PARP1), initiating a series of events, including the cytoplasmic
translocation of poly (ADP-ribose), AIF release from mitochondria, AIF/macrophage mi-
gration inhibitory factor (MIF) translocation, and DNA cleavage, ultimately resulting in the
induction of a cell death pathway known as parthanatos (Figure 2) [125]. Cell death can also
be mediated by the inflammasome, a multiprotein complex composed of a single type of
sensor protein, such as NLRP or AIM2, along with the adaptor ASC and pro-caspase-1. This
complex activates caspase-1 and eventually induces pyroptosis, a type of inflammatory cell
death [126,127]. Alternatively, the exposure of phosphatidylserine (PS) on the outer leaflet
of the plasma membrane and the expression of proteins that mediate PS recognition (e.g.,
MerTK and MFG-e8) can trigger phagoptosis, the cell death induced by phagocytosis [128].

Although controversial findings exist, excessive autophagy can exacerbate IS by
promoting neuron death [129]. In IS, the inhibition of the phosphoinositide 3-kinase
(PI3K)/protein kinase B (AKT) pathway [130] and the activation of ERK1/2 [131] both
trigger autophagy-related cell death by inhibiting mammalian target of rapamycin complex
1 (mTORC1) activation (Figure 2). Additionally, the activation of AMP-activated protein
kinase (AMPK), either due to a high AMP/ATP ratio [132,133] or by calmodulin-dependent
protein kinase kinase β (CaMKKβ) [134], causes autophagy-induced cell death by inhibit-
ing mTORC1. Hypoxia-inducible factor 1 (HIF-1) is also activated in response to hypoxia,
leading to the upregulation of p53 and Bcl-2/adenovirus E1B 19-kDa-interacting protein 3
(BNIP3) [135,136], which contributes to excessive autophagy by promoting the release of
beclin-1 from the Bcl-2/beclin-1 complex [137] or by inhibiting mTORC1 activation through
its binding to Ras homolog enriched in the brain (Rheb) (Figure 2) [138]. In addition, p53
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enhances the expression of the damage-regulated autophagy modulator (DRAM) [139],
potentially leading to excessive autophagy. Furthermore, the forkhead box O (FOXO)
family proteins, which are regulated by Sirt1, AKT, and the signal inducer and activa-
tor of transcription 3 (STAT3), can worsen IS outcomes by increasing the expression of
autophagy-related proteins, such as ATG7 [140–144]. This dysregulated autophagy can
further exacerbate neuronal impairments in IS.
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(CBF) leads to decreased nutrient and oxygen supply, triggering excitotoxicity, inflammation, and
oxidative/nitrosative stress, which ultimately result in brain cell death. The molecular mecha-
nisms underlying various forms of brain cell death in ischemic stroke are illustrated in the figure.
Excitotoxicity-induced receptor activation and intracellular calcium overload contribute to autophagy-
related cell death and apoptosis via DAPK1, CaMKKβ, and calpain activation, while also triggering
ferroptosis through PLA2 activation, which provides arachidonic acid (AA). Oxidative/nitrosative
stress induces mitochondrial outer membrane permeabilization, DNA damage, and lipid peroxi-
dation, driving apoptosis, parthanatos, and ferroptosis. Furthermore, external signals, including
proinflammatory cytokines, induce apoptosis and autophagy-related cell death through MAPK and
NOTCH signaling, caspase-8 activation, and mTORC1 inhibition. Under the conditions of ATP
depletion, rather than activating caspase-8, cell death signaling induced by TNF-α and FasL promotes
necroptosis by forming a necrosome complex comprising RIPK1/3 and MLKL. Key molecules or
pathways targeted by the extracellular vesicles (EV) are highlighted in red color. Green boxes indicate
molecules with enzymatic functions. Schematic illustration was created with BioRender.com.
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Recent studies suggest that the various forms of cell death observed in IS can be
mitigated by EVs. MSC-derived EVs were shown to alleviate both extrinsic and intrinsic
apoptosis [145,146]. Specifically, miR-134 delivered by exosomes inhibited the apoptotic
cell death of oligodendrocytes by targeting caspase-8 (Figure 2) [146]. In addition, circBBS2
and miR-760-3p enriched in MSC-EVs targeted miR-494 and glutathione-specific gamma-
glutamylcyclotransferase 1, respectively, thereby inhibiting ferroptosis by increasing System
Xc- activity and boosting GSH levels (Figure 2) [37,38]. Furthermore, EVs derived from bone
marrow MSCs were shown to inhibit pyroptosis by reducing the expression of NLRP3, ASC,
gasdermin D, and mature IL-1β [39]. Neuronal EVs containing miR-98 were also reported
to inhibit phagoptosis by reducing the expression of the platelet-activating factor receptor
(PAFR) [147]. Moreover, EVs from AD-MSCs and induced pluripotent stem-cell-derived
MSCs were shown to inhibit autophagy-associated cell death by modulating p53–BNIP3
signaling and STAT3 expression, respectively (Figure 2) [24,40]. Although direct studies in
IS models are limited, the inhibition of RIPK1/3 and PARP1 expression by MSC-derived
EVs in other injury models suggests that these EVs hold potential for inhibiting necroptosis
and parthanatos [148–150].

