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INTRODUCTION

During peripheral nerve development, the initial outgrowth of pioneer axons and
the appearance of Schwann cell precursors is followed by a sequence of maturational
steps including both growth in size and structural differentiation (reviewed by
Webster, 1975; Landon & Hall, 1976; Ochoa, 1976; Berthold, 1978). Studies on
hind limb nerves in young kittens have shown that, in axons destined to become
large, completion of the structural differentiation coincides in time with attainment
of almost mature functional properties. This takes place at an axonal diameter far
below the final size (Berthold, 1968; Schwieler, 1968; Skoglund, 1969; Berthold,
1978). The functional development of cutaneous, articular and muscular afferent
units in kitten hind limbs also seems to occur in orderly relation to the changing
properties of the afferent nerve fibres (Ekholm, 1967; Skoglund, 1969). In this con-
text, an understanding of nerve fibre maturation in trigeminal branches related to
the teeth would be of interest, particularly in view of the extensive developmental
remodelling of the dentition. The cat inferior alveolar nerve appears suitable for
examination since it enters the mandibular canal as a distinct trunk (cf. Thomas,
1946) and the distribution of its branches has been described (Robinson, 1979).
According to light microscopic data, some 50 % of the axons of the inferior

alveolar nerve enter the mental nerves and convey sensory information from the chin
and lower lip (Thomas, 1946; Robinson, 1979). The other axons of the nerve trans-
mit impulses from the pulps of the mandibular teeth as well as from the associated
periodontal ligaments and gingiva (Bannister, 1976; Robinson, 1979). In addition,
some sympathetic axons seem to course within the inferior alveolar nerve (Christen-
sen, 1940; Matthews & Robinson, 1980). With respect to the development of the
feline inferior alveolar nerve, no information is available, apart from a quantitative
light microscopic study (Mohiuddin, 1951). In the present work, we have examined
this nerve by electron microscopy from the fetal period throughout development to
the fully mature and old adult stages. The principal aim has been to establish a
chronology for the qualitative structural development of this nerve.

MATERIAL AND METHODS

The material was taken from 56 fetal and postnatal kittens and 21 adult cats,
ranging in age from 25 days post conception (dpc) to 11 years after birth. The gesta-
tional ages of the prenatal kittens were counted from 24 hours after parental mating
(Stein, 1975). The relation between crown-rump length, weight and estimated fetal
age agreed with previous data (Windle & Griffin, 1931; Coronios, 1933). The average
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gestational age of the newborn kittens was 67 ± 5 days (cf. Coronios, 1933; Stein,
1975). Animals aged 7 months were regarded as adults (cf. Shapiro, 1930; Stein,
1975).
The prenatal kittens were delivered by Caesarean section while the mother was

anaesthetized with Halothaneg. The fetus aged 25 dpc was fixed by immersion
in toto. The older fetuses were perfused through the heart with Tyrode's solution
followed by 5 % glutaraldehyde in a 300 mOsm phosphate buffer. The perfusates
were at room temperature and were infused at constant pressure. The postnatal
kittens and the cats were anaesthetized with Mebumal®l (40 mg/kg, i.p.), tracheo-
stomised and artificially ventilated with air. After a thoracotomy, they were perfused
through the ascending aorta with Tyrode's solution (+37 C) containing 2-7%
Dextran (26 g T70 and 1 g T500) (Pharmacia, Sweden), followed first by warm
(+ 37 °C) and then by cold (+ 4 °C) purified 5 % glutaraldehyde in a 300 mOsm
phosphate buffer with 2-7% Dextran (Karlsson & Schultz, 1965; Berthold, 1968).
After perfusion the mandible was removed, post-fixed in chilled fixative (4 hours)
and stored overnight in cold buffer. In the prenatal kittens aged 25-40 dpc entire
mandible halves were processed as described below. The inferior alveolar nerve was
later trimmed out by taking semithin transverse sections through the mandibular
canal close to the mandibular foramen. In older prenatal kittens and postnatal
animals, specimens were taken from the inferior alveolar nerve at its entrance in the
mandibular canal. The specimens were osmicated (4 hours) in 2 % OS04 in phosphate
buffer, rinsed in the buffer, dehydrated in acetone and embedded in Vestopal W
(Ryter & Kellenberger, 1958; Berthold, 1968). Thin (silver-grey) transverse and
longitudinal sections were cut with an LKB Ultrotome III 8800. The thin sections
were collected on one-hole copper grids coated with carbon stabilised formvar, con-
trasted with uranyl acetate and lead citrate and examined in a Philips EM 300 or 301
electron microscope.

