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Abstract: Introduction: Simvastatin is an antilipidemic drug that has already demonstrated antibacte-
rial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial
properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combin-
ing simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on
titanium discs. Methods: Silver nanoparticles were first biosynthesized using the fungus Fusarium
oxysporum and then characterized using Dynamic Light Scattering, X-ray Diffraction, Transmission
Electron Microscopy, and energy dispersive spectroscopy. Species of Streptococcus oralis, Streptococcus
mutans, Porphyromonas gingivalis, Methicillin-sensitive Staphylococcus aureus, and Methicillin-resistant
Staphylococcus aureus were used and tested using Minimum Inhibitory Concentration assays with
concentrations of silver nanoparticles and simvastatin alone and in combination. Biofilm inhibition
and viability tests were performed on titanium surfaces. Toxicity tests were also performed on Galleria
mellonella moth larvae. Results: The silver nanoparticles had a spherical shape without the formation
of aggregates as confirmed by Transmission Electron Microscopy. Dynamic Light Scattering revealed
nanoparticles with an average diameter of 53.8 nm (±1.23 nm), a polydispersity index of 0.23 and a
zeta potential of −25 mV (±2.19 mV). The silver nanoparticles inhibited the growth of the strains
tested in the range of 0.001592 and 63.75, while simvastatin alone inhibited the growth of the same
strains in the range of 3.125–62.5 µg/mL. The antibacterial activity test of the combination of the two
substances showed a reduction in the Minimum Inhibitory Concentration of about two to eight times,
showing synergistic effects on Staphylococcus aureus and additive effects on Streptococcus oralis and
Porphyromonas gingivalis. As for biofilm, sub-inhibitory concentrations of the combination of sub-
stances showed better antibacterial activity in inhibiting the formation of Streptococcus oralis biofilm,
and this combination also proved effective in eradicating already established biofilms compared to
the substances alone. The combination of silver nanoparticles and simvastatin showed low toxicity
to Galleria mellonella moth larvae. Conclusions: The results presented indicate that the combination
of the two substances could be an alternative for the prevention and reduction of biofilms on im-
plants. These findings open up new possibilities in the search for alternatives for the treatment of
peri-implant infections, as well as the possibility of using lower doses compared to single drugs,
achieving the same results and reducing potential toxic effects.
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1. Introduction

Currently, the use of metal implants to replace missing teeth has become a customary
practice, but despite the high success rate and long-term survival, patients may develop
infections and inflammations in the peri-implant region, leading to implant failure [1–3].

Among the diseases that can affect the peri-implant region, the most common is
mucositis, which is characterized by the involvement of only the surrounding soft tissues,
followed by peri-implantitis, which is caused by progressive inflammation of the alveolar
bone crest that supports the implant, resulting in bone loss and surgical failure [4–7].

Peri-implantitis sites have been associated with bacterial diversity with the growth of
pathogenic anaerobic bacteria, specifically members of the “red complex” group, Porphy-
romonas gingivalis, Tannerella forsythia, Treponema denticola, and also other species from the
Treponema I to III and Synergisteteso groups [8,9]. In addition, Staphylococcus aureus, Pseu-
domonas aeruginosa, and Candida sp. have been detected in cases of implant inflammation
and have been associated with early implant failure [4,10–12].

Some of the individual’s pre-existing conditions, such as diabetes mellitus, smok-
ing, and poor hygiene, may contribute to the development and progression of peri-
implantitis [13]. However, the main etiology is the formation of biofilms, which are
communities of microorganisms around implants that can trigger a host response result-
ing from the immunological interaction of toxins, antigens, and lipopolysaccharides with
epithelial cells and granulocytes in the sulcus of the gingival mucosa [14].

It is important to emphasize that the different chemical composition of biomaterials
used in implants is related to bacterial adhesion and succession during biofilm forma-
tion [15]. In particular, on titanium surfaces, the formation of an acquired film free of
bacteria and rich in proteins such as proline, secretory IgA, α-amylase, and high molecular
weight mucins provides an interface between the implant and initial colonizers such as
Streptococcus sp. and Actinomyces sp. species that reach the film and titanium by fluid flow,
Brownian motion, and chemotaxis [16].

Streptococci are highly prevalent during initial biofilm formation, and Streptococcus
oralis in particular has been found to be an early colonizer of oral implants and associated
with periodontitis [17]. Compared to other species such as Acntinomyces naeslundi, Veillonela
díspar and P. gingivalis, it showed a higher potential for biomass formation [18]. Thus, the
abundance of colonies of this species has been shown to favor the binding of pathogens
to the biofilm through the expansion of signaling molecules and has been associated with
greater tissue destruction during implant insertion [19,20].

The most common treatments are based on removal of the biofilm by mechanical
debridement, which can be combined with chemical decontamination. However, the
clinical outcomes of these treatments are lower than expected and there is no good evidence
to support the usefulness of currently available chemical decontamination methods [21].
In addition, nonrational prophylaxis and treatment with antibiotics can cause adverse
reactions and contribute to an increased risk of infection by resistant microorganisms such
as Enterobacter sp., Candida sp., and Staphylococcus sp. [22–25]. In addition, inadequate doses
may not reach poorly vascularized regions such as bone [25].

