
Citation: Ge, D.; Duan, J.; Bao, W.;

Liang, H. Light-Powered

Self-Translation of an Asymmetric

Friction Slider Using a Liquid Crystal

Elastomer String Oscillator. Polymers

2024, 16, 3520. https://doi.org/

10.3390/polym16243520

Academic Editor: Tibor Toth-Katona

Received: 29 September 2024

Revised: 7 December 2024

Accepted: 10 December 2024

Published: 18 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Light-Powered Self-Translation of an Asymmetric Friction Slider
Using a Liquid Crystal Elastomer String Oscillator
Dali Ge 1,2,3, Jiangtao Duan 1, Wu Bao 1 and Haiyi Liang 1,2,3,*

1 School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China; dalige@ahjzu.edu.cn (D.G.);
duanjiangtao@stu.ahjzu.edu.cn (J.D.); wubao2001@stu.ahjzu.edu.cn (W.B.)

2 IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology,
University of Science and Technology of China, Hefei 241200, China

3 CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics,
University of Science and Technology of China, Hefei 230026, China

* Correspondence: hyliang@ustc.edu.cn

Abstract: In recent years, there have been many studies focused on improving the performance
of active materials; however, applying these materials to active machines still presents significant
challenges. In this study, we introduce a light-powered self-translation system for an asymmetric
friction slider using a liquid crystal elastomer (LCE) string oscillator. The self-translation system was
composed of a hollow slide, two LCE fibers, and a mass ball. Through the evolution of photothermal-
induced contraction, we derived the governing equations for the system. Numerical simulations
revealed two distinct motion modes: the static mode and the self-translation mode. As the mass
ball moved, the LCE fibers alternated between illuminated and non-illuminated states, allowing
them to effectively harvest light energy to compensate for the energy dissipation within the system.
Unlike traditional self-oscillating systems that oscillate around a fixed position, the asymmetric
friction enabled the slider to advance continuously through the oscillator’s symmetric self-sustained
oscillation. Furthermore, we explored the critical conditions necessary for initiating self-translation
as well as key system parameters that influence the frequency and amplitude of the oscillator and
average speed of the slider. This self-translation system, with its simple design and ease of control,
holds promising potential for applications in various fields including soft robotics, energy harvesting,
and active machinery.

Keywords: asymmetric friction slider; self-translation; self-oscillation; liquid crystal elastomer;
light-driven

1. Introduction

Active materials have the ability to alter their shape, size, and properties in response to
external stimuli such as light [1,2], electricity [3,4], magnetic fields [5], heat [6,7], and pH [8],
enabling them to perform specific tasks. Typical examples of active materials include
polydimethylsiloxane [9], hydrogels [10,11], liquid crystal elastomers (LCEs) [12–17], and
photo-responsive or thermal responsive polymers [18,19], etc. Active materials offer numer-
ous advantages including self-healing, self-adaptation, lightweight, and flexible structure.
Active materials hold significant research potential in fields such as soft robots [20–24], en-
ergy harvesting devices [25,26], mechano-logistic devices [27], self-propelled devices [28,29],
and more.

Given the benefits of active materials, they have extensive potential to be employed in
active machines. However, to enhance their efficiency and broader application, it is essential
to develop an appropriate control method. Traditional approaches for controlling active
machines encompass electronic component control and programmed design control [30,31].
However, these methods exhibit limitations such as the dependence on human intervention,
the need for complex control systems, and high cost. In intricate work settings, these

Polymers 2024, 16, 3520. https://doi.org/10.3390/polym16243520 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16243520
https://doi.org/10.3390/polym16243520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://doi.org/10.3390/polym16243520
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16243520?type=check_update&version=1


Polymers 2024, 16, 3520 2 of 24

constraints may diminish the effectiveness of active machines, raise the safety risks, and
potentially disrupt their proper functioning.

To address the issues above-mentioned, we adopted a new control method akin to the
functioning of human organisms: self-oscillation. Self-oscillation refers to the periodic mo-
tion of a system under a constant external stimulus [32–34] and it can autonomously absorb
external energy to counteract damping dissipation during motion. Its amplitude and fre-
quency are typically determined by the system’s parameters. Additionally, self-oscillation
demonstrates strong robustness [35]. Thanks to these advantages, self-oscillation systems
hold significant potential for a wide range of applications in fields such as autonomous
robots [21–24], energy-absorbing devices [25,26], sensors [36], cargo transport [37,38] and
logical operations [39,40].

In recent years, the more types of oscillation modes are available, the more sophis-
ticated autonomous devices may potentially be constructed such as bending [41–43],
jumping [44–46], rolling [47–50], swinging [51,52], stretching and contracting [53–56],
twisting [57,58], vibrating [59,60] and rotation [61–63], and even the synchronized mo-
tion of multiple coupled self-oscillators [64]. Many of these self-sustaining motions rely
on nonlinear feedback mechanisms such as self-shading [65,66], photothermal solvent
evaporation [67], and photothermal surface tension gradients [68]. These mechanisms
disrupt the system’s initial equilibrium, enabling the active material to respond steadily
and continuously to external stimuli, resulting in self-oscillations.

Among the various types of active materials, LCEs are an integration of liquid crystal
(LC) mesogens and polymer networks, characterized by rapid response speed, significant
macroscopic deformation, and reversible shape transformation [4,6,12,22,47,69]. They show
great potential for enabling self-oscillation in various forms [34,35,41,47,50,65], thereby
providing a strong foundation for the advancement of active machines. In this paper, we
introduce a light-powered self-translation of an asymmetric friction slider using an LCE
string oscillator. This device incorporates two LCE fibers and an oscillator enclosed within
the slider, with each LCE fiber vertically linked inside the oscillator and the slider. The slider
can continuously advance while the oscillator exhibits symmetric self-sustained oscillation
under constant lighting conditions, without the need for periodic excitation forces or
variable stiffness [70–72]. In contrast to traditional active machines, this system features a
simple structure, easy control, and energy efficiency. These characteristics are particularly
important for applications ranging from search and rescue operations to transportation,
soft robotics, and active machinery.