RESULTS
25 dpc
At this stage an inferior alveolar nerve was present in the mandible process, and

was composed of small, densely packed unmyelinated axons (Figs. 1, 2). Along the
circumference of the nerve a layer of cells formed a largely complete investment
(Fig. 1). Cytoplasmic processes from these cells followed the circumference or pene-
trated into the nerve, and similar cells extended from the circumferential layer into
the core of the axon bundle (Fig. 1). These cells lacked distinct basement membranes
and did not individually ensheath single axons or groups of axons. Both circumferen-
tial and interstitial processes were extensively linked through specialized junctions.

Figs. 1-14. Electron micrographs from the developing, mature and ageing inferior alveolar
nerve. Cross sections are shown, unless stated otherwise.
Fig. 1. 25 dpc. General survey of primitive axons and sheath cells. Blood vessels (upper corners)
and undifferentiated cells surround the nerve. x 3000. Framed region is shown at a larger
magnification in Fig. 2.
Fig. 2. 25 dpc. Detail of Fig. 1, illustrating the densely packed axons of the nerve. x 19300.
Inset: Accumulation of electron-dense material at sites of axonal contact. x 36600.
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35 dpc
Apart from a greater size range, the axons were generally similar to those present

at 25 dpc (Fig. 3). A few axonal profiles, however, had expansions containing large
irregular vesicles (Fig. 4) and others contained clusters of small rounded vesicles
(Fig. 5) or dense lamellated bodies. Similar formations have been interpreted as tips
of growing axons by other workers (see del Cerro & Snider, 1968; Tennyson, 1970).
Most of the axons were collectively ensheathed in bundles by interstitial and circum-
ferential cells, which were in some ways similar to those seen at 25 dpc (Fig. 3). A
few large axons occupied separate cytoplasmic pockets in the cells (Fig. 4). Distinct
basement membranes covered regions of the plasma membrane facing other cells,
and at such sites bundles of collagen fibrils were present (Fig. 4). These cells therefore
appear to be immature Schwann cells (cf. Webster, 1975). The nerve was completely
invested by a few layers of flattened cells containing glycogen granules and possessing
long circumferential processes. This sheath resembled a primitive perineurium, but
few pinocytotic vesicles were observed, and the cellular layers lacked basement
membrane investments.

40 dpc-birth
At 40-45 dpc the most striking change in the inferior alveolar nerve was a marked

numerical increase and further differentiation of the Schwann cells. All axons were
individually ensheathed by Schwann cells. Several profiles resembling unmyelinated
axons appeared swollen and electron-lucent (Fig. 6). Single larger (about 0-8,um)
unmyelinated axons ensheathed by Schwann cells in a 1:1 relation were rather
common, and some of these showed typical promyelin features (Friede & Samo-
rajski, 1968). At 45 dpc, many larger (about 1,um) axons were surrounded by a few
layers of compact myelin. With the onset of myelination, blood vessels, collagen
fibrils and fibroblasts (cf. Bischoff, 1970) appeared in the endoneurium, which was
delimited by an immature perineurium.
During the last two prenatal weeks, myelination continued rapidly. Some myelin

sheaths related to larger (2-3,um) axons appeared very irregular and partly frag-
mented in transverse sections (Fig. 7). In longitudinal sections, these constellations
corresponded to short (15-20,cm) and highly distorted internodes, bordered by
nodes of Ranvier (Fig. 8). Some similarly sized axon profiles had internodes com-

posed only of Schwann cell cytoplasm loaded with myelin fragments, which was
intercalated between the paranodal segments of adjacent intact myelin sheaths
(Fig. 9). Macrophages (Gibson, 1979; Oldfors, 1980) containing myelin debris were

sometimes associated with such Schwann cells (Fig. 10). Defects in the basement
membrane of the Schwann cell were observed at points of close contact between
cells (Fig. 11). At birth, separation and myelination appeared to continue, and the
perineurium of the nerve was then almost mature (Low, 1976).