The development of new antibacterial compounds can be effective alternatives for both
the control and prophylaxis of peri-implant infections. Among noble metal nanoparticles,
silver nanoparticles (AgNP) have demonstrated biological activity and have therefore been
used as highly effective, broad-spectrum agents for use in biomedical devices [26]. In addi-
tion, AgNP have exceptional physical properties, including high surface-to-volume ratio,
high catalytic potential, and greater reactivity compared to their conventional form [27].
In dentistry, silver nanoparticles are used in the development of various antibacterial ma-
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terials, such as orthodontic appliances, acrylic resins for prosthetics, composite resins for
restorations, irrigation solutions, adhesives, and implant coatings [28].

The combination of AgNP with other antibiotics has shown a synergistic effect by
increasing the antibacterial activity of already used antibiotics by redirecting them to
specific targets and reducing antibacterial resistance [29,30].

AgNP are mainly synthesized by chemical and physical methods, which are generally
more expensive and can be harmful to the environment due to the use of substances with
specific biological risk potential [27]. Therefore, bio-based ecological approaches using
bacteria, fungi, and plant extracts can be advantageous alternatives as they are economically
viable, environmentally friendly, safe, and scalable [31]. Among the microorganisms used
for the production of AgNP, fungi are considered true nanofactories due to the fact that
they produce AgNP extracellularly and by biomimetic mineralization [32]. The production
of silver nanoparticles by the fungus Fusarium oxysporum consists of the extracellular
reduction of Ag+ ions to Ag0 in the presence of NADH-dependent reductases and electron-
transporting quinones [31,32].

Another therapeutic approach that can be used to combat bacterial infections is the
repurposing of drugs that have antibacterial activity as a side effect [33]. In this regard,
statins are important lipid-lowering agents that reduce cholesterol synthesis by inhibiting
the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase-HMG-CoA, and have
pleiotropic effects, i.e., effects that go beyond cholesterol reduction, such as antioxidant,
anticarcinogenic, anticoagulant, anti-inflammatory, immunomodulatory, and antibacterial
effects [34–36].

The antibacterial activity of isolated simvastatin has been demonstrated against S. au-
reus both in planktonic form and in biofilms [35] and in the inhibition of multi-species
biofilms causing periodontal disease [37,38]. Similarly, AgNP have been tested for coating
implants for antibacterial purposes [39–41].

The interaction between AgNP and simvastatin has previously been shown to be
synergistic against standard strains of S. aureus [42], and the combination of these com-
pounds showed antibacterial activity against biofilms of clinical strains of S. aureus and
methicillin-resistant S. aureus (MRSA) [36]. Therefore, the aim of this study was to evaluate
the antibacterial activity of the combination of simvastatin and AgNP on the formation and
viability of mature biofilms on titanium discs against Streptococcus oralis.

2. Results and Discussion
2.1. Physical-Chemical Characterization of AgNP

The synthesis of silver nanoparticles (AgNP) was carried out by the biosynthetic
method using the fungus Fusarium oxysporum. The filtrate initially had a yellowish color,
and after the addition of AgNO3, the solution turned yellowish-brown: the change in color
of the solution is the first evidence of AgNP formation, was observed after 24 h and stabi-
lized after 168 h, and was confirmed by UV-vis spectroscopy [43]. As shown in Figure 1A,
there was a single peak with an absorbance value of 430 nm, which was attributed to the
presence of surface plasmon resonance [44]. Thus, when metal nanoparticles are irradiated
with light, the free electrons on their surfaces oscillate, causing some of the visible light to
be absorbed, explaining the so-called plasmon resonance effect, which depends on the type
of material, the size of the particle and its morphology [45,46]. The absorbance value found
is in agreement with other studies using Fusarium sp. in AgNP biosynthesis, which found
values between 415 and 440 nm [32,47,48].

The UV-vis analysis of the dispersion of AgNP was evaluated at pH 7.4, a temperature
of 28 ◦C, and a fungal biomass concentration of 10%, using a concentration of 3 mM AgNO3.
The entire biosynthetic process was carried out in the dark.
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Figure 1. (A) UV-vis absorption spectrum of fungal filtrate after addition of AgNO3. (B) AgNP
size distribution versus intensity (Z-average 53.8). (C) X-ray diffraction pattern of AgNP (D) Zeta
potential distribution (−25.66 mV).