The rest of this article is organized as follows. In Section 2, we derive the governing
equations for the self-oscillation of the oscillator and the self-translation of the slider based
on the evolution of photothermal-induced contraction. Section 3 describes the two distinct
modes of motion: the static mode and the self-translation mode. Meanwhile, we explore the
mechanism behind the system’s self-translation motion. In Section 4, through numerical
calculations, we examine how various system parameters influence the amplitude and
frequency of the oscillator as well as the average velocity of the slider. Finally, Section 5
provides a summary of the findings.

2. Theoretical Model and Formulation

This section introduces a theoretical model for the self-translation system under steady
illumination. It encompasses the dynamic governing equations for the oscillator and slider
and the evolution of photothermal-induced contraction.

2.1. Dynamics of the Self-Translation System

Figure 1 illustrates a light-powered self-translation of an asymmetric friction slider
using an LCE string oscillator, which can continuously move forward, provided with a
specific initial velocity of the mass ball and under predetermined lighting conditions. It
comprises two photothermal-responsive LCE fibers with an original length of L0 in stress-
free state, a mass ball with a mass of m, and a slider, as depicted in Figure 1b. Each LCE
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fiber is anchored at one end within the slider and at the other end to the mass ball in the
vertical plane. Notably, photothermal-driven LCEs have garnered significant attention.
The LCE fibers in our study can be fabricated using the method described in reference [14],
with the molecular structures of the components used for synthesis shown in Figure 1a.
In the reference state, the LC mesogens are aligned along the length direction of the LCE
fibers. Upon heating beyond the nematic-to-isotropic phase transition temperature, the
LC mesogens undergo a transition from the nematic phase to the isotropic phase [2,14,47].
This transition leads to a contraction along the length direction of the LCE fibers. When
the LCE fibers have cooled down, the LC mesogens will revert to their oriented alignment.
As a result, LCE fibers exhibit a reversible contraction and recovery behavior triggered by
temperature fluctuations.
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Figure 1. Diagram of the self-translation system including (a) molecular structures, (b) reference state,
(c) initial state, (d) current state, (e) force analysis of slider, and (f) force analysis of oscillator. The
slider is subject to the tension FL of the LCE fibers and the friction force Ff between the slider and
the contact surface, while the mass ball experiences tension FL from the LCE fibers and the damping
force FD. Under constant lighting conditions, the self-translation system can maintain continuous
forward movement.

As depicted in Figure 1c, the illumination region is represented by the yellow portion,
while the other is the non-illumination region. The distance between the initial position of
the mass ball and the edge of the non-illumination region is denoted as δ. In the initial state,
the mass ball is given an initial velocity as v0 to the right horizontally, causing it to move
in that direction while the tension in the LCE fiber gradually increases. As the mass ball
enters the illuminated region, the temperature of the LCE fibers gradually increases due
to the photothermal effect. As a result, the oriented nematic mesogens become isotropic,
causing the fibers to contract. This accelerates the rate of tension growth, which leads to a
gradual decrease in the velocity of the mass ball until it reaches zero, after which it moves
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in the opposite direction. After some time, when the mass ball enters the non-illuminated
region, the temperature of the LCE fibers gradually decreases, causing the LC mesogens to
revert to their oriented alignment, and the photothermal-induced contraction gradually
recovers. When the mass ball returns to its initial position, its inertia carries it to further
move to the left. Upon entering the illumination region on the left, the LCE fibers contract
again in response to light, causing the tension increase, and the velocity of the mass ball
continues to decrease to a standstill. The mass ball then moves back to the initial position,
even to the right.

Due to the tension from the LCE fibers, the slider may move left or right during the
oscillation of the mass ball. Considering the asymmetry contacting between the slider and
the contact surface, the slider experiences different frictional forces with the different friction
coefficients when moving rightward and leftward. Therefore, under steady illumination,
the slider may translate toward one direction accompanied with the mass ball oscillating
between right and left.

To describe the system’s motion, designate point A on the contact surface as a reference,
as shown in Figure 1b. During the motion, the direction of horizontal motion to the right is
defined as positive. The self-translation system experiences the tension FL(t) of the LCE
fibers and the friction force Ff (t) between the slider and the contact surface, as illustrated
in Figure 1e. It is assumed that the gravitational force mg acting on the mass ball is much
less than the vertical component of the tension in the LCE fibers, and mg can be neglected.
Therefore, as the mass ball moves, the symmetry of the LCE fibers connecting both ends
ensures that the vertical components of tension counterbalance each other, and the mass
ball moves exclusively in the horizontal direction. Thus, in the horizontal direction, the
governing equations for the motion of the slider can be expressed as follows:

(M − m)
..
x1(t) = 2FL(t)

x(t)√
L0

2 + x2(t)
− Ff (t), (1)

where x(t) indicates the relative displacement between the mass ball and the slider, M is
the total weight of the self-translation system, and

..
x1(t) represents the acceleration of the

slider. The relationship between the tension and the elongation of the LCE fibers can be
expressed as follows:

FL(t) = K
[√

L0
2 + x2(t)− L0 − L0ε(t)

]
, (2)

where K represents the elastic coefficient of the LCE fibers, and ε(t) denotes the photothermal-
induced contraction of the LCE fibers. The frictional force Ff (t) between the slider and the
surface can be described as:

Ff (t) = µMg · sgn
( .
x1
)
, (3)

where µ is the coefficient of friction between the system and the surface, g is the acceleration
due to gravity, and sgn

( .
x1
)

describes the direction of the slider’s frictional force. When the
slider is moved to the right, sgn

( .
x1
)
= 1 and µ = µ1. When the slider is moved to the left,

sgn
( .

x1
)
= −1 and µ = µ2. When the slider is stationary, sgn

( .
x1
)
= 0.

Meanwhile, the mass ball experiences tension FL(t) from the LCE fibers and damping
force FD(t) experienced by the mass ball during its movement, as depicted in Figure 1f. In
the horizontal direction, the governing equation for the mass ball can be expressed as:

m
..
x2(t) = −2FL(t)

x(t)√
L0

2 + x2(t)
− FD(t), (4)

where
..
x2(t) denotes the absolute acceleration of the mass ball. Based on the geometric

relationship, it becomes evident that:
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x2(t) = x(t) + x1(t), (5)

where x2(t) denotes the absolute displacement of the mass ball, and x1(t) denotes the
displacement of the slider. For simplicity, the damping force of the mass ball is assumed to
be proportional to its velocity, given by the formula:

FD(t) = β
.
x2(t), (6)

where β denotes the damping coefficient, and
.
x2(t) represents the absolute velocity of the

mass ball.
To calculate the tension in Equation (2), it is necessary to first evaluate the photo-

thermal-induced contraction ε(t), with the specifics outlined in the following section.