Fig. 3. 35 dpc. Immature Schwann cell. Some of its extensively branching processes enclosing
bundles of axons can be seen. Regions of the plasma membranes not facing axons are apposed
by a basement membrane and collagen fibres. x 16500. Specialized junctions between immature
Schwann cell processes (arrow) are shown at a high magnification in the inset. x 74800.
Fig. 4. 35 dpc. This Figure shows an axon profile (al) with an expansion containing irregular
vesicles. Another axon(a2) occupies a separate Schwann cell pocket. A basement membrane
covers the outer Schwann cell surface. x 28900.
Fig. 5. 35 dpc. Partly ensheathed profile (a) containing a cluster of rounded vesicles. x 46600.
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Fig. 6. 45 dpc. A swollen profile resembling a degenerating unmyelinated axon is ensheathed by
a Schwann cell process together with some intact unmyelinated axons. x 24900.

First postnatal month
During the first three postnatal weeks, distorted and fragmented myelin sheaths

were still found associated with 2-3 ,sm axons. In addition, irregular paranodal
segments with myelin sheath outgrowths and myelin bodies, i.e. 'complex para-
nodes' (Berthold, 1968), were common around 3-4,um axons during weeks 2 and 3.
Four weeks after birth, such internodal and paranodal myelin irregularities were no
longer seen. Cross sections through paranodes of 4-5,um axons now showed a
crenated shape with associated cords of Schwann cell cytoplasm rich in mito-
chondria. The nodal gap contained a corona of microvillus-like Schwann cell
processes. These features, which are typical for the fully differentiated nodal-
paranodal region of larger myelinated axons (Berthold, 1968), were not seen in
smaller ones.

1 month-1I years postnatally
During the first weeks of the second postnatal month, de novo myelination con-

tinued. Six to eight weeks after birth, the inferior alveolar nerve seemed to be
qualitatively mature, as judged from the lack of early myelinating axons and from
the nodal-paranodal structure of larger and medium sized ( >4-6 ,um) myelinated
axons. The growth in size, however, was far from completed. Specimens of the nerve

Fig. 7. Newborn. Among the myelinating axons two (a) display highly distorted myelin sheaths.
Most of the unmyelinated axons occupy separate Schwann cell pockets. x 7200.
Fig. 8. Newborn. Longitudinal section. An axon with a highly distorted myelin sheath, corres-
ponding to the labelled axons in Fig. 7, is seen. The short myelin sheath is intercalated between
two nodes of Ranvier (r). sn, Schwann cell nucleus. x 3500.
Fig. 9. Newborn. Longitudinal section. A short, completely demyelinated axon segment is
bordered by two seemingly intact paranodes (pn). Remnants of a degenerating cell (*) and
lamellated bodies, most probably representing myelin debris, are seen along the demyelinated
segment. x 6800.
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Fig. 10. Newborn. Arrows indicate process from a macrophage containing what seems to be
myelin debris. A Schwann cell (s) ensheathing a fairly large non-myelinated axon profile (a)
is closely associated with the process. A site of close contact (framed) is shown at higher
magnification in Fig. 11. x 10700.
Fig. 11. Newborn. Detail of Fig. 10. Note that the continuity of the Schwann cell basement
membrane appears to be interrupted at the site of intimate cellular contact (between arrows).
x 52200.

from 3-11 months old animals showed no unusual features which could be related to
the continuing shedding ofprimary teeth (Mohiuddin, 1950). In the adult animals aged
9years-or less, the nerve presented endo- and perineurial features in general agreement
'with previous descriptions of adult peripheral nerves (see, e.g., Bischoff & Thomas,
1975; Ochoa, 1975; Landon & Hall, 1976; Berthold, 1978). In the cats aged 10 and
11 years, however, axonal and perineurial alterations were found (Figs. 12-14).
Some seemingly atrophic myelinated axons had disproportionately thick myelin
sheaths (Fig. 12). Schwann cell extensions were sometimes invaginated into such
axons (Fig. 12). Features indicating axonal regeneration and/or remyelination, as

Fig. 12. 11 years. A seemingly atrophic axon is surrounded by a thick myelin sheath subdivided
into rings by cytoplasmic clefts. A Schwann cell expansion invaginates the axon (arrow).
x 7800.
Fig. 13. 11 years. Schwann cell profile containing unmyelinated axons (u) and a collagen pocket
(lower arrow). A Schwann cell profile lacking an axonal relation is indicated by the upper arrow.
x21800.
Fig. 14. 11 years. Perineurial cells with abnormally thick basement membranes. x 40900.
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well as continuing and past unmyelinated axon degeneration (Ochoa & Mair, 1969)
were occasionally encountered (Fig. 13). In addition, the perineurial layers were
covered by abnormally thick basement membranes (Fig. 14).