As shown in Figure 1C, the evaluation of the crystalline nature of AgNP by X-ray
diffraction (XRD) analysis showed Bragg reflections at 2θ = 38.28◦, 44.53◦, 64.55◦, 77.64◦

and 81.33◦, which can be indexed as diffraction planes (111), (200), (220), (311) and (222),
confirming the presence of AgNP with face-centered cubic crystalline structure [49]. Al-
though to a lesser extent, other diffraction peaks were observed at 2θ = 27.9◦, 57.6◦, 67.6◦,
74.6◦, representing facets of silver chloride nanoparticles (Ag/AgCl), a compound most
commonly found in the final product of AgNP synthesized by biological routes [50], so
they could be related to the partial oxidation of AgNP during synthesis due to the presence
of chloride ions from the culture medium or metabolites from the fungal biomass. [51,52].
In addition, the AgNP produced showed a reflection at 2θ = 33.9, which refers to the plane
(111) of Ag2O. It is believed that the presence of oxide in the sample is due to the fact that
the AgNP were not synthesized in an inert atmosphere [53].

Similar XRD patterns have been reported in studies using nanoparticles synthesized by
F. oxysporium and in biogenic laccase nanoparticles produced by Trametes versicolor [54–56].

The EDS spectrum is an analytical technique used to determine the elemental com-
position and quantify specific elements [57]. The analyses presented in Figure 2D show a
strong silver signal at 3 kev of oxygen ~0.5 kev, chlorine ~2.7 kev and carbon ~0.3 kev. In
addition, the weight percentages of silver were 82.74%, oxygen 2.67%, chlorine 0.20% and
carbon 12.37%, as shown in Table 1, confirming that the AgNP were the main products
of biogenic synthesis. The presence of carbon as the second most contributing element
may come from the proteins surrounding the nanoparticles. The average diameter of the
nanoparticles was 53.8 nm (±1.23), as shown in Figure 1B, with 0.23 of polydispersity
index (PDI), which indicates that the AgNP were monodisperse with a narrow size distri-
bution [58]. In addition, the zeta potential was −25.66 ± (2.19 mV), a high zeta potential
value, above ±30 mV, confers stability in colloidal systems so that the dispersion may resist
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aggregation, as shown in Figure 1D [59]. The spherical shape of the nanoparticles was
confirmed by Transmission Electron Microscopy (TEM), and homogeneous and dispersed
particles without aggregates were observed, as shown in Figure 2A,B.
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Table 1. List of elements and their composition obtained in EDX analysis of AgNP.

Element Weigth % Atomic %

C 12.37 50.78
O 2.67 8.22
P 1.00 1.59
Cl 0.60 0.84
Ag 82.74 37.81
Ca 0.61 0.75

2.2. Minimum Inhibitory Concentration (MIC) Assay and Association of AgNP and SIM

AgNP showed MIC values between 0.0016 to 63.7 µg/mL against all tested strains.
In addition, simvastatin presented MIC values between 3.125 and 62.5 µg/mL. Lower
MIC values, such as those presented by AgNP, indicated better antibacterial efficacy on
P. gingivalis, S. mutans and S. oralis species. All microorganisms were susceptible to the stan-
dard antibacterials, vancomycin (VAN), tested in a concentration range between 6.25 and
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0.0031 µg/mL, ampicillin (AMP), 1.55 and 0.00076 µg/mL, and metronidazole (METRO),
3.12 and 0.0015 µg/mL, as shown in Table 2.

Table 2. Simvastatin MIC, AgNP and standard antibiotics: vancomycin (VAN), ampicillin (AMP),
and metronidazole (METRO).

Microorganisms MIC Simvastatin
(µg/mL) CIM—AgNP (µg/mL) MIC—Antibiotics

(µg/mL)

S. aureus
MRSA 43300 62.5 63.75 VAN 1.56

S. aureus
MRSA 33591 62.5 31.88 VAN 1.56

S. aureus
ATCC 29213 31.25 31.88 VAN 1.56

S. aureus
ATCC 6538 31.25 31.88 VAN 1.56

S. oralis
ATCC 10557 15.62 15.94 AMP 0.024

S. mutans
UA159 31.25 15.94 AMP 0.048

P. gingivalis
ATCC W83 6.25 0.001592 METRO 0.195

P. gingivalis
ATCC 33277 6.25 0.001592 METRO 0.390

These results are corroborated by studies evaluating the antibacterial activity of simvas-
tatin against S. aureus strains, including methicillin-resistant Staphylococcus aureus (MRSA),
which found MICs similar to the results of the present study [35,36]. They are also corrob-
orated by studies that evaluated the effect of simvastatin alone and in combination with
antibiotics on microorganisms present in oral infectious processes [38,56]. Finally, isolated
AgNP concentrations that inhibited the growth of microbial strains were found in other stud-
ies evaluating AgNP against S. aureus and MRSA strains [36] and oral pathogens [60,61].

AgNP combined with simvastatin showed synergism in S. aureus ATCC 29213 but were
not effective against other strains of S. aureus and S. mutans. For S. oralis and P. gingivalis,
there was an additive effect with AgNP–SIM, as shown in Table 3. For P. gingivalis, S. oralis
and S. aureus, the combination of SIM and AgNP reduced the MIC of the compounds by
approximately two to eight times compared to the isolated compounds.