2.2. Photothermal-Induced Contraction

This section focuses on the photothermal-induced contraction in LCE fibers. The LCE
fibers exhibited a reversible contraction and restoration response induced by changes in
temperature. For simplicity, the photothermal-induced contraction ε(t) was presumed to
have a linear relationship with the temperature difference T(t) of the LCE fiber [2,6,14,47],
which can be expressed as follows:

ε(t) = −CT(t), (7)

where C is the thermal contraction coefficient.
Due to the photothermal effect, the temperature of the LCE fiber increases under

illuminated conditions. Considering that the length of the LCE fiber is much larger than
its cross-sectional radius, we assumed that heat exchange occurs rapidly enough for the
temperature within the photothermal-responsive LCE fiber to remain uniform. It is worth
noting that while the LCE fiber is being heated, it simultaneously dissipates heat to the
surrounding environment. Therefore, under steady illumination, the temperature difference
of the LCE fiber can be expressed as

dT(t)
dt

=
I0 − kcT(t)

ρC
, (8)

where I0 represents the photothermal flux from the steady illumination, kc denotes the
heat transfer coefficient, and ρC is the heat capacity. Here, Tmax = I0/kc defines the limited
temperature difference for the LCE fiber when a constant light is applied, and τ = ρC/kc
represents the thermal relaxation time, reflecting the rate of heat exchange between the
LCE fiber and its surroundings. It is worth mentioning that in this work, the LCE fiber
switched between the illuminated and non-illuminated regions. For the case of LCE fibers
in the non-illuminated region, the current photothermal flux was set as I0 = 0 for x(t) < δ.

3. Two Motion Modes and Mechanism of Self-Translation

In this section, we examine the two motion modes within the LCE string oscillator
and slider: the static mode and the self-translation mode. Additionally, we delve into the
corresponding self-translation mechanism.

3.1. Two Motion Modes

According to the theoretical model for the self-translation system under steady illu-
mination, we further nondimensionalized the governing Equations (1)–(8), as presented
in Appendix A. From Appendix A, the light-powered self-translation can be determined
for a given set of dimensionless parameters: I0, C, δ, K, v0, µ1, β, R, g, and λ. Thus, it is
essential to determine the specific values of the dimensionless parameters required in the
model. Utilizing data from existing experiments [14,73–76], we gathered the typical mate-
rial properties and geometric parameters in Table 1 and the corresponding dimensionless
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in Table 2. Subsequently, these parameter values were used to study the light-powered
self-translation system.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

I0 Photothermal flux 0~500 W/m2

C Contraction coefficient 0~5 × 10−3 /◦C

K Elastic coefficient 1~3 N/m

τ Thermal drive relaxation time 0.01~0.1 s

m Mass of the mass ball 0~10 g

M Mass of the self-translation system 0~10 g

β Damping coefficient 0~0.5 mg·mm/s

v0 Initial velocity 0~0.1 m/s

δ Non-illuminated width 0~0.1 m

L0 Original length of LCE fiber 0~0.2 m

µ1 Coefficient of forward friction 0~0.2

µ2 Coefficient of receding friction 0~0.2

Table 2. Dimensionless parameters.

Parameter I0 K β δ λ R v0 g

Value 0~1 0~10 0~0.1 0~0.5 1~3 0.1~2 0~1 1~3

Figure 2 illustrates the time history curves and phase trajectories for the two motion
modes of the self-translation system. The parameters used in the calculation were set as
follows: C = 0.3, I0 = 0.6, K = 3.8, β = 0.08, δ = 0.25, λ = 2.0, µ1 = 0.01, R = 1.8,
g = 2.0, and v0 = 0.5. The results indicate that the self-translation system exhibits two
motion modes, namely the static mode and the self-translation mode. Figure 2a–d depicts
the static mode of the system without photothermal flux at I0 = 0, where the relative
displacement and velocity between the mass ball and the slider gradually diminished due
to damping, and the slider moved slowly over time as a result of friction. Eventually,
the oscillator and slider rested on the contact surface, which is named as the static mode.
Figure 2e–h is shown as I0 = 0.6, where the mass ball is initially given a velocity to
the right to reach the illumination region, and both the relative velocity of the mass ball
and the velocity of the slider gradually increase over time, and finally remains constant.
Therefore, the mass ball enters the self-oscillation mode. While the slider moves forward
accompanied with oscillating back and forth, it means that the slider has achieved the
motion of self-oscillation-driven translation, which is named as the self-translation mode.
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and the slider are plotted. (a–d) The static mode with I0 = 0. (e–h) The self-translation mode with
I0 = 0.6. We configured the remaining system parameters as follows: C = 0.3, K = 3.8, β = 0.08,
δ = 0.25, λ = 2.0, µ1 = 0.01, R = 1.8, g = 2.0, and v0 = 0.5. The mass ball and slider could exhibit
two types of motion modes: static mode and self-translation mode.

3.2. Mechanism of Self-Translation

In the light-powered self-translation of an asymmetric friction slider using an LCE
string oscillator, both damping and frictional dissipation occur. We investigated the con-
version between energy input energy dissipation, which can be calculated according to
Appendix B. Figure 3 depicts several key physical quantities related to the self-translational
motion of the slider, as observed in the typical case shown in Figure 2e,f. Figure 3a shows
the photothermal-induced contraction of the LCE fibers over time, demonstrating periodic
variation. The green-shaded area indicates that the LCE fibers are in the illumination
region during the mass ball’s self-oscillation. Correspondingly, Figure 3b illustrates that
the equivalent driving force Fdrive also has periodic changes over time. Figure 3c illustrates
the relative displacement x between the mass ball and the slider, the displacement x1 of
the slider, and the absolute displacement x2 of the mass ball over time. It is evident that
the relative displacement x between the mass ball and the slider varied periodically with
time, while both the displacement x1 of the slider and the absolute displacement x2 of the
mass ball increased continuously over time. The dependence between the force Fdrive and
the relative displacement x formed a clockwise closed loop during one period of the mass
ball’s self-oscillating motion, as shown in Figure 3d. This closed loop represents the net
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work undertaken by the horizontal component of the LCE fiber tension over a cycle. The
calculated value was 0.0750. Figure 3e,f illustrates the dependence between the damping
force FD and the absolute displacement x2 and the dependence between the friction F f
and the absolute displacement x1 over a self-oscillation cycle. It is evident that both the
damping force and the frictional force traced out a counterclockwise closed loop over a
cycle, with the areas of these loops calculated to be 0.0262 and 0.0488, respectively. Clearly,
over one self-oscillation cycle, the net work undertaken by the tension of the horizontal
component of the LCE fibers could entirely offset the work conducted by the damping
force and the frictional force. This balance ensures the self-translation of the entire system
under constant photothermal flux conditions.
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dissipation caused by FD and F f , thereby maintaining the self-translation.
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4. Impact of System Parameters on the Self-Translation

The following dimensionless parameters exist in the above theoretical model including
I0, C, K, β, δ, λ, µ1, R, g, and v0. In this section, we examine the trigger conditions for
self-translation as well as the dimensionless frequency f and amplitude A of the mass ball’s
self-oscillation and the dimensionless average speed va of the slider’s self-translation.

4.1. Influence of Photothermal Flux

Figure 4 shows the impact of photothermal flux I0 on the self-translation system. The
remaining system parameters are as follows: C = 0.3, K = 3.8, β = 0.08, δ = 0.25, λ = 2.0,
µ1 = 0.01, R = 1.8, g = 2.0, and v0 = 0.5. Figure 4a displays the limiting circles of the
mass ball’s self-oscillation at three different light intensities: I0 = 0.6, I0 = 0.65, and
I0 = 0.7. A critical photothermal flux of approximately 0.59 was identified for triggering
self-translation. When the photothermal flux is above this threshold, the energy input to the
system compensates for the energy dissipation, enabling self-translation. Notably, the size
of the limit circle increases with rising photothermal flux during self-translation. Figure 4b
illustrates the displacement x1 of the slider over time at I0 = 0.6, I0 = 0.65, and I0 = 0.7. As
the photothermal flux increases, the slider’s displacement also rises over the same duration.
In Figure 4c, it is evident that both the amplitude A and frequency f increased with the
increase in I0. This enhancement occurs because higher photothermal flux amplifies the
photothermal-induced contraction of the LCE fibers, thereby generating a greater equivalent
driving force on the slider, which enables it to perform more net work. Furthermore, as
shown in Figure 4d, the average speed va of the slider correspondingly increased with the
photothermal flux. These results suggest that increasing the photothermal flux can enhance
the engineering applications of the slider’s self-translation.
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Figure 4. The effect of photothermal flux I0 on the self-translation system, with the remaining system
parameters set as follows: C = 0.3, K = 3.8, β = 0.08, δ = 0.25, λ = 2.0, µ1 = 0.01, R = 1.8, g = 2.0,
and v0 = 0.5. (a) The limiting circles of the mass ball. (b) Displacement–time curves of the slider.
(c) The amplitude and frequency of self-oscillation. (d) The average velocity of self-translation. As
photothermal flux increased, an upward trend was observed in both the A and f of the mass ball’s
self-oscillation as well as in the va of the slider’s self-translation.
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4.2. Influence of Contraction Coefficient

Figure 5 explores the effect of the contraction coefficient C of the LCE fiber on the
self-translation system. The other system parameters are as follows: I0 = 0.6, K = 3.8,
β = 0.08, δ = 0.25, λ = 2.0, µ1 = 0.01, R = 1.8, g = 2.0, and v0 = 0.5. Figure 5a shows the
limiting circles of the mass ball’s self-oscillation at three different contraction coefficients,
namely C = 0.3, C = 0.32, and C = 0.34. A critical contraction coefficient of approximately
0.29 was identified as the threshold for triggering self-translation. When the contraction
coefficient exceeds this threshold, the energy input to the system offsets energy dissipation,
facilitating self-translation. Importantly, the size of the limit circle increases with a higher
contraction coefficient during self-translation. Figure 5b depicts the displacement x1 of the
slider over time at C = 0.3, C = 0.32, and C = 0.34. As the contraction coefficient rises, the
displacement x1 of the slider also increases over the same period. In Figure 5c, it is clear
that both the amplitude A and frequency f increased with the contraction coefficient. This
enhancement occurs because greater contraction coefficient amplifies the photothermal-
induced contraction of the LCE fibers, resulting in a stronger equivalent driving force on the
slider, which allows it to perform more net work. Additionally, as illustrated in Figure 5d,
the average speed va of the slider correspondingly rose with an increasing contraction
coefficient. These findings indicate that enhancing the contraction coefficient can improve
the efficient conversion of energy from light to mechanical energy.
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Figure 5. The impact of the contraction coefficient of the LCE fibers on the self-translation sys-
tem. The remaining system parameters are configured as follows: I0 = 0.6, K = 3.8, β = 0.08,
δ = 0.25, λ = 2.0, µ1 = 0.01, R = 1.8, g = 2.0, and v0 = 0.5 (a) The limiting circle of the mass
ball. (b) Displacement–time curves of the slider. (c) The amplitude and frequency of self-oscillation.
(d) The average velocity of self-translation. As the contraction coefficient of the LCE fibers increased,
both the A and f of the mass ball’s self-oscillation as well as the va of the slider’s self-translation,
demonstrated an upward trend.

4.3. Influence of Non-Illuminated Width

Figure 6 discusses how the non-illuminated width δ affects the self-translation system.
In the calculation, we set I0 = 0.6, C = 0.3, K = 3.8, β = 0.08, λ = 2.0, µ1 = 0.01, R = 1.8,
g = 2.0, and v0 = 0.5. Figure 6a depicts the size of the limit cycles under three different
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non-illuminated widths for δ = 0.25, δ = 0.26, and δ = 0.27. A critical non-illuminated
width of about 0.24 can be obtained to trigger self-translation. When δ < 0.24, the system is
in a static mode, while the system is in the self-translation mode when δ > 0.24. This is
because a larger non-illuminated width provides more time for the LCE fibers to recover
from the photothermal-induced contraction, allowing them to absorb more light energy in
the illuminated region. Figure 6b presents the time history curve of displacement x1 of the
slider under the non-illuminated width of δ = 0.25, δ = 0.26, and δ = 0.27. It can be easily
observed that the displacement x1 of the slider increased as δ increased. Figure 6c shows
that as δ increased, the self-oscillation amplitude A and frequency f increased. Figure 6d
shows that with the increase in the non-illuminated width, the average speed of the slider
also increased. For the self-translation system, it is essential to induce photothermal-
induced contraction in the illuminated region. Additionally, sufficient time for recovery
from this contraction is also required. As the photothermal-induced contraction approaches
its maximum value (illustrated in Figure 3a), increasing the non-illuminated width can
enhance the recovery process. This, in turn, allows for a greater absorption of light energy
in the illuminated region. Therefore, increasing the non-illuminated width results in an
increase in self-oscillation amplitude A, frequency f , and translational average speed va.
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Figure 6. The influence of non-illuminated width on the self-translation system. The remaining
system parameters are configured as follows: I0 = 0.6, C = 0.3, K = 3.8, β = 0.08, λ = 2.0, µ1 = 0.01,
R = 1.8, g = 2.0, and v0 = 0.5. (a) The limiting circle of the mass ball. (b) Displacement–time
curves of the slider. (c) The amplitude and frequency of self-oscillation. (d) The average velocity of
self-translation. Increasing the non-illuminated width resulted in an increase in self-oscillation A, f ,
and translational va.

4.4. Influence of Elastic Coefficient

Figure 7 examines the impact of the coefficient of elasticity K on the self-translation
system under parameters such as I0 = 0.6, C = 0.3, δ = 0.25, β = 0.08, λ = 2.0, µ1 = 0.01,
R = 1.8, g = 2.0, and v0 = 0.5. Figure 7a illustrates the limit circles of the mass ball’s
self-oscillation at three different elasticity coefficients K = 3.8, K = 4.2, and K = 4.6. The
results indicate that there is a critical value of 3.8 that transitions the mass ball from a
static state to a self-oscillation state. When the K is below this critical value, the mass ball
remains static; however, when it exceeds the critical value, the mass ball enters a state of
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self-oscillation. As the K increases, the boundary of the self-oscillation of the mass ball also
expands. Figure 7b displays the absolute displacement x1 of the slider’s self-translation
over time for different elasticity coefficients as K = 3.8, K = 4.2, and K = 4.6. Clearly, as
the K increased, the x1 also rose. This can be attributed to the fact that a higher K enhances
the equivalent driving force of the LCE fibers, enabling the slider to cover greater distances.
Figure 7c demonstrates the effect of K on the amplitude A and frequency f of the mass
ball’s self-oscillation. Figure 7d shows how K influences the average speed va of the slider’s
self-translation. As K increases, A and f , along with va, all rise. This suggests that a higher
K results in a greater equivalent driving force from the LCE fibers, leading to increased A,
f , and va.
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Figure 7. The impact of the elastic coefficient of the LCE fibers on self-translation. The remaining
system parameters are defined as follows: I0 = 0.6, C = 0.3, δ = 0.25, β = 0.08, λ = 2.0, µ1 = 0.01,
R = 1.8, g = 2.0, and v0 = 0.5. (a) The limiting circle of the mass ball. (b) Displacement–time
curves of the slider. (c) The amplitude and frequency of self-oscillation. (d) The average velocity of
self-translation. As the elasticity coefficient increases, the system demonstrated a noticeable rise in
the A and f of the mass ball’s self-oscillation motion and the va of the slider’s self-translation motion.

4.5. Influence of Initial Velocity

Figure 8 shows the influence of the initial velocity v0 on the self-translation system. In
the calculation, we set I0 = 0.6, C = 0.3, δ = 0.25, K = 3.8, β = 0.08, λ = 2.0, µ1 = 0.01,
g = 2.0, and R = 1.8. Figure 8a plots the limit circles of the mass ball’s self-oscillation
relevant to different initial velocities. A critical velocity v0 of about 0.49 existed in the phase
transition between static mode and self-translation mode while v0 < 0.49 exhibited static
mode due to the fact that insufficient energy was input to compensate for the damping
dissipation. The self-translation mode was triggered at v0 = 0.6, v0 = 0.7, and v0 = 0.8,
which had an identical limit circle, as shown in Figure 8a. Figure 8b depicts the absolute
displacement x1 of the slider’s self-translation over time. It was observed that during
the same time period, an increase in the initial velocity corresponded to an increase in
the slider’s displacement. This indicates that a higher initial velocity results in greater
initial kinetic energy within the system, allowing the slider to cover a longer distance
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during its translation motion. Figure 8c illustrates how the amplitude A and frequency f
change with v0. Both the A and f of self-oscillation displayed no variation along with v0.
Figure 8d illustrates how the average velocity va of the slider’s self-translation varied with
the initial velocity v0. Once the system is in the self-translation state, the average velocity
va will also remain unaffected. This is due to the fact that the initial conditions do not
influence the behavior of self-oscillation, as these are intrinsic characteristics of the process.
Consequently, the self-translation driven by continuous oscillation is likewise unaffected
by the initial conditions.
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Figure 8. The impact of initial velocity on the self-translation system. The other parameters of the
system are configured as follows: I0 = 0.6, C = 0.3, δ = 0.25, K = 3.8, β = 0.08, λ = 2.0, µ1 = 0.01,
g = 2.0, and R = 1.8. (a) The limiting circle of the mass ball. (b) Displacement-time curves of the
slider. (c) The amplitude and frequency of self-oscillation. (d) The average velocity of self-translation.
As the initial velocity increases, the A and f of the mass ball’s self-oscillation and the va of the slider’s
self-translation tend to be constant.

4.6. Influence of the Coefficient of the Force of Friction

In this section, we explore the impact of friction coefficient µ1 on the self-translation
system. In the calculation, we set I0 = 0.6, C = 0.3, δ = 0.25, β = 0.08, λ = 2.0, K = 3.8,
R = 1.8, g = 2.0, and v0 = 0.5. Figure 9a depicts the limit circles of the mass ball’s self-
oscillation for three different friction coefficients: µ1 = 0.01, µ1 = 0.009, and µ1 = 0.008. A
critical friction coefficient can be numerically calculated for triggering self-translation, with
a value about 0.012. This outcome indicates that the slider remains in a static pattern when
µ1 ≥ 0.011 and transitions to a self-translation pattern when µ1 ≤ 0.011. This is because as
the friction coefficient increases, the net work generated by the equivalent driving force is
no longer sufficient to counteract the damping dissipation necessary for maintaining self-
translation. Figure 9b presents the time history curve of the slider’s displacement under the
three friction coefficients of 0.01, 0.009, and 0.008. As the friction coefficient decreases, the
displacement of the slider within the same time increases. Figure 9c illustrates that as the
friction coefficient increased, both the self-oscillation amplitude and frequency decreased.
This phenomenon can be attributed to the fact that as the friction coefficient increases,
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more energy is dissipated in the system due to friction, resulting in a smaller amplitude.
Furthermore, the average speed of the slider also decreases with the increase in friction
coefficient, as shown in Figure 9d. Therefore, it can be concluded that a smaller friction
coefficient allows the slider to reach a self-translation pattern more easily.
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Figure 9. The impact of friction coefficient µ1 on the self-translation system under the given parame-
ters of I0 = 0.6, C = 0.3, δ = 0.25, β = 0.08, λ = 2.0, K = 3.8, R = 1.8, g = 2.0, and v0 = 0.5. (a) The
limiting circle of the mass ball. (b) Displacement–time curves of the slider. (c) The amplitude and
frequency of self-oscillation. (d) The average velocity of self-translation. As the friction coefficient
increased, both the A, the f and the va of slider exhibited a downward trend.

4.7. Influence of Damping Coefficient

Figure 10 analyzes the impact of the damping coefficient β on the self-translation of the
slider. The parameters were set for I0 = 0.6, C = 0.3, δ = 0.25, µ1 = 0.01, λ = 2.0, K = 3.8,
R = 1.8, g = 2.0, and v0 = 0.5. Figure 10a describes the three limit cycles of the slider at the
damping coefficients of β = 0.08, β = 0.075, and β = 0.07. Observations indicated that
the size of the limit cycle increased as the damping coefficient decreased, and there was a
critical damping coefficient of about 0.081 for triggering self-translation. This is because
the energy input to the system was insufficient to counteract the damping dissipation for
β ≥ 0.081, resulting in the system being in a static pattern. The input of energy to the
system was capable of compensating for the dissipation caused by damping for β ≤ 0.08,
thus the system was in a self-translation pattern. In Figure 10b, the time history curve of
the slider’s displacement is shown under the damping coefficients of 0.08, 0.075, and 0.07.
These findings suggest that as the damping coefficient decreases, the slider travels greater
distances simultaneously. Figure 10c shows that as the damping coefficient increased, the
self-oscillation amplitude A decreased, while the frequency f nearly remained constant.
This occurs because a larger damping coefficient leads to greater energy dissipation within
the system, which in turn produces a smaller amplitude. Additionally, it can be noted
that the self-oscillation frequency remains nearly constant, regardless of changes in the
damping coefficient. This is because the damping coefficient does not affect the inherent
period. Moreover, as the damping coefficient increases, the average speed of the slider
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decreases, as illustrated in Figure 10d. To enable quicker self-translation in engineering
applications, we can consider reducing the damping coefficient appropriately.
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Figure 10. The impact of damping coefficient β on the self-translation system under the given
parameters of I0 = 0.6, C = 0.3, δ = 0.25, µ1 = 0.01, λ = 2.0, K = 3.8, R = 1.8, g = 2.0, and
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damping coefficient increased, both the A and f of the mass ball and the va of slider showed a
decreasing trend.

4.8. Influence of Friction Coefficient Ratio

Figure 11 investigates the influence of the friction coefficient ratio R on the self-
translation system. The parameters were as follows: I0 = 0.6, C = 0.3, δ = 0.25, µ1 = 0.01,
λ = 2.0, K = 3.8, β = 0.08, g = 2.0, and v0 = 0.5. Figure 11a illustrates the limit circles of
the mass ball’s self-oscillation under three different friction coefficients ratios of R = 1.3,
R = 1.1, and R = 0.9. It is clear that the limiting circle of the mass ball’s self-oscillation
decreases as the R increases. There was a critical value of 1.81 that triggered the transition
of the mass ball from a self-oscillation state to a static state. When the R was below 1.81, the
net work carried out by the equivalent driving force Fdrive was sufficient to compensate for
damping dissipation, allowing the mass ball to maintain a self-oscillation state. Conversely,
when the R exceeded 1.81, the damping dissipation surpassed the net work undertaken
by the Fdrive, resulting in the mass ball becoming static. In Figure 11b, we observed the
absolute displacement x1 of the slider’s self-translation over time during the same period
in the R = 1.3, R = 1.1, and R = 0.9. Over the same time period, an increase in R
resulted in a decrease in x1. This can be attributed as follows: as the R increases, the rising
friction force, which increases the work and damping dissipation, ultimately hinders the
slider’s movement and reduces its travel distance. Notably, when R exceeds 1, the slider
moves forward; otherwise, it exhibits backward motion during self-translation. Figure 11c
illustrates how the amplitude A and frequency f of the mass ball’s self-oscillation changed
with the R. When the R was below the critical value of 1.81, the mass ball remained in
a state of self-oscillation. In contrast, when R exceeded this critical value, the mass ball
entered a static state. Figure 11d displays the average velocity of the slider’s self-translation
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in relation to R. When the R exceeded the critical value of 1.81, the slider remained in a
static state. Conversely, if the R was below 1.81, the slider remained in a self-translation
state. As the R increased, the A and f of the mass ball decreased. This can be understood
as the increasing friction leading to greater work undertaken against damping dissipation,
resulting in lower A and f of the mass ball’s self-oscillation. When R < 1, the absolute
value of the slider’s average speed decreases as the R increases. Conversely, when R > 1,
the absolute value of the slider’s average speed increases as the R increases. This occurs
because in the case of R < 1, during the slider’s self-translation, the resistance to the
right is greater than that to the left, causing the slider to move left. As the R increases,
the resistance to leftward movement also increases, resulting in a smaller average speed
of the slider’s self-translation. In contrast, at R > 1, the resistance to the left is greater
than that to the right, leading the slider to move right. Here, a higher R also increases the
resistance to leftward movement, which in turn results in a higher average speed of the
slider’s self-translation.
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Figure 11. The impact of the friction coefficient ratio R on the self-translation system. The remaining
system parameters are configured as follows: I0 = 0.6, C = 0.3, δ = 0.25, µ1 = 0.01, λ = 2.0, K = 3.8,
β = 0.08, g = 2.0, and v0 = 0.5. (a) The limiting circle of the mass ball. (b) Displacement–time
curves of the slider. (c) The amplitude and frequency of self-oscillation. (d) The average velocity of
self-translation. As the R increased, both the A and f of the mass ball’s self-oscillation exhibited a
declining trend. At R < 1, the absolute value of the slider’s va in self-translation decreases as the
R increases. In contrast, at R > 1, the absolute value of the average velocity va increases with a
higher R.

4.9. Influence of the Mass Ratio

This section investigates the impact of mass ratio λ on the self-translation system for
the given parameters of I0 = 0.6, C = 0.3, δ = 0.25, µ1 = 0.01, R = 1.8, K = 3.8, β = 0.08,
g = 2.0, and v0 = 0.5. Figure 12a plots the limit cycle under different mass ratios of λ = 1.9,
λ = 1.8, and λ = 1.7. It can be clearly seen that the size of the limit cycle decreased as the
mass ratio increased, and there was a critical mass ratio of about 2.01 for triggering self-
translation. When λ ≥ 2.01, the input energy to the system was insufficient to counteract
the dissipation caused by damping, leading to a static state. Conversely, when λ ≤ 2.01, the
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input energy could adequately offset the damping dissipation, allowing the system to enter
a self-translation pattern. Figure 12b presents the displacement–time curves of the slider
of 1.9, 1.8, and 1.7. As the mass ratio decreased, the displacement of the slider became
farther at the same time. Additionally, as shown in Figure 12c, the amplitude A remained
relatively constant as the mass ratio increased, while the frequency f decreased with a
rising mass ratio. This happens because, as the mass ratio of the slider to the ball increases,
the friction force between the slider’s body and the contact surface also rises. Consequently,
the system dissipates more energy due to this friction, resulting in a decreased frequency of
the ball. In addition, the average speed of the slider also decreases, as shown in Figure 12d.
Therefore, decreasing the mass ratio can improve the self-translation of the slider.
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Figure 12. The impact of mass ratio λ on the self-translation system. The remaining system parameters
are configured as follows: I0 = 0.6, C = 0.3, δ = 0.25, µ1 = 0.01, R = 1.8, K = 3.8, β = 0.08, g = 2.0,
and v0 = 0.5. (a) The limiting circle of the mass ball. (b) Displacement–time curves of the slider.
(c) The amplitude and frequency of self-oscillation. (d) The average velocity of self-translation. As
the mass ratio increased, it was noticeable that the amplitude A remained relatively constant, while
the frequency f and the va of the slider’s self-translation decreased.

4.10. Influence of the Gravitational Acceleration

Figure 13 investigates the impact of gravitational acceleration g on the self-translation
system. The remaining system parameters were as follows: I0 = 0.6, C = 0.3, δ = 0.25,
µ1 = 0.01, R = 1.8, K = 3.8, β = 0.08, λ = 2.0, and v0 = 0.5. Figure 13a displays the
limiting circles of the mass ball’s self-oscillation at three different gravitational accelerations:
g = 1.8, g = 1.9, and g = 2.0. A critical gravitational acceleration of approximately 2.01 was
identified for triggering self-translation. When the gravitational acceleration was below this
threshold, the energy input to the system offset the energy dissipation, allowing for self-
translation to occur. Notably, as gravitational acceleration decreased during self-translation,
the size of the limit circle also expanded. Figure 13b illustrates the displacement x1 of
the slider over time at g = 1.8, g = 1.9, and g = 2.0. As the gravitational accelerations
decreased, the slider’s displacement rose over the same duration. In Figure 13c, it is evident
that both the amplitude A and frequency f decreased with the increase in I0. This occurs
because heightened gravitational acceleration leads to an increase in total weight, drag,
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work, and damping dissipation, which collectively reduce the amplitude and frequency
of the mass ball’s self-oscillating motion and the slider’s average velocity. Furthermore,
as shown in Figure 13d, the average speed of the slider correspondingly decreased with
gravitational accelerations. These results suggest that decreasing gravitational accelerations
can enhance the engineering applications of the slider’s self-transl ation.
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Figure 13. The impact of gravitational acceleration on the self-translation system. The remaining
system parameters are configured as follows: I0 = 0.6, C = 0.3, δ = 0.25, µ1 = 0.01, R = 1.8, K = 3.8,
β = 0.08, λ = 2.0, and v0 = 0.5. (a) The limiting circles of the mass ball. (b) Displacement–time
curves of the slider. (c) The amplitude and frequency of self-oscillation. (d) The average velocity of
self-translation. As gravitational acceleration increased, there was a decreasing trend observed in
both the A and f of the mass ball’s self-oscillation as well as in the va of the slider’s self-translation.

In summary, this section provides a systematic analysis of how key dimensionless
system parameters influence the amplitude A and frequency f of the mass ball and the
average velocity va of the slider, with the results summarized in Table 3.

Table 3. Effects of several key dimensionless parameters.

Dimensionless Parameter Amplitude A Frequency f Average Velocity va

I0 Increases with increasing I0 Increases with increasing I0 Increases with increasing I0

C Increases with increasing C Increases with increasing C Increases with increasing C

δ Increases with increasing δ Increases with increasing δ Increases with increasing δ

K Increases with increasing K Increases with increasing K Increases with increasing K

v0 Constant as v0 increases Constant as v0 increases Constant as v0 increases

µ1 Decreases with increasing µ1 Decreases with increasing µ1 Decreases with increasing µ1

β Decreases with increasing β Decreases with increasing β Decreases with increasing β

R Decreases with increasing R Decreases with increasing R Decreases with increasing R

λ Constant as λ increases Decreases with increasing λ Decreases with increasing λ

g Decreases with increasing g Decreases with increasing g Decreases with increasing g
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5. Conclusions

Active materials can convert various forms of energy into mechanical energy. However,
effectively utilizing these materials to implement and control active machines presents
significant challenges. In this work, we leveraged a self-sustained LCE string oscillator to
introduce a light-powered self-translation system for an asymmetric friction slider. The
self-translation system consisted of a hollow slide, two LCE fibers, and a mass ball. Through
the evolution of photothermal-induced contraction, we developed the governing equations
for the self-translation system. Under constant illumination, numerical computations
revealed the emergence of two distinct motion modes: static mode and self-translation
mode. The motion of the mass ball causes the LCE fibers to switch between illuminated
and non-illuminated states, leading to alternating photothermal-induced contraction and
recovery. This allows the LCE fibers to harvest light energy, which counterbalances the
energy dissipation of the self-translation system. Consequently, the self-translation of the
slider can be sustained in conjunction with the self-oscillation of the oscillator.

In addition, the critical conditions necessary for triggering self-translation were identi-
fied through numerical calculation. Furthermore, we investigated how key system param-
eters influence the amplitude and frequency of the mass ball’s self-oscillation as well as
the average speed of the slider’s self-translation. Unlike most self-oscillating systems that
oscillate around a fixed position, this self-translation system utilizes an asymmetric friction
structure, enabling the slider to move continuously forward through the oscillator’s self-
sustained oscillation. In future work, we may further investigate the self-translation using
a liquid crystal elastomer string oscillator through experimental validation. The design
of this self-translation system is straightforward and easy to control, offering promising
application potential across various domains including soft robotics, energy harvesting,
and active machinery.
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Appendix A. Nondimensionalization

To simplify the calculation, we introduced the following dimensionless parameters:
x = x/L0,

.
x =

.
xτ/L0,

..
x =

..
xT0

2/L0, x1 = x1/L0,
.
x1 =

.
x1τ/L0,

..
x1 =

..
x1τ2/L0, x2 = x2/L0,

.
x2 =

.
x2τ/L0,

..
x2 =

..
x2τ2/L0, δ = δ/L0, t = t/τ, FL = FLτ2/mL0, F f = Ff τ2/mL0,

FD = FDτ2/mL0, Fdrive = Fdriveτ2/mL0, K = Kτ2/m, g = gτ2/L0, β = βτ/m, λ = M/m,
R = µ2/µ1, I0 = I0/kcT0, T = T/T0, and C = CT0 (T0 is ambient temperature). Hence, the
governing Equations (1) and (4) can be expressed in dimensionless forms as follows:

2FL
(
t
) x

(
t
)√

1 + x2(t
) − F f

(
t
)
− (λ − 1)

..
x1
(
t
)
= 0, (A1)
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..
x2
(
t
)
= −2FL

(
t
) x

(
t
)√

1 + x2(t
) − FD

(
t
)
= 0, (A2)

where FL
(
t
)
, F f

(
t
)
, and FD

(
t
)

can be represented by the following equations:

FL
(
t
)
= K

[√
1 + x2(t

)
− 1 − ε

(
t
)]

, (A3)

F f
(
t
)
= µλg · sgn

( .
x1
)
, (A4)

FD
(
t
)
= β

.
x2, (A5)

where the light-induced contraction is

ε
(
t
)
= −CT

(
t
)
. (A6)

The dimensionless temperature difference in Equation (A6) can be determined as

dT
(
t
)

dt
= I0 − T

(
t
)
. (A7)

For the case of x(t) < δ, the photothermal flux in Equation (A7) was set as I0 = 0. It is
worth noting that the relative displacement x

(
t
)

between the mass ball and the slider is:

x
(
t
)
= x2

(
t
)
− x1

(
t
)
, (A8)

Equations (A1), (A2), and (A7) govern the light-powered self-translation of an asym-
metric friction slider using an LCE string oscillator, where the temperature difference of
the LCE fiber is coupled with the relative displacement between the mass ball and the
slider. Solving these complex differential equations with variable coefficients using an-
alytical methods is challenging. Therefore, we opted to utilize the Runge–Kutta method
for numerical computation, implemented through MATLAB2017b software. We set the
initial conditions for numerical computation. For the temperature difference Ti−1, the
relative displacement xi−1, and the slider’s speed

.
x2(i−1) at time ti−1, the tension FLi−1

of the LCE fiber and the friction force F f i−1 of the slider can be determined by solving
Equations (A1)–(A4). Then, the current absolute displacement x2i, the displacement x1i,
and the speed

.
x2i at time ti can be determined from Equations (A1) and (A2). Subsequently,

the current relative displacement xi can be calculated from Equation (A8), and the current
temperature difference T can be obtained from Equation (A7). Then, the tension FLi and
the friction force F f i can be obtained from Equations (A1)–(A4) again. By conducting
iterative computations in MATLAB2017b software, we could determine the light-powered
self-translation of an asymmetric friction slider using an LCE string oscillator under the
specified dimensionless parameters I0, C, δ, K, v0, µ1, β, R, g, and λ.

Appendix B. Energy Input and Energy Output

The system’s energy input Win can be derived from the net work performed by the
tension of LCE fibers. Based on the force analysis of the mass ball and slider in the dynamic
model, the energy input Win can be calculated as:

Win =
∫

Fdrive(t)dx2 −
∫

Fdrive(t)dx1, (A9)

where the equivalent driving force Fdrive(t) is given as:

Fdrive(t) = 2K
[√

L0
2 + x2(t)− L0 − L0ε(t)

]
x(t)√

L0
2 + x2(t)

. (A10)
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Therefore, Equation (A9) can be rewritten as:

Win =
∫

Fdrive(t)dx. (A11)

Additionally, the energy output Wout is the sum of the system’s damping and frictional
dissipation, and can be calculated as:

Wout =
∫

FD(t)dx2 +
∫

Ff (t)dx1. (A12)

Defining the dimensionless energy input Win = Win
mτ2/L0

2 and energy output

Wout =
Wout

mτ2/L0
2 , Equations (A11) and (A12) can be rewritten as:

Win =
∫

Fdrive
(
t
)
dx. (A13)

and
Wout =

∫
FD

(
t
)
dx2 +

∫
F f

(
t
)
dx1, (A14)

where Fdrive
(
t
)

can be represented by the following equation:

Fdrive
(
t
)
= 2K

[√
1 + x2(t

)
− 1 − ε

(
t
)] x

(
t
)√

1 + x2(t
) , (A15)
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