4. EV Engineering Methods

Advances in understanding the molecular mechanisms underlying IS pathophysiology
have led to the development of strategies to target these mechanisms using bioactive
molecules. The low permeability of the BBB poses a significant obstacle to non-invasive
drug delivery for IS treatment. However, EVs exhibit a range of therapeutic effects in
IS-related pathologies, including their ability to cross the BBB, maintain circulation stability,
and protect internal cargo with their lipid bilayer. Despite these advantages, the innate
therapeutic cargo of naïve EVs may be insufficient to effectively modulate IS pathology,
and their delivery to the ischemic region following systemic administration may require
further optimization, particularly for therapeutic applications. To address these challenges,
various EV modification strategies have been developed to enable the precise regulation of
signaling pathways in specific target cells, thereby enhancing their therapeutic capacity,
while minimizing adverse effects (Table 2) [151].

Generally, EV engineering methods can be categorized depending on whether mod-
ifications are made before or after EV isolation (Figure 3). Pre-isolation modifications
involve various pretreatments or the gene transfection of EV-producing cells; whereas,
post-isolation modifications involve passive methods, such as co-incubation with desired
target molecules, as well as active methods that use physicochemical stimulation to enable
the loading of exogenous factors [31].

4.1. Pre-Isolation Modification: Pretreatment and Gene Transfection

Various pretreatments of EV-producing cells can enhance the efficacy of EVs for
IS treatment by altering the composition of the EV cargo. In vitro treatments with cy-
tokines [152,153], metallic compounds [154], magnetic nanoparticles [155], drugs [156],
and therapeutic biomolecules [157] under normal or hypoxic culture conditions [158] have
been shown to modulate the activity or polarization state of EV-producing cells, including
NSCs, MSCs, and macrophages (Figure 3A). These methods either facilitate the loading
of extrinsic therapeutic agents into EVs or upregulate the intrinsic levels of neurotrophic,
angiogenic, and anti-inflammatory cytokines or cell-survival-related miRNAs within the
EVs. These modifications potentiate the ability of EVs to inhibit ischemic brain damage,
while promoting tissue regeneration and neurological recovery.
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Table 2. Recent research in the use of engineered extracellular vesicles (EVs) for treatment of ischemic stroke (IS).

EV Source Modification Major Cargo
Molecules

In Vitro
Stroke Model

In Vivo Stroke Model
Major Targeted

Molecules/Pathway Outcome Reference
Animal Model Administration

Route Dosage Time Point of
Administration

BV2 cells IL-4
pretreatment miR-124

OGD/R-
neurons
(45 min)

Mouse tMCAO
model (1 h) Tail vein 100 µg 0 h and day 1, 2

(3 times) USP14 Reduced apoptosis [152]

Human NSCs INF-γ
pretreatment

miR-206
and

miR-133a-3p
and

miR-3656

- Rat tMCAO
model (-)

Intracranially
(striatum)

4 × 109

particles
24 h - Reduced apoptosis and

oxidative stress [153]

Mouse
BM-MSCs

Lithium
pretreatment miR-1906

OGD/R-
neurons (1 h)

OGD/R-
microglia (8 h)

OGD/R-
astrocytes

(12 h)

Mouse tMCAO
model (1 h)

Femoral vein
(day 1)

Retro-orbital
vein (day 3, 5)

13.5 µg Day 1, 3, 5
(3 times)

TLR4/NF-κB
pathway

Reduced apoptosis
Enhanced neurogenesis

and angiogenesis
Reduced peripheral immune

cell inflitration

[154]

Human
BM-MSCs

Iron oxide
nanoparticle

(IONP)
pretreatment

IONP
and

various
growth factors

LPS-treated
hypoxia-PC12

or rBMDM
cells (24 h)

Rat tMCAO
model (1 h) Tail vein 200 µg Immediately

(0 h) -

Enhanced neurogenesis
and angiogenesis

Reduced apoptosis
and inflammation

Shift of macrophage
polarization state toward

M2 phenotype

[155]

RAW264.7 cells Edaravone
pretreatment Edaravone - Rat pMCAO

model Tail vein - Days 1–7
(7 times) -

Neuroprotection
Shift of microglial

polarization state toward
M2 phenotype

[156]

RAW264.7 cells Curcumin
pretreatment Curcumin - Rat tMCAO

model (2 h) Tail vein - Immediately
(0 h) -

Reduced oxidative stress
and apoptosis

Neuroprotection
Attenuated BBB damage

[157]
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Table 2. Cont.

EV Source Modification Major Cargo
Molecules

In Vitro
Stroke Model

In Vivo Stroke Model
Major Targeted

Molecules/Pathway Outcome Reference
Animal Model Administration

Route Dosage Time Point of
Administration

mouse microglia OGD/R
preconditioning TGF-β

OGD/R-
neurons (6 h)

OGD/R-
microglia (4 h)

OGD/R-
bEnd.3 (16 h)

Mouse tMCAO
model (1 h) Femoral vein 10 µg 0 h, 6 h

(2 times)
TGF-β/Smad2/3

pathway

Promotion of endothelial cell
survival and migration

Reduced neuronal apoptosis
Enhanced angiogenesis

shift of microglial
polarization state toward

M2 phenotype

[158]

Rat plasma Melatonin
pretreatment

Various
miRNAs - Rat pMCAO

model Tail vein 100 µg 1 h, 12 h, 36 h
(3 times)

NLRP3-mediated
pathway

and
TLR4/NF-κB

pathway

Reduced pyroptosis
and inflammation [159]

Circulating
endothelial

progenitor cells

Treadmill
exercise miR-126 H/R-N2a

cells (-)
Mouse

pMCAO model - - -
BDNF

and
PI3k/Akt pathway

Reduced apoptosis
Enhanced neurogenesis

and angiogenesis
[160]

Rat skeletal
muscle

Treadmill
exercise miR-484 OGD/R-PC12

cells (4 h)
Rat tMCAO
model (1 h) Tail vein - 2 h before

operation ACSL4 Reduced ferroptosis [161]

Human
iPSC-derived

MSCs

Transfection
(BDNF) BDNF - Mouse tMCAO

model (45 min) Intranasally 1 × 1010

particles
2 h, 24 h, 48 h

(3 times)
BDNF/TrkB

signaling

Reduced apoptosis
and inflammation

Enhanced neurogenesis
and angiogenesis
Neuroprotection

[162]

Rat BM-MSCs
Transfection
(miR-17-92

cluster)

miR-17-92
cluster - Rat tMCAO

model (2 h) Intravenously
100 µg

(3 × 1011

particles)
24 h

PTEN
and

PI3k/Akt/mTOR
pathway

Enhanced neurite
remodeling and

neuronal plasticity
Enhanced neurogenesis and

oligodendrogenesis
Enhanced cortico-spinal tract

axonal remodeling

[163,164]
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Table 2. Cont.

EV Source Modification Major Cargo
Molecules

In Vitro
Stroke Model

In Vivo Stroke Model
Major Targeted

Molecules/Pathway Outcome Reference
Animal Model Administration

Route Dosage Time Point of
Administration

HEK293T cells
Transfection

(RGV-Lamp2b,
circSCMH1)

RGV-Lamp2b
and

circSCMH1

OGD/R-
neurons (3 h)

Mouse pho-
tothrombosis
(PT) model
Mouse dM-

CAO/tMCAO
(1 h) model

Rhesus
monkey PT

stroke model

Mouse: tail
vein

Rhesus
monkey: hind

limb vein

Mouse:
12 mg/kg

Rhesus
monkey:
3 mg/kg

Mouse: 24 h
Rhesus monkey:

24 h, 48 h
(2 times)

MeCP2

Enhanced neuronal plasticity
Reduced glial activation

Reduced peripheral immune
cell infiltration

[165]

Mouse
BM-MSCs

Passive loading
(miR-210-

cholesterol)
Click chemistry

(c(RGDyK)
peptides)

miR-210
and

c(RGDyK)
peptides

-
Mouse tMCAO
model (0.5 h or

1 h)
Tail vein 100 µg 24 h VEGF Enhanced angiogenesis [166]

Rat blood

Active loading
ultrasonication

(quercetin)
Carbodiimide

coupling
(GAP43

antibody)

Quercetin
and

GAP43
antibody

OGD/R-SH-
SY5Y cells

(1 h)

Rat tMCAO
model (2 h) Tail vein - 24 h

GAP43
and

Nrf2/HO-1 pathway

Reduced apoptosis and
oxidative stress [167]

Mouse
BM-MSCs

Passive loading
(curcumin)

Click chemistry
(c(RGDyK)
peptides)

Curcumin
and

c(RGDyK)
peptides

- Mouse tMCAO
model (1 h) Tail vein 300 µg 12 h NF-κB Reduced apoptosis

and inflammation [168]

RAW264.7 cells
Active loading
ultrasonication

(baicalin)
Baicalin

OGD/R-SH-
SY5Y cells

(1 h)

Rat pM-
CAO/tMCAO

(2 h) model
Tail vein 1.6 mg

baicalin
Immediately

(0 h) Nrf2/HO-1 pathway Reduced apoptosis and
oxidative stress [169]

Mouse
BM-MSCs

Transfection
(RVG-Lamp2b)
Active loading
electroporation

(miR-124)

miR-124 - Mouse PT
stroke model Tail vein - Day 1

Gli3
and
Stat3

Enhanced neurogenesis [170]
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Table 2. Cont.

EV Source Modification Major Cargo
Molecules

In Vitro
Stroke Model

In Vivo Stroke Model
Major Targeted

Molecules/Pathway Outcome Reference
Animal Model Administration

Route Dosage Time Point of
Administration

HEK293T cells

Transfection
(RVG-Lamp2b)
Active loading
electroporation

(HMGB1
siRNA)

HMGB1
siRNA - Rat tMCAO

model (1 h) Tail vein 30 µg
siRNAs

18 h before
operation HMGB1 Reduced apoptosis

and inflammation [171]

Rat plasma
Active loading
ultrasonication

(edaravone)
Edaravone - Rat pMCAO

model Tail vein 10 mg/kg
edaravone

Days 1–7
(7 times) - Neuroprotection [172]

Mouse ESCs
Active loading
freeze–thawing

(curcumin)
Curcumin - Mouse tMCAO

model (40 min) Intranasally - Days 0–7
(twice a day) -

Reduced oxidative stress
and inflammation

Reduced glial activation and
loss of vascular integrity

[173]

HEK293T cells

Transfection
(RBP-Lamp2b)
Passive loading

(AMO181a-
cholesterol)

RBP-Lamp2b
and

AMO181a

Hypoxia-
Neuro2A cells

(24 h)

Rat tMCAO
model (1 h) Intranasally 75 µg 1 h

RAGE
and

miR-181a

Reduced apoptosis and
inflammation [174]

Human NPCs
(ReN cells)

Passive loading
(RGD-C1C2)

RGD-C1C2
and

various
miRNAs

- Mouse tMCAO
model (1 h) Tail vein 300 µg 12 h p38 MAPK pathway Reduced inflammation [175]



Pharmaceutics 2024, 16, 1492 16 of 29

Pharmaceutics 2024, 16, x FOR PEER REVIEW 15 of 29 
 

 

 
Figure 3. Schematic overview of extracellular vesicle (EV) engineering. Various methods of EV en-
gineering can enhance the therapeutic efficacy of ischemic stroke (IS) treatment. (A) Pre-isolation 
EV engineering involves the modification of the EV-producing cells. Intracellular expression pat-
terns are modulated by altering extracellular conditions or by treating the cells with cytokines, hy-
drophobic molecules, or molecules capable of cellular uptake, resulting in changes in EV cargos. 
Desired molecules can be directly loaded into EVs by the transfection of EV-producing cells, the 
creation of EV-related fusion proteins, or using RNAs containing specific motifs. (B) EV engineering 
is also possible after EV isolation. Hydrophobic molecules or molecules that interact with the EV 
surface are loaded into EVs by simple co-incubation. Other molecules must be conjugated with hy-
drophobic agents, such as cholesterol or EV surface-interacting molecules, before co-incubation. Ad-
ditional post-isolation engineering methods include the microporation of the EV membrane by ul-
trasonication, electroporation, or freeze–thaw cycles and the use of active loading techniques, such 
as click chemistry or carbodiimide coupling. (C) Different approaches of EV engineering for IS treat-
ment. Schematic illustration was created with BioRender.com. 

Figure 3. Schematic overview of extracellular vesicle (EV) engineering. Various methods of EV
engineering can enhance the therapeutic efficacy of ischemic stroke (IS) treatment. (A) Pre-isolation
EV engineering involves the modification of the EV-producing cells. Intracellular expression patterns
are modulated by altering extracellular conditions or by treating the cells with cytokines, hydrophobic
molecules, or molecules capable of cellular uptake, resulting in changes in EV cargos. Desired
molecules can be directly loaded into EVs by the transfection of EV-producing cells, the creation
of EV-related fusion proteins, or using RNAs containing specific motifs. (B) EV engineering is also
possible after EV isolation. Hydrophobic molecules or molecules that interact with the EV surface are
loaded into EVs by simple co-incubation. Other molecules must be conjugated with hydrophobic
agents, such as cholesterol or EV surface-interacting molecules, before co-incubation. Additional
post-isolation engineering methods include the microporation of the EV membrane by ultrasonication,
electroporation, or freeze–thaw cycles and the use of active loading techniques, such as click chemistry
or carbodiimide coupling. (C) Different approaches of EV engineering for IS treatment. Schematic
illustration was created with BioRender.com.
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The enrichment of TGF-β, miR-124, and miR-133a in EVs, achieved by hypoxic condi-
tioning or the inflammatory cytokine treatment of EV-producing cells, has been shown to
reduce neural cell death in tMCAO animal models [152,153,156]. In addition, the systemic
administration of EVs derived from magnetic, nanoparticle-treated MSCs significantly
improved the efficiency of EV delivery to IS lesions (5.1 times compared to that without a
magnetic field) in a rat MCAO model [155]. Furthermore, exosomes from melatonin-treated
rat plasma inhibited microglial and neuronal pyroptosis, partially by downregulating the
TLR4/NF-κB pathway [159]. Additionally, mice that underwent moderate exercise before
MCAO surgery exhibited increased levels of miR-126 in EVs obtained from circulating
endothelial progenitor cells, which enhanced neurogenesis and angiogenesis by promoting
BDNF secretion and PI3K/AKT signaling activation [160]. Exercise also elevated miR-
484 levels in skeletal-muscle-derived EVs, which targeted ACSL4 and, thereby, inhibited
neuronal ferroptosis in a rat model of I/R injury [161].

The gene transfection of EV-producing cells is another commonly used method to
modify the contents of EVs. Overexpression to increase the cytosolic levels of therapeutic
proteins or RNAs in EV-producing cells can lead to the enrichment of these molecules within
EVs (Figure 3A) [162–165]. Alternatively, specific proteins can be selectively loaded into
EVs by creating EV-related fusion proteins [176], using the protein loading platform known
as the exosomes for protein loading via optically reversible protein–protein interaction
(EXPLORs) [177] or employing VSV-G and split GFP complementation [178]. In addition,
specific RNAs can be loaded into EVs by incorporating specific motif sequences (e.g.,
hnRNPA2B1 binding motif [179] and Zip code-like sequence [180]) in the RNAs or by using
the Targeted and Modular EV Loading (TAMEL) platform [181].

4.2. Post-Isolation Modification: Passive and Active Methods

One of the simplest methods for engineering EVs is to incubate isolated EVs with
molecules that enhance the therapeutic potential of the EVs. Molecules conjugated to
hydrophobic lipid derivatives, such as cholesterol and phospholipid–polyethylene glycol,
can integrate into the EV membrane during simple incubations (Figure 3B) [166,182]. Non-
hydrophobic molecules that have an affinity for EV surface molecules can also be attached
to the periphery of EVs by incubation. Additionally, physical stimulation allows for the
incorporation of non-hydrophobic molecules in the luminal space of EVs by creating
micropores in the EV membrane. Sonication or electroporation of a mixture of EVs and
therapeutic molecules is the most common method for actively loading desired cargos into
EVs via micropores. Repeated freeze–thaw cycles provide another physical way to actively
load molecules into EVs. Cargos can also be loaded into EVs by extrusion, dialysis, or
permeabilization with surfactants (e.g., saponin, Triton X-100, or Tween-80) [167,183–185].
Recent studies demonstrated that saponin-mediated cargo loading achieved an 11-fold
higher efficiency for loading hydrophilic porphyrins compared with passive loading [184].
Furthermore, EVs that were actively loaded with catalase using saponin achieved higher
neuron survival rates and more effective ROS removal compared with passively loaded
EVs [183].

The surfaces of EVs can be chemically modified by carbodiimide coupling or copper-
catalyzed azide-alkyne cycloaddition (click chemistry). Compounds with carbodiimide
functional groups, such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride,
act as crosslinkers by catalyzing linkages between carboxyl and amino groups. Using
this chemical method, EV surfaces can be conjugated with antibodies that bind to spe-
cific molecules highly expressed in target cells or tissues under pathological conditions
(Figure 3B). Additionally, carbodiimide chemistry was used to introduce alkyne groups
onto EV surface proteins, which were then conjugated with azide-fluor 545 by click chem-
istry for the fluorescent labeling of the EVs [186].
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4.3. EV Engineering for IS Treatment

The therapeutic potential of EVs in IS can be enhanced by modifying the luminal or
surface cargo molecules in EVs before or after their isolation using several approaches
(Figure 3C). Recent studies demonstrated that increasing the levels of therapeutic pro-
teins, mRNAs, miRNAs, and circRNAs within EVs can enhance the therapeutic efficacy of
the EVs for treating IS. For example, the induction of BDNF overexpression in MSCs by
lentiviral transfection led to BDNF enrichment in MSC-derived EVs, which reduced apop-
tosis and inflammation and promoted behavioral recovery and neural repair by activating
BDNF–tropomyosin receptor kinase B (TrkB) signaling (Figure 3C) [162]. Furthermore,
EVs derived from MSCs induced to overexpress the miR-17-92 cluster by electroporation
and lentiviral infection were shown to increase neuronal plasticity, promote neurogenesis
and oligodendrogenesis, and improve behavioral outcomes. This effect was achieved by
remodeling the cortico-spinal tract and enhancing neuronal innervation via PTEN down-
regulation and PI3K/AKT/mTOR signaling activation [163,164]. In another study, EVs
derived from circSCMH1-overexpressing HEK293T cells enhanced neuronal plasticity, re-
duced glial activation, and decreased peripheral immune cell infiltration in a mouse model
of IS. These therapeutic benefits were mediated by direct binding between circSCMH1
and methyl CpG binding protein 2 (MeCP2), which inhibited the nuclear localization of
MeCP2 [165]. Notably, circSCMH1-containing EVs also facilitated functional recovery in a
nonhuman primate model of stroke [165].

Pre-incubation of MSC-derived EVs with cholesterol-conjugated miR-210 promoted
vascular endothelial growth factor (VEGF) expression and angiogenesis after administra-
tion into a mouse MCAO model [166]. Additionally, bone marrow stromal-cell-derived
EVs loaded with the hydrophobic anti-inflammatory agent curcumin significantly reduced
proinflammatory cytokine secretion and apoptosis after intravenous administration in
a mouse model of IS, achieving levels comparable to those observed in normal control
mice [168]. Strong free radical scavengers, such as quercetin and baicalin, which were in-
corporated into EVs by creating micropores using sonication, enhanced the innate potential
of the EVs to inhibit ROS generation through the Nrf2/heme oxygenase pathway [167,169].
Additionally, EVs loaded with miR-124 or HMGB1 siRNA by electroporation enhanced
neurogenesis and reduced TNF-α expression and apoptosis, respectively [170,171]. Further-
more, EVs that encapsulated the antioxidant drug edaravone by sonication improved the
safety and bioavailability of the drug, thereby intensifying its neuroprotective effect [172].
Mouse embryonic stem-cell-derived EVs enriched with curcumin via two or three rapid
freeze–thaw cycles enhanced their ability to reduce inflammation, glial activation, and the
loss of vascular integrity in a mouse model of IS [173].

The expression of specific peptides on the EV surface can enhance the targeted uptake
of EVs by ischemic brain lesions. For instance, the ischemic brain can be targeted by
fusing the Lamp2b EV membrane protein with the rabies viral glycoprotein (RVG) peptide,
which specifically binds to acetylcholine receptors (Figure 3C) [165]. Lamp2b can also be
fused with a peptide (RBP) that binds to the receptor for advanced glycation end products
(RAGE), which is highly expressed in the hypoxic cells of the ischemic brain, providing
the additional benefit of potentially alleviating DAMP-induced inflammation by directly
blocking RAGE [174]. Additionally, a fusion protein consisting of the PS-binding domain
(C1C2) of MFG-e8 and the Arg-Gly-Asp (RGD)-4C peptide (ACDCRGDCFC) was attached
to EVs by incubation, facilitating the targeted delivery of the EVs to ischemic brain with an
approximately 2.5-fold increase in targeting efficiency compared to naïve EVs [175]. During
incubation, the C1C2-RGD fusion protein bound to PS, which is abundant on the EV surface.
After systemic injection, the interaction between the RGD peptide on EVs and integrin
αvβ3, which is highly expressed on reactive cerebral vascular endothelial cells in brain
ischemia, enhanced the EV targeting efficiency. Sustained EV delivery was also achieved
by directly mixing embryonic, NSC-derived EVs with a glucose/ROS dual-responsive
hydrogel [187]. The transplantation of this mixture into the cortex of infarcted brain
hemispheres enhanced angiogenesis (approximately two-fold over nontreated IS mice)
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and improved neurobehavioral recovery. Carbodiimide coupling can be used to conjugate
EV surface proteins with an antibody targeting growth-associated protein-43 (GAP43),
which shows increased neuronal expression in a rat model of IS (Figure 3C) [167]. This
modification effectively enhanced the targeted delivery of the EVs to ischemic brain tissues.
Furthermore, EVs treated with dibenzocyclooctyne-sulfo-N-hydroxysuccinimidyl ester
(DBCO-sulfo-NHS) can be reacted with the azide-containing cyclo(Arg-Gly-Asp-D-Tyr-Lys)
peptide [c(RGDyK)], which has a high affinity for integrin αvβ3 [168]. This copper-free click
chemistry method covalently attached c(RGDyK) to the EV surface, thereby facilitating the
targeted delivery of EVs to the lesion area in the ischemic brain.

5. Discussion

EVs have emerged as important messengers of intercellular crosstalk and gained
attention for their crucial roles in diverse physiological and pathological processes across
many organs. Numerous studies have explored the application of EVs for the treatment
of various diseases. EV-based therapies offer several advantages over traditional cell- or
drug-based therapies. A key benefit is that EV therapy significantly reduces concerns
related to low cell viability and the risk of thromboembolism associated with intravenous
cell injection [188]. Additionally, recent studies have demonstrated that administrating EVs
in IS can achieve therapeutic outcomes comparable to those of direct cell injections [41].
Compared to small molecules, EVs exhibit a superior ability to cross the BBB and provide
enhanced biocompatibility, with lower cytotoxicity and immunogenicity, as well as fewer
adverse effects [188,189]. Engineered EVs, in particular, have shown improved efficiency
in targeting ischemic brain lesions, resulting in reduced inflammation and cell death and
enhanced neurogenesis and angiogenesis compared with naïve EVs, leading to safer and
more effective functional recovery.

Oxidative stress is recognized as a central factor triggering multiple signaling path-
ways that drive cellular senescence, inflammation, and various forms of neural cell death
following IS onset [82,99,190]. Thus, we propose that targeting ROS generation with stem-
cell-derived EVs represents an attractive therapeutic approach. In the adult brain, NSCs
often acquire senescence phenotypes after ischemic injury, releasing senescence-associated
secretory phenotype (SASP) factors that exacerbate neurodegeneration [191,192]. Therefore,
rejuvenating NSCs or their niches may serve as a therapeutic intervention to promote brain
regeneration. As discussed, EVs derived from stem cells demonstrate the capacity to reduce
ROS levels, suggesting their beneficial role in mitigating oxidative stress by reversing the
senescent phenotype of NSCs in the ischemic brain. Previous studies have shown that EVs
from young animals reduce senescence-associated tissue damage by enhancing antioxidant
defense mechanisms [80,81]. In addition, EVs derived from pluripotent stem cells (PSCs)
contain proteins and miRNAs involved in anti-senescence and rejuvenation [79,193–195].
Our unpublished data also support these findings, showing that stem-cell-derived EVs are
enriched with antioxidant proteins and can reverse senescent features of tissue-resident
stem cells by boosting GSH levels. Therefore, recent findings from our group and oth-
ers suggest that stem-cell-derived EVs hold significant potential as senotherapeutics for
targeting ROS generation in adult NSCs, thereby promoting brain regeneration after IS.

Another promising application of EVs is the rapid diagnosis of IS. Alteplase, the only
drug approved by the USFDA for IS treatment, is a recombinant tPA that is most effective
when administered early, ideally within 4–5 h of IS onset, highlighting the importance of
rapid diagnosis [6]. EVs derived from blood or cerebrospinal fluid of patients with IS or
animal models show altered levels of noncoding RNAs and proteins, offering potential
diagnostic markers [196]. For example, circulating EVs from patients with IS and tMCAO
rat models exhibit increased levels of miR-20b-5p and miR-93-5p [197]. Inflammatory
proteins, such as C-reactive protein (CRP), are also elevated in EVs derived from the serum
of patients with acute IS [198]. Furthermore, 67 miRNAs in blood-circulating EVs were
found to differ significantly between the ischemic and hemorrhagic subtypes of stroke [199].
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This suggests that EVs may help diagnose disease progression and distinguish between
major stroke subtypes, enabling more rapid and effective treatments.

The limited blood flow in ischemic regions can be restored by tPA-induced clot lysis.
However, tPA may also promote neutrophil degranulation and MMP-9 release, potentially
increasing the risk of hemorrhagic transformation [200]. Therefore, several clinical studies
are currently investigating EVs as promising alternative treatments for IS (NCT06138210,
NCT03384433, and NCT05326724) [201]. A phase 1 clinical trial (NCT06138210) conducted
by Xuanwu Hospital is assessing the safety and preliminary efficacy of the intravenous
administration of exosomes derived from human-induced pluripotent stem cells (GD-iExo-
003) in patients with acute IS. Another phase 1/2 trial (NCT03384433) by Isfahan University
of Medical Sciences is investigating the therapeutic effects of allogenic MSC-derived ex-
osomes transfected with miR-124 in patients with acute IS. A pilot study involving five
participants with IS who received allogenic placental MSC-derived exosomes showed no
adverse effects [202].

The therapeutic application of EVs is still in early stages, and several challenges must
be addressed before EVs can be used as therapeutic agents for IS [188,203]. One critical
challenge is the reproducible production and quality control of EVs. The characteristics and
purity of EVs can vary depending on their source, the environment of the EV-producing
cells, and the techniques used for EV isolation and storage. Therefore, it is essential
to establish precise and strictly monitored conditions for EV harvesting, along with the
use of appropriate markers and analytical methods for quality control. Additionally, a
detailed understanding of the in vivo biological activity of administered EVs is needed.
Because of the diversity of EV cargos, EV application can affect not only the ischemic
brain environment but also the overall physiological conditions of the body. Furthermore,
different modes of action may be required depending on whether IS is in the acute or chronic
phase. Therefore, therapeutic parameters including administration routes, biodistribution
profiles, comprehensive biological functions of EV cargos, optimal treatment timing and
dosages, and cytotoxicity profiles must be thoroughly studied to advance the application
of EVs as therapeutic agents for IS.

While substantial studies have demonstrated the therapeutic roles of EVs, limited
research has focused on the distinct characteristics and biogenesis of EV subpopulations.
This limitation is partly due to the challenge of obtaining highly purified EV subtypes in
sufficient quantities. Given that the cargo spectrum within EVs may vary across differ-
ent subtypes, more sophisticated characterization is necessary to fully understand their
therapeutic effects in the treatment of IS. Thus, the isolation and classification of EVs re-
main critical and active areas of discussion and investigation, not only for advancing basic
research, but also for their therapeutic applications.
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