These results can be compared to previous studies that showed synergistic antibacterial
activity of AgNP with tetracycline in reducing the inhibition range in P. aeruginosa, E. coli
and K. pneumoniae [62], the combination of AgNP with amoxicillin in restorative material
showed superior antibacterial effect compared to the isolated substances in S. aureus and
S. mutans [63].

Other substances have shown synergistic effects in combination with AgNP, such as
the interaction with tyrosol, an antibacterial molecule secreted by Candida albicans. The
interaction of this molecule with AgNP inhibited the growth of C. albicans and S. mu-
tans [64]. Another study evaluated the interaction between AgNP and oregano essential
oil, and demonstrated a synergistic or additive effect against gram-positive and gram-
negative bacterial species [65]. The interaction of AgNP and curcumin demonstrated a
synergistic effect in P. aeruginosa and E. coli [66], and finally, the interaction between AgNP
and simvastatin was effective against Methicillin-sensitive Staphylococcus aureus (MSSA),
Methicillin-resistant Staphylococcus aureus (MRSA), and multidrug-resistant Escherichia
coli [36,42].
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Table 3. Comparison of simvastatin MIC, AgNP, standard antibiotics alone or in combination, FICI
values and pharmacological interaction of the drug combination against oral bacteria.

Microorganisms MIC SIM
(µg/mL)

MIC AgNP
(µg/mL)

MIC Antibiotic
(µg/mL)

MIC SIM/AgNP
(µ/mL) FICI Interaction

S. aureus
MRSA 43300 62.5 63.75 VAN 1.56 62.5–63.75 2 ----

S. aureus
MRSA 33591 62.5 31.88 VAN 1.56 62.5–31.88 2 ----

S. aureus
ATCC 6538 31.25 31.88 VAN 1.56 31.25–31.88 2 ----

S. aureus
ATCC 29213 31.25 31.88 VAN 1.56 7.8–15.94 0.32 Synergistic

S. mutans
UA159 31.25 15.94 AMP 0.048 31.25–15.94 2 ----

S. oralis
ATCC 10557 15.62 15.94 AMP 0.024 7.81–7.97 0.73 Additive

P. gingivalis
ATCC W83 6.25 0.001592 METRO 0.195 0.781–0.00079 0.75 Additive

P. gingivalis
ATCC 33277 6.25 0.001592 METRO 0.390 3.125–0.00079 1 Additive

2.3. Inhibition of Biofilm Formation and Viability Assay of S. oralis

Since the AgNP–SIM combination had positive effects against S. oralis 10,557 and due
to the ability of this species to form biofilms [67], they were used for inhibition and viability
tests in biofilm on titanium discs. Both simvastatin and AgNP, when isolated, similarly
inhibited the formation of S. oralis biofilm. However, the combination of AgNP–SIM had a
greater effect on inhibiting biofilm formation, which could be compared to ampicillin, as
shown in Figure 3) (p > 0.05, ANOVA, Tukey’s post-test).
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amount of biofilm formed is represented by means and standard deviations of log CFU/mL (p < 0.05,
ANOVA, Tukey’s post-test). Letters indicate statistical differences between the experimental groups
compared to the control group, represent by the letter a.

Regarding the reduction of biofilm formed on titanium discs, AMP showed the best
result, followed by the combination of AgNP–SIM and SIM alone. However, the discs
treated with AgNP alone did not show any reduction in the number of viable cells. As
observed in Figure 4. Scanning electron microscope (SEM) images confirmed these results,
with a significant reduction in biofilm mass for the combination of AMP and AgNP–SIM,
but no reduction for AgNP–SIM.
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A study using AgNP between 10 and 20 nm coated with citrate enhanced the effect of
tobramycin against biofilms of clinical strains of P. aeruginosa [30]. Another study testing
the interaction of AgNP and chlorhexidine reported greater efficacy against multi-species
biofilms compared to the isolated substances [48]. Finally, a previous study from our
research group showed a synergistic effect of AgNP and simvastatin against a standard
strain of S. aureus biofilm [36].

Due to its pleiotropic effects, simvastatin has demonstrated antibacterial activity
against opportunistic bacteria and oral pathogens [35,36,38,42,68]. Previous studies have
shown that simvastatin inhibits S. aureus biofilm at a concentration of 4 × MIC (62.5 µg/mL)
and affects the production of insoluble extracellular polysaccharide [54]. Another study
demonstrated that simvastatin inhibits P. gingivalis biofilm, which is commonly found in
peri-implantitis [8], and a 79% reduction in metabolic activity was observed in multispecies
biofilm of periodontal pathogens [38].

Similarly, AgNP reduced biofilm formation and can be compared with previous
studies that showed an inhibitory effect of AgNP on oral biofilms clinically isolated from
patients with and without periodontal disease [69], as well as a formulation containing
AgNP that prevented biofilm formation of several species of Streptococcus and E. faecalis
in vitro [70]. In addition, AgNP inhibited the formation of multidrug-resistant biofilms of
P. aeruginosa [71].

Isolated AgNP had no effect on consolidated biofilms, but not because they developed
resistance. Compared to other antibacterials, AgNP has multiple antibacterial mechanisms,
including reduced ATP production by Ag+ ions, generation of reactive oxygen species,
and damage to the DNA and bacterial cell membrane [28,72]. Particularly against biofilms,
AgNP interact with lipids and lipopolysaccharides (LPS), causing structural disruption.
The penetration of nanoparticles into the biofilm depends on many factors, such as biofilm
maturity, composition and chemistry of its surface, nanoparticle size, concentration, charge
and surface chemistry [73].

Titanium discs were in contact with AgNP treatment for 48 h, which may not be
sufficient time for biofilm eradication. Previous studies have shown a reduced antibacterial
capacity of AgNP used as reticular canal irrigators, which was attributed to the short period
of interaction as well as the low concentration (94 ppm) [74]. Another study demonstrated
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a potential effect of AgNP in the eradication of biofilm formed in root dentin when used as
a treatment for 7 days, but the effect was limited as an irrigating solution, showing that the
bactericidal treatment of biofilm is dependent on a longer period of exposure [75].

Another possible reason may be related to the possible interaction of these nanoparti-
cles with the stabilizing proteins from the fungal filtrate. It has been reported that prior
washing of AgNP resulted in improved antibacterial activity and was associated with a
lower concentration of these proteins [76]. It is important to remember that the antibacterial
activity of AgNP depends on the complexes they form with proteins present in biofluids
that are responsible for coating the nanoparticle, the so-called protein corona, which deter-
mines the physical, chemical and biological properties of the nanoparticles [77,78]. These
complexes can interfere with antibacterial activity, so it is the proteins in the corona that
interact with cells, not the nanoparticles themselves [79,80].

Gnanadhas et al. [81] observed that unencapsulated AgNP showed no antibacterial
activity in the presence of serum proteins due to interaction with bovine serum albumin
(BSA). However, AgNP encapsulated with citrate or polyvinylpyrrolidone exhibited an-
tibacterial properties due to minimized interactions with serum proteins. In the present
study, the titanium discs were soaked in human saliva to form the acquired pellicle, which
allowed bacterial adhesion. In addition, the culture medium for biofilm growth contained
mucin, a glycoprotein present in saliva. Thus, proteins present in these substrates could
interact with AgNP. However, these interactions need to be further investigated.

2.4. Simvastatin and AgNP Toxicity In Vivo

After 12 h exposure to 2 × MIC and 4 × MIC concentrations of the AgNP–SIM combi-
nation, the viability of G. mellonella larvae was reduced to 80%. After 24 h of evaluation, the
1 × MIC concentration of AgNP–SIM reduced viability to 90%. There was no reduction
in viability at the 8 × MIC concentration or in the DMSO group used as a control. The
AgNP group showed a reduction in larval viability to 90% at the 4 × MIC and 8 × MIC
concentrations after 12 h exposure, and a reduction to 80% and 60% at these concentrations
after 24 h exposure, p = 0.029. The simvastatin group showed a reduction in larval viability
to 90% at the MIC concentration after 24 h and a reduction to 80% at the MIC concentration
after 48 h (p = 0.091). Table 4 shows the doses of each compound injected into G. mellonella,
as shown in Figure 5.

Table 4. Doses of compounds injected into G. mellonella.

Acute Toxicity Assessment—G. mellonella

Compound (mg/Kg) 1 × MIC 2 × MIC 4 × MIC 8 × MIC

AgNP—SIM 26–53.1 52–103.3 104–212.5 208–423
AgNP 106.3 212.5 426 850
SIM 104.2 208.4 416.7 833

The toxicity assay of the AgNP–SIM combination was performed on Galleria mellonella,
as shown in Figure 6, a model that replaces the use of mammals due to the similarity of its
immune system, in addition to being widely accepted in the scientific literature [82]. The
use of this model has been described in the activity of biogenic AgNP in larvae infected with
P. aeruginosa [83]. It also has been tested for screening potential drugs against Staphylococcus
strains, such as daptomycin and vancomycin [84]. At the highest concentrations (8 × MIC)
of AgNP–SIM to test the biofilm viability, the larvae did not reduce the viability, however,
at lower concentrations, viability was reduced by up to 80%, which can be explained by the
higher levels of DMSO solvent used to solubilize SIM. AgNP showed greater toxicity only
at the highest concentration (8 × MIC), where viability was reduced to 50%. In a similar
study, the doses of isolated AgNP tested did not show a reduction in larval viability over the
periods evaluated, but the highest dose tested was 5 mg/kg [85]. Since the concentrations
of each substance are lower in the AgNP–SIM combination, this may explain the reduced
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toxicity of this combination. Thus, we can conclude that the AgNP–SIM combination is less
toxic than AgNP alone in terms of MIC values. Our results showed that the AgNP–SIM
combination may be an alternative for controlling infection on implants, which provides
opportunities for further testing in preclinical studies.
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3. Materials and Methods
3.1. Chemicals and Experimental Groups

Simvastatin (SIM), donated by EMS Pharma (Hortolândia, Sao Paulo, Brazil). Amox-
icillin (AMOX, Sigma-Aldrich, St. Louis, MO, USA), metronidazole (METRO, Sigma-
Aldrich, St. Louis, MO, USA), vancomycin (VAN, TEUTO Anápolis, Brazil) and ampicillin
(AMP, Sigma-Aldrich, St. Louis, MO, USA) were used as standard antibacterials. SIM,
and METRO were diluted in dimethyl sulfoxide (DMSO) to final concentrations of 2–2.5%,
while AMOX, VAN, and AMP were dissolved in sterile distilled water.

The formulations were distributed in microplate wells as follows: (a) experimental
groups (culture medium + bacteria + statin or antibacterial standard); (b) positive control
(culture medium + bacteria); (c) vehicle control (culture medium + bacteria + DMSO);
(d) negative control (culture medium + statin or standard antibacterial); (e) negative control
of the medium (culture medium). All tests were performed with six replicates on at least
two separate occasions.

3.2. Biosynthesis of Silver Nanoparticles

Silver nanoparticles (AgNP) were biosynthesized by fungi, according to the method
previously described [32]. The strain 551 of the fungus Fusarum oxysporum used was
obtained from the culture collection of molecular genetics laboratory of ESALQ-USP,
Piracicaba-SP, Brazil. The fungus was grown on malt agar (Difco®) containing 0.5% yeast
extract, 2% malt extract, 2% agar and distilled water for 7 days at 28 ◦C. Then, 10 g of fungal
biomass (previously washed) from the culture medium were added to 100 mL of sterile
distilled water and incubated for 72 h at 28 ◦C. After that, the supernatant was separated
from the fungal biomass by vacuum filtration and AgNO3 (Sigma-Aldrich®) was added for
a final concentration of 3 mM. The system solution was incubated at 28 ◦C in the absence of
light until AgNP were formed. The observation of AgNP formation was performed visually
and by colorimetric analysis using a spectrophotometer (UV-vis) until the formation of
nanoparticles at 430 nm. After purification, the AgNP were characterized on filters with
0.22 mm membranes (Orion Cientific, Rio de Janeiro, Brazil).

3.3. Characterization of Silver Nanoparticles

The hydrodynamic size, polydispersity index (PDI) and zeta potential of AgNP were
determined by Dynamic Light Scattering—DLS (ZetaSizer NanoZS—Malvern Panalytical,
Malvern, UK). Transmission Electron Microscopy—TEM (Jeol JEM-1400, Peabody, MA,
USA) was performed to confirm AgNP morphology and size. X-ray diffraction (XRD)
spectroscopy technique, XDR 7000 (Shimadzu, Kyoto, Japan) was used to determine and
confirm the crystalline structure of AgNP and energy dispersive X-ray spectroscopy (EDS)
(Vantage V.1.4 Rev. B, Noran Instruments, Middleton, WI, USA) was used to detect the
elements on the surface of AgNP.

3.4. Bacterial Strains and Cultivation Conditions

Strains of S. aureus ATCC 29213 (MSSA), S. aureus ATCC 6538, S. aureus ATCC 43300
(MRSA; mecA gene present), S. aureus MRSA 33591, Streptococcus oralis ATCC 10557,
Streptococcus mutans UA 159, and Porphyromonas gingivalis W83 and ATCC 33277 were used.

Stock cultures of S. aureus were grown in Mueller Hinton Broth (MHB, Difco Co., De-
troit, MI, USA) medium for 24 h under aerobic conditions in an incubator (Solab, Piracicaba,
Sao Paulo, Brazil) at 37 ◦C. Facultative anaerobic microorganisms S. mutans and S. oralis
were cultured in Brain Heart Infusion Broth, (BHI, Difco Co., Detroit, MI, USA) medium for
24 h in an incubator (Sanyo Electric Co., Osaka, Japan, MCO-19AIC) at 37 ◦C with 5% CO2
and Porphyromonas gingivalis were cultured in Tryptic Soy Agar (TSA, Difco Co, Detroit,
MI, USA), supplemented with 7% sheep blood, 0.2% Yeast Extract (YE—Difco Co., Detroit,
MI, USA), 5 µg/mL Hemin (Sigma Aldrich.—St. Louis, MO, USA, H5533), and 1 µg/mL
Menadione (Sigma Aldrich.—St. Louis, MO, USA, M5625), incubated under anaerobic
conditions for 48 h (80% N2, 10% CO2, 10% H2 (MiniMacs Anaerobic Workstation; Don
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Whitley Scientific, Shipley, UK) at 37 ◦C. The cultures were stored in Tryptic Soy Broth (TSB,
Difco Co., Detroit, MI, USA) with 20% glycerol, at −80 ◦C.

The bacterial inoculum was adjusted for MIC and Checkerboard Microdilution Assay
for an optical density of 0.08–0.1 (660 nm) grown in MHB in aerobiosis for 24 h for S. aureus.
For the assays with P. gingivalis, an optical density of 0.5 (660 nm) was used, and after that,
a 10-fold dilution was performed in 1.55% Tryptic Soy Broth added with 1.48% BHI, 0.2%
YE, 5 µg/mL Hemin and 1 µg/mL Menadione, [86]. For streptococcal inoculum, cultures
were grown for 24 h and suspensions were adjusted to an absorbance range of 0.08–0.1
(625 nm) in MHB [86].

3.5. Minimum Inhibitory Concentration (MIC) Assay

The minimum inhibitory concentration (MIC) was determined by microdilution as-
say in culture medium in 96-well microplates according to the guidance of the Clinical
and Laboratory Standards Institute—CLSI [86]. Briefly, different concentrations of sim-
vastatin (250 to 0.12 µg/mL) and AgNP (127.5 to 0.06 µg/mL) and standard antibiotics
(10–0.001 µg/mL) were added by 2-fold dilution. Then, 100 µL of bacterial suspension
prepared according to item 3.4 were inoculated and the 96-well plates were incubated under
aerobic conditions for 24 h (S. aureus), under anaerobic conditions for 48 h (P. gingivalis)
or in 5% CO2 for 24 h (streptococci). The bacterial suspensions were adjusted according
to the turbidity equivalent to the Mc Farland standard, resulting in a concentration of
1 × 108 CFU/mL. Then, 100 µL of the suspensions were diluted in 9.9 mL of MHB to
obtain a suspension of 1 × 106 CFU/mL. Finally, 100 µL of the suspension was added to
the plate obtaining a final concentration of 1 × 105 CFU/mL. The lowest concentration with
any visible bacterial growth was taken as MIC. In addition, bacterial growth was assessed
by optical density measurement and through the addition of 30 µL resazurin solution
0.01% [87]. This experiment was performed in triplicate of at least two independent assays.

3.6. Antibacterial Combination Assay (Checkerboard Assay)

The Checkerboard Microdilution Assay was used to verify the synergistic activity
between simvastatin and AgNP, combining different concentrations of the compounds
as previously described [35,88]. Different concentrations of SIM and AgNP combinations
were diluted in MHB medium in 96-well plates. The concentrations of each substance used
were the same as the MIC. After that, a 100 µL aliquot of bacterial suspension was added,
at a final concentration of 1 × 105 CFU/mL. The plates were incubated according to the
culture conditions of each strain. The plates were visually analyzed for turbidity and the
absorbance was evaluated in a spectrophotometer (θ = 660 nm). Finally, 30 µL of 0.01%
resazurin dye was added to each well, which were incubated for two hours and read.

To qualify the interaction between the two compounds, the fractional inhibitory con-
centration index (FICI) was calculated using combined MIC of both compounds (CIMAB)
and MIC of each compound alone (CIMA), using the following equation:

Σ = FICIA + FICIB = MICAB/MICA + MICBA/MICB.

The FICI was interpreted according to the following index: ≤0.5, synergistic interaction
effect; >0.5 and ≤1.0, additive interaction effect; >1 and <4, indifferent; and ≥4, antagonistic
interaction effect [89].

3.7. Inhibition Assay of S. oralis Adhesion on Titanium Discs

Biofilm assays were performed in 24-well polystyrene plates coupled with sterilized
titanium discs measuring 4.2 mm thick by 8 mm in diameter—Porous ® surface (Conexão
prosthesis systems, Arujá, Sao Paulo, Brazil) secured by a metal apparatus. Because we
used human saliva from donors, this study was previously approved by the research ethics
committee (CEP) #2.805.995.
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3.7.1. Saliva Preparation

Saliva was obtained from healthy volunteers in 10 mL aliquots. The sample was
treated with 2.5 mmol L−1 of phenylmethylsulfonyl fluoride (Sigma Aldrich, St. Louis,
MO, USA) to reduce salivary protein aggregation. After treatment, saliva was centrifuged
at 10 min, 4 ◦C, 3800× g and the supernatant obtained was diluted (1:1) with AB solution
(KCl—0.93 g, CaCl2—0.02 g, KHPO4—0.034 g, MgCl2—0.005 g). The sample was then
filtered and sterilized using a 0.22 µm Millex GV filter (Millipore, Millipore Corporation,
Bedford, MA, USA). The saliva suspension was added to a 24-well plate and the titanium
discs were positioned vertically, held by a metal wire, and then incubated in an orbital
shaker (211DS Shaking Incubator, Labnet International, Inc., Edison, NJ, USA) at 37 ◦C,
60 rpm, for 2 h, for the formation of saliva biofilm.

3.7.2. Inhibition of Biofilm Formation and Biofilm Viability Assay of S. oralis

For biofilm formation, cultures of S. oralis ATCC 10,557 were grown in BHI medium
supplemented with 2.5 g/L mucin, 1.0 g/L yeast extract, 0.1 g/L cysteine, 2.0 g/L sodium
bicarbonate, 5.0 mg/mL hemin, and 1.0 mg/mL menadione [90].

After coating the discs with saliva film, they were placed in 24-well plates in a vertical
position. For the biofilm formation inhibition assay, the treatments were added at time 0 h,
before biofilm formation. In each well, 3 mL of culture medium with 8 × MIC concentra-
tions of SIM, AgNP, AgNP–SIM and 0.3 mL of S. oralis culture at 1.0 × 108 CFU/mL were
added to the wells containing the titanium discs. The plates were incubated for 48 h, in 5%
of CO2, at 37 ◦C. After this period, the discs were removed from the wells and washed in
sterile saline solution to remove non-adhered cells and placed in tubes containing 5 mL of
sterile 0.9% NaCl. The tubes were vortexed for one minute, after which they were sonicated
at 5% amplitude, 6 pulses of 9.9 s with 5 s intervals for another minute (Vibra Cell 400 W,
Sonics & Materials Inc., Newtown, CT, USA). The bacterial suspension was then diluted
(10–100,000 times) and 0.01 mL of each dilution was plated on BHI agar medium. The
plates were incubated in 5% CO2 at 37 ◦C for 48 h. After this period, the colonies were
quantified and the colony forming units per mL (CFU/mL) were calculated.

For the mature biofilm viability test, concentrations of each compound were added
24 h after biofilm formation. After adding the treatments, the discs were incubated for an
additional 24 h in 5% CO2 at 37 ◦C. After 48 h of contact with the substances, the discs were
removed from the wells, washed with 0.9% NaCl solution and placed in tubes containing
5 mL of sterile 0.9% NaCl. The tubes were vortexed for one minute and then sonicated as
previously described. Finally, the bacterial suspension was diluted and plated on BHI agar
medium, and the plates were incubated for 48 h. After this period, the CFU/mL of each
sample was calculated.

3.7.3. Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy analyses were performed on S. oralis biofilms formed
for 24 h and treated for 48 h with 8 × MIC concentrations of SIM, AgNP, AgNP–SIM.
After growth and treatment of the biofilms on titanium discs, they were washed in 0.9%
NaCl solution and after washing, the discs were fixed in 10% glutaraldehyde solution in
Phosphate buffered saline solution (PBS) for 30 min. Then, the biofilms were immersed
in 90% and 99% ethanol solutions for one minute, respectively. Finally, the discs were
dried at room temperature for 12 h and the samples were fixed on a brass stub, and then
metallized with gold. The discs were then evaluated in a Scanning Electron Microscope
(JEOL, JSM5600LV, Tokyo, Japan) and images were taken at 15 KV.

3.7.4. Acute Toxicity Assay In Vivo in the Galleria mellonella Model

This assay was performed to evaluate possible acute toxic effects of the combination
of AgNP–SIM, SIM and isolated AgNP. A total of 10 larvae weighing between 0.2 and 0.3 g
were selected for each group. The larvae remained in the refrigerator for 30 min to facilitate
the administration of the treatment solutions: 2.5% DMSO solution (diluent control) and
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1 × MIC AgNP–SIM, 2 × MIC AgNP–SIM, 4 × MIC AgNP–SIM and 8 × MIC AgNP–SIM,
1 × MIC of SIM, 2 × MIC of SIM, 4 × MIC of SIM and 8 × MIC of SIM and 1 × MIC of
AgNP, 2 × MIC of AgNP, 4 × MIC of AgNP and 8 × MIC of AgNP. The substances were
injected into the hemocoel of each larva at the last progeny left using a 25 µL Hamilton
syringe (Hamilton, Reno, NV, USA). The larvae were incubated at 30 ◦C and their survival
was recorded at 12 h, 24 h, 48 h and 72 h intervals. Larvae that did not move after touching
and showed myelination were counted as dead [91].

3.8. Statistics

The data were compared with the control group by analysis of variance (ANOVA)
and Tukey’s post-test. The analyses were performed with Bioestat 5.0 (Mamirauá, Belém,
Brazil) and GraphPad Prism 8.0 (San Diego, CA, USA). For all comparisons, a “p” value of
<0.05 was selected as the criterion for statistical significance. Survival assays were analyzed
using Kaplan–Meier curves and Mantel–Cox tests.

4. Conclusions

Here, AgNP were biologically produced and their association with simvastatin showed
an additive and synergistic effect against species of oral biofilm. Also, this association was
able to inhibit and reduce the protection of the S. oralis biofilm in the titanium discs, with
low in vivo toxicity tested in Galleria mellonella.

The association could be used as a potential drug in titanium implant coatings, con-
tributing to the success of osteointegration. In this way, it would be guaranteed that
concentrations close to or even above the MIC would not reach local infection or prevent
microbial colonization. In addition, to date, there are no reports of antibacterial resistance
to these drugs, which overcome the use of standard antibacterials. The synergistic effects
provide a reduction in the concentration of both, which could reduce possible toxic effects.
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