DISCUSSION

Most of the axons of the inferior alveolar nerve arise from parent neurons in the
trigeminal ganglion, which appears 2 weeks after mating in the cat (Halley, 1955).
A few days later, the mandibular division extends a short distance from the ganglion
(Windle, 1932). As shown by our results, an inferior alveolar nerve composed of
small axons and primitive sheath cells is present in the mandibular process at 25 dpc.
In previous studies on fetal nerves, similar sheath cells have been regarded as
immature Schwann cells (Gamble, 1966; Billings-Gagliardi, Webster & O'Connell,
1974). If these cells represent Schwann cell precursors, the area delimited by the
circumferential layer would represent a labyrinthine periaxonal space common for
all axons. Because no separate sheath existed outside the circumferential layer, as
also described in fetal human ulnar nerves (Gamble, 1966), an endoneurium, in the
true sense, had not yet appeared. That the circumferential cells at 25 dpc would
represent immature perineurial cells seems unlikely (Gamble, 1966).
By 35 dpc, large groups of axons were collectively ensheathed by extensively

branching cells with obvious Schwann cell features (Gamble, 1966; Ochoa, 1971).
The presence of collagen fibrils in close relation to these cells and the lack of endo-
neurial fibroblasts support the view that Schwann cells may form collagen (see
Mustafa & Gamble, 1978; Bunge et al. 1980). The transition from a collective
ensheathment of the entire inferior alveolar nerve to ensheathment of axon bundles
coincided with the appearance of flattened cells along the circumference of the
nerve. This sheath was similar to the developing perineurium of the human fetal
sural nerve (Ochoa, 1971), and defined an endoneurial space. The perineurial sheath
showed an immature configuration throughout the prenatal period. Mature features,
such as tight junctions (Gamble & Breathnach, 1965; Low, 1976), were first seen at
birth. The tight junctions have been ascribed an important role in the perineurial
barrier function (see Kristensson & Olsson, 1971). Their first appearance at birth
might then be accompanied by a change in perineurial permeability.
The occurrence of what seemed to be degenerative alterations in several un-

myelinated axons at 40-45 dpc suggests a developmental loss of axons in the inferior
alveolar nerve, as described in some other nerves (see Aguayo, Terry & Bray, 1973;
Sohal & Weidman, 1978; Mustafa & Gamble, 1979). However, on this point,
quantitative studies are necessary to exclude the possibility of artefact. During the
last 2 weeks before birth and the first 3 postnatal weeks, some of the larger myelinated
axons showed short and distorted or completely disintegrated myelin sheaths.
Similar observations in spinal roots of the cat and other mammals have been inter-
preted as a removal of some internodes of myelin from axons which are to become
large (Berthold, 1968, 1973). This would allow the remaining internodes to grow
more in length than the nerve trunk, which might influence conduction time (see
Berthold, 1978). Our findings show that a corresponding process takes place in the
developing inferior alveolar nerve. Features suggestive of a transfer of myelin frag-
ments from Schwann cells to associated macrophages indicate that endoneurial
macrophages may participate in myelin breakdown during developmental de-
myelination, as, for example, during Wallerian degeneration in the peripheral
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nervous system (see Allt, 1976). Four weeks after birth, the nodal-paranodal region
of large axons of the inferior alveolar nerve ( > 5 ,um) appeared qualitatively mature,
as defined by Berthold (1968, 1978). In developing feline spinal nerves, demyelina-
tion and nodalization is accompanied by a functional maturation. It was proposed
that the attainment of mature conduction properties is somehow related to the
qualitative structural maturation (see Skoglund, 1969; Berthold, 1978). If a similar
relation is valid for the inferior alveolar nerve, then the larger myelinated axons
would be functionally mature about 4 weeks after birth. With respect to its smaller
axons, separation and de novo myelination continued until 6-8 weeks postnatally.
At this time, the qualitative maturation of both large and small axons appeared to
be complete, although increase of axonal diameter proceeds for several months after
birth (Mohiuddin, 1951).
The shift from the primary to the permanent dentition takes place between

months 3 and 7 (Shapiro, 1930). Before shedding, the pulpal axons of primary teeth
degenerate (Bradlaw, 1936; Mohiuddin, 1950). Changes interpreted as terminal
degeneration have also been observed in the brain stem during and some time after
shedding of primary teeth (Westrum & Canfield, 1979). During this period, the
axons of the inferior alveolar nerve increased slowly in size and no unusual features
were seen. Consequently, axonal degeneration related to tooth shedding seems to be
limited to the terminal branches (cf. Mohiuddin, 1950).

In the oldest animals, some altered myelinated axons and occasional signs of
axonal degeneration and loss were found. A loss of neuronal perikarya and peri-
pheral axons in senescence has been described in various species (see Ochoa & Mair,
1969; Samorajski, 1974). It cannot be excluded that some axonal degeneration in the
old inferior alveolar nerve is secondary to neuron death. However, axonal atrophy
and adaxonal Schwann cell protrusions typically occur proximal to neurotomies and
in amputation neuromata (Aitken & Thomas, 1962; Morris, Hudson & Weddell,
1972; cf. Spencer & Thomas, 1974). The presence of similar changes in the ageing
inferior alveolar nerve might then be secondary to pathological alterations in the
dentition, partial tooth loss and pulpal involution, which is seen in old cats (Fried &
Hildebrand, unpublished observations). In addition, the old inferior alveolar nerve
showed unusually thick perineurial basement membranes (cf. Gamble & Eames,
1964). Pathological thickening of basement membranes of peripheral nerves has
been described in relation to Schwann cells and endothelial cells in diabetic neuro-
pathy (Thomas & Eliasson, 1975), and seems to occur along perineurial cells in
Fabry's disease (Fig. 67 in Bischoff, 1970).

In Figure 15, the maturation of the inferior alveolar nerve, discussed above, has
been summarized and correlated to the behavioural and dental maturation. The
inferior alveolar nerve first appears to attain functional significance about four weeks
after conception, when tactile stimuli anywhere on the head elicit a withdrawal
response (Windle & Griffin, 1931). At that time, there is a shift from a collective
ensheathment of all axons of the nerve by primitive sheath cells to ensheathment of
axonal compartments by individual immature Schwann cells. Establishment of the
sucking reflex (Windle & Griffin, 1931) coincides in time with initial myelination in
the nerve around 45 dpc. At birth, the kitten starts sucking, which demands an
efficient afferent link from the oral region. In the inferior alveolar nerve, myelination
has been in progress for at least 3 weeks, local demyelination of larger axons is
proceeding and small axons undergo primary ensheathment. During the first month,
the primary dentition partly erupts (Shapiro, 1930) and the kitten enters the weanling
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period (Hamilton & Carroll, 1977). Simultaneously, de novo myelination of small
axons continues, demyelination ceases, and nodalization of larger axons is com-
pleted. Eight weeks after birth, the primary dentition becomes fully developed
(Shapiro, 1930), the inferior alveolar nerve is qualitatively mature and the weanling
period has just ended (Hamilton & Carroll, 1977). The shift from the primary to the
permanent dentition 3-7 months postnatally does not elicit any changes in the
inferior alveolar nerve. The deterioration of the permanent dentition in old age is
accompanied by axonal and perineurial changes.

SUMMARY

The qualitative structural development of the inferior alveolar nerve was studied
by electron microscopy in 56 pre- and postnatal kittens and 21 young and old adult
cats. At 25 days post conception the nerve was composed of a bundle of small axons
enclosed by primitive sheath cells. Three weeks later myelination had been initiated.
Axons measuring 2-3 ,um underwent local demyelination from 2 weeks before to
3 weeks after birth. This was accompanied and followed by nodalization of larger
axons. A typical perineurium was first apparent in the newborn kitten. Six to eight
weeks postnatally, the nerve appeared qualitatively mature, although axonal growth
was far from completed. This coincides with achievement of a fully mature primary
dentition shortly after the weanling period. Apart from a continued size growth, no
changes were observed in the nerve during the transition from the primary to the
permanent dentition. In the inferior alveolar nerve of old cats, axonