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Simple Summary: This study was undertaken in order to evaluate for the first time the miRNomic
profile of Anisopteromalus calandrae and to determine its conservation in five species of the order
Hymenoptera (Apis mellifera, Dinoponera quadriceps, Nasonia giraulti, N. longicornis and N. vitripennis).
Using molecular techniques and bioinformatics tools, a total of 108 miRNAs were identified (75 con-
served between species and 34 de novo). These miRNAs were found to be related to embryogenesis,
signaling, metabolic, biological and immune functions. The miRNomic signature of A. calandrae is
important for the study of the physiology of parasitoid wasps and the order Hymenoptera.

Abstract: The parasitoid wasp Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) has
the potential for biological control against insect pests in stored grains, mainly of the orders Coleoptera
and Lepidoptera. microRNAs (miRNAs) are small non-coding RNA fragments of importance in the
regulation of gene translation in most physiological processes, and the study of miRNAs in wasps
can be useful for understanding the physiology of these insects. The objective of this study was to
evaluate for the first time the miRNomic profile of A. calandrae and to determine its conservation
in five species of the order Hymenoptera (Apis mellifera, Dinoponera quadriceps, Nasonia giraulti, N.
longicornis and N. vitripennis). Using molecular techniques and bioinformatics tools, a total of 108
miRNAs were identified (75 conserved between species and 34 de novo). These miRNAs were
found to be related to embryogenesis, signaling, metabolic, biological and immune functions. The
miRNomic signature of A. calandrae is important for the study of the physiology of wasps and the
order Hymenoptera.
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1. Introduction

The species Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae) is a
parasitoid wasp with potential for biologically controlling pests in stored grain, mainly
of the orders Coleoptera and Lepidoptera. In evaluations under laboratory conditions,
parasitism percentages of up to 26% are reported on Sitophilus oryzae (L.) (Coleoptera:
Curculionidae) [1] and 42% on Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) [2].
In Latin America, a loss of approximately 40% of stored grains has been reported. In Mexico,
this loss is mainly due to the weevil Sitophilus zeamais Motschulsky, which attacks both in
field and storage grains [3,4].

microRNAs (miRNAs) are small non-coding fragments of RNA, usually 18-24 nu-
cleotides (nt) in length [5]. These molecules are of importance in many physiological
processes [6,7]. In insects, there are a several processes that have been shown to be involved
such as development of the germ line [8] and wings [9], apoptosis [10], metamorpho-
sis [11,12], reproduction [13], synaptic transmission [14] and energy homeostasis [15],
among others, in the different stages of the life cycle [16].

In these organisms, conserved and lineage-specific miRNAs have been identified in
several orders, including Diptera [Drosophila Fallén, Anopheles gambiae Giles, Aedes aegypti
(L.), Culex quinquefasciatus Say], Lepidoptera [Bombyx morii (L.), Heliconius Melpomene
(L.), Manduca sexta (L.)], Hemiptera (Acyrthosiphon pisum Harris), Coleoptera [Tribolium
castaneum (Herbst)], Ortoptera [Locusta migratoria (L.)] [17] and Hymenoptera [Apis mellifera
L., Nasonia giraulti Darling, N. longicornis Darling, N. vitripennis Walker and Diponera
quadriceps Kempf]. Here, we describe the miRNAs in A. calandrae to determine their
conservation in five species of the order Hymenoptera (A. mellifera, D. quadriceps, N. giraulti,
N. longicornis and N. vitripennis). This is the first miRNA analysis for A. calandrae and forms
the basis for further research on the roles of specific miRNAs within wasp parasitoids.

2. Materials and Methods
2.1. Biological Material, RNA Extraction and Sequencing

Adult specimens of Anisopteromalus calandrae (75 females, 67 males) were collected in
2017 in stored corn grains (Zea mays L.) that were infested with S. zeamais in Jose Azueta,
Veracruz, Mexico (N 18◦ 04′ 02.2′′ W 95◦ 42′ 44.0′′). The adults were identified according to
Baur et al. [18] and Ramírez-Ahuja et al. [19].

Total RNA was extracted from all 142 adult A. calandrae specimens using the TRIzol
technique following the manufacturer’s instructions (Invitrogen/Thermo Fisher Scientific,
Carlsbad, CA, USA). RNA purity and integrity were determined with standard spectropho-
tometry and gel electrophoresis methods. The preparation and enrichment of small RNA
fractions, as well as the library preparation for sequencing and adapter removal, were
performed by BGI as part of their sequencing service, following their standard protocols.
No additional quality assessment or trimming was performed by the authors. The small
RNA fractions obtained were analyzed by BGI Global Genomics Services (Yantian Distric,
Shenzhen, China) using new-generation sequencing (Illumina solexa technology). The
sequencing generated single-end reads with a length between 18 and 45 nucleotides.

2.2. Bioinformatics Analysis

An annotation of miRNAs was made using the genomes of the five Hymenoptera
species mentioned above with the miRDeep2 tool [20], using the miRNAs of the same
species present in the miRBase database v.22 as secondary reference structures [17]. A 12-nt
length cutoff was used as a minimum requirement in the sequences analyzed. miRNA
sequences considered de novo (not reported for the species analyzed) and conserved
(showing a conservation in at least one of the five species) were obtained.

2.3. Classification of miRNAs

To determine the conservation of the miRNAs, an analysis was performed by align-
ing the mature sequences obtained against all the miRNAs reported for the subphylum
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Hexapoda, using the BLASTN alignment tool from the miRBase database and considering
a maximum E-value of 0.005. The conservation results obtained were used to re-categorize
conserved and de novo miRNAs on the basis of these homology results. Finally, those
de novo sequences that had a free energy of >−12 kcal/mol were discarded, using the
RNAfold tool [21].

2.4. Abundance of miRNAs and Trend Analysis

From the preceding results, two databases were generated corresponding to the con-
served (previously reported as homologues in other species) and de novo (not previously
reported miRNAs). Regarding the de novo miRNAs, an assembly of the precursor se-
quences was carried out using the Uniprot UGENE software v.49 [22] to determine the
de novo miRNAs in adult specimens of A. calandrae, the assembly was performed using
only the reads that were successfully mapped to known miRNA sequences during the
bioinformatics analysis. Reads that did not map to any miRNA sequence were excluded
from further analysis. UpSet graphs were made to observe the distribution of the miRNAs
between the analyzed species [23].

2.5. Expression Analysis and Conservation of De Novo miRNAs

Clusters of reads corresponding to de novo miRNAs were generated. The expression
values (reads) were extracted, converted to log2 values and assigned to their respective
clusters. Both the expression levels (log2-transformed) and the number of miRNAs in each
cluster were visualized in a two-dimensional scatter plot using the Plotly online tool [24].

3. Results
3.1. Distribution of Conserved and De Novo miRNAs in Anisopteromalus Calandrae

The results showed that the miRNomic signature of A. calandrae was composed of
108 miRNAs, and from this, for the first time, 34 were reported in this organism. The other
75 were conserved in A. calandrae and at least one of the other five species of the order
Hymenoptera (Figure 1).

Insects 2025, 16, x FOR PEER REVIEW 4 of 10 
 

 

 

Figure 1. Representation of the total de novo and conserved miRNAs present in A. calandrae corre-
sponding to each species used as a reference. 

From 34 de novo miRNAs, 1 showed homology between the five species (Figure 2, 
bar 15) and 13 miRNAs were in parasitoid wasps (N. giraulti, N. vitripennis and N. longi-
cornis) (Figure 2, bar 1, bar 3, bar 10 and bar 12), while 5 were distributed in organisms 
with eusocial tendencies (A. mellifera and D. quadriceps) (Figure 2, bar 2). Two de novo 
miRNAs were found only in A. mellifera (Figure 2, bar 6), and one in D. quadriceps (Figure 
2, bar 7). 

 

Figure 2. Interaction graph of de novo miRNAs distributed among the species used in the bioinfor-
matics analysis and that are present in A. calandrae. Each bar on the Y-axis represents the number of 
miRNAs conserved in the specific species combination indicated by the dots and connecting lines 
below the bar. The “Set Size” on the left shows the total number of miRNAs detected in each species, 
regardless of whether they are shared with others. For example, a single dot below a bar represents 
miRNAs specific to one species, while connected dots indicate miRNAs shared between the species 
represented. The Y-axis of the bar plot indicates the abundance (number of miRNAs) with each 
conservation pattern. 

From the 75 conserved miRNAs, 39 were identified in all species analyzed (Figure 3, 
bar 1); on the other hand, 9 miRNAs demonstrated unique conservation in winged organ-
isms (N. giraulti, N. vitripennis, N. longicornis and A. mellifera) (Figure 3, bar 2). Another 
analytical approach showed correlation in five miRNAs that were in organisms with 

Figure 1. Representation of the total de novo and conserved miRNAs present in A. calandrae corre-
sponding to each species used as a reference.

From 34 de novo miRNAs, 1 showed homology between the five species (Figure 2, bar
15) and 13 miRNAs were in parasitoid wasps (N. giraulti, N. vitripennis and N. longicornis)
(Figure 2, bar 1, bar 3, bar 10 and bar 12), while 5 were distributed in organisms with
eusocial tendencies (A. mellifera and D. quadriceps) (Figure 2, bar 2). Two de novo miRNAs
were found only in A. mellifera (Figure 2, bar 6), and one in D. quadriceps (Figure 2, bar 7).
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Figure 2. Interaction graph of de novo miRNAs distributed among the species used in the bioinfor-
matics analysis and that are present in A. calandrae. Each bar on the Y-axis represents the number of
miRNAs conserved in the specific species combination indicated by the dots and connecting lines
below the bar. The “Set Size” on the left shows the total number of miRNAs detected in each species,
regardless of whether they are shared with others. For example, a single dot below a bar represents
miRNAs specific to one species, while connected dots indicate miRNAs shared between the species
represented. The Y-axis of the bar plot indicates the abundance (number of miRNAs) with each
conservation pattern.

From the 75 conserved miRNAs, 39 were identified in all species analyzed (Figure 3,
bar 1); on the other hand, 9 miRNAs demonstrated unique conservation in winged organ-
isms (N. giraulti, N. vitripennis, N. longicornis and A. mellifera) (Figure 3, bar 2). Another
analytical approach showed correlation in five miRNAs that were in organisms with eu-
social tendencies (A. mellifera and D. quadriceps) (Figure 3, bar 3). Three microRNAs were
found in A. mellifera (Figure 3, bar 6) and D. quadriceps (Figure 3, bar 7), respectively. Finally,
for the three parasitoid wasps, three miRNAs showed homology (Figure 3, bar 8 and
bar 10).
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Figure 3. Interaction graph of de novo miRNAs distributed among the species used in the bioinfor-
matics analysis and that are present in A. calandrae. Each bar on the Y-axis represents the number
of conserved miRNAs shared across specific species combinations, as indicated by the dots and
connecting lines below the bar. The “Set Size” on the left indicates the total number of conserved
miRNAs detected in each species, regardless of overlap. For example, a single dot below a bar
represents conserved miRNAs unique to one species, while connected dots represent conserved
miRNAs shared among multiple species.

3.2. miRNA Expression Profile in A. calandrae

The expression values (log2-transformed) of de novo miRNAs ranged from 2 to 9
(Figure 4). These miRNAs were grouped into clusters based on the number of reads
mapped to each miRNA, forming clusters with two to six reads. The cluster with three
reads contained the highest number of de novo miRNAs, with a total of 14 miRNAs
showing expression values between 2 and 7. Most miRNAs were found in clusters with
expression values between six and seven, which represented the range with the largest
number of miRNAs. Notably, we identified one miRNA (miR-12525) with the highest
expression value (log2 = 9) in a cluster of four reads, and another (miR-12524) in a cluster
of six reads.
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values), and the diameter of each point represents the abundance of miRNAs in that cluster.

4. Discussion

Insects continuously face stressful conditions due to global changes in their environ-
ment, such as habitat fragmentation, agricultural intensification, pollution and climate
change [25]. The regulation of their gene expression is essential to reduce fitness costs
and avoid imbalances that can lead to disorders in their homeostasis [26]. miRNAs have
emerged as important factors involved in gene regulation through diverse molecular mech-
anisms [27]. Conserved miRNAs are known to be related to preserved functions between
organisms; also, specific miRNAs could explain biological processes [28]. Thus, in this
study the miRNomic profile of A. calandrae was determined, where we found a total of
75 miRNAs that showed conservation with organisms belonging to the order Hymenoptera
and 34 de novo miRNAs were predicted for A. calandrae. In our analysis, of the 75 con-
served miRNAs, 16 miRNAs have previously been reported in mechanisms of embryonic
development. Some studies have demonstrated that the miRNAs let-7, miR-1000, miR-124,
miR-375, miR-2944-3p and miR-7 have a role in neurological development in Drosophila
melanogaster and A. mellifera [29–32]. Other studies have shown that miR-285 is involved in
the development of the blood–brain barrier [33] and miR-11-3p in the regulation of HOX
genes in D. melanogaster [34]. In Drosophila, it has been shown that miR-8 is involved in
neurodegenerative processes [35]. Recent studies determined that miRNAs could control
key signaling processes as described in Anopheles stephensi, where miR-1175-3p has a role in
proteasome signaling [36]. Furthermore, miR-307 has been found to be involved in signal-
ing at chitin junctions in the weevil Tribolium castaneum [37]. In addition, seven miRNAs
have been reported as precursors of various mechanisms of immunity in A. mellifera and
Drosophila (miR-210, miR-219, miR-2765 and miR-283) [38,39]. Meanwhile, miR-279b-3p
and miR-281 are involved in the production of B and T receptors in A. mellifera [32,40]. Four
miRNAs (miR-14, miR-190, miR-125 and miR-279) found in this study are described in
previous reports related to caste determination in A. mellifera [32,40,41]. In the same way, it
was established that miR-92a regulates nurse bees [29]. miR-137 plays a role in neuronal
signaling, and miR-10 is involved in cell adhesion [32]. miR-317 and miR-71 have been
related to the insulin signaling pathway [40]. Some miRNAs, such as miR-9a and miR-193,
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have been reported to regulate wing development [6,29]. miR-184 and miR-315 have been
associated with the modulation of tissue growth, cell differentiation and the development
of sex organs [42], and miR-276 and miR-278 have been linked with germ line development
in A. mellifera [32].

Other miRNAs described in this study have been involved in the regulation of cy-
toskeleton actin (miR-6001-3p); miR-252 has been linked to endocytosis processes, while
miR-263 has been linked to the production of enzymes involved in the degradation of
2-oxoglutarate. miR-1, miR-100, miR-263b and miR-275 participate in reproductive pro-
cesses in A. mellifera [32,40]. Five miRNAs (miR-13b, miR-2, miR-34, miR-92a and miR-993)
have been related to metabolic functions in bees [32]. Eighteen of the miRNAs that were
found to be conserved have not yet been characterized, and their function is unknown.
Our results showed 75 conserved miRNAs of which 39 were found in all the species an-
alyzed, these results suggest that conserved miRNAs regulate genes encoding similar
target proteins in distant taxa within the order Hymenoptera. Meanwhile, no function has
been identified for miR-307-3p and miR-750-3p. Only two miRNAs were conserved in D.
quadriceps: miR-965, which has been associated with wing development in A. mellifera [29],
and miR-6038, without apparent determined function. Three miRNAs were determined
specific to A. mellifera; these miRNAs were associated with some biological functions, such
as the activation and regulation of oviposition by miR-2944 [40] and the involvement of
miR-750 in the MAPK pathway (mitogen-activated protein kinases) [32], while miR-34-5p
still has no function.

In this study, 10 miRNAs were conserved between wasp parasitoids and bees
(supplementary). Most of the conserved miRNAs found in this study have been pre-
viously reported in A. mellifera [42]. Our results suggest considering these miRNAs found
in A. calandrae with specificity for wasps in order to determine their functionality in futures
studies. We determined that 34 miRNAs had not been previously reported in the miRBase
database (www.mirbase.org, accessed on 11 May 2024), and therefore, their function is
unknown. Of these, 14 miRNAs were expressed in a higher proportion (miR-12500, miR-
12504, miR-12508, miR-12510, miR-12511, miR-12514, miR-12516, miR-12518, miR-12523,
miR-12524, miR-12525, miR-12527, miR-12530 and miR-12531). De novo miRNAs act as
essential nodes in the genetic networks that support the physiology of the species and could
also lead to biotechnological innovations [28]. Recent studies have highlighted the crucial
role of miRNAs in regulating key biological processes in parasitoid–host interactions, in-
cluding immune evasion, development and reproductive strategies. For instance, miRNAs
like miR-14b have been shown to regulate polyembryonic development in Macrocentrus
cingulum, targeting genes involved in cellular differentiation and proliferation [43]. Simi-
larly, in Plutella xylostella parasitized by Diadegma semiclausum, several miRNAs exhibited
differential expression, potentially modulating immune pathways to facilitate parasitoid
development [44]. These findings suggest that the conserved miRNAs identified in A.
calandrae may similarly influence its parasitism efficiency through mechanisms such as
immune suppression or developmental regulation. While this study provides a founda-
tional miRNA profile of A. calandrae, additional molecular methods, such as qRT-PCR or
Northern blotting, are required to validate the identified miRNAs and further elucidate
their biological roles. Such analyses would not only strengthen the reliability of these
findings but also enhance our understanding of the potential biotechnological applications
of these miRNAs. For example, RNAi-based approaches could leverage these miRNAs to
enhance the parasitoids’ efficacy as a biological control agent, offering sustainable solutions
for managing pests in stored grain.

5. Conclusions

In Anisopteromalus calandrae, we found 75 miRNAs that demonstrated conservation
with the Hymenoptera species reported in the miRBase database (A. mellifera, N. vitripennis,
N. giraulti, N. longicornis and D. quadriceps) and 34 de novo miRNAs that had not been
previously reported or characterized. Our results provide a large number of miRNAs for

www.mirbase.org
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A. calandrae, from which we infer that these are essential to its physiology. More studies
are needed to elucidate the mechanisms that regulate the expression of these miRNAs in
wasp parasitoids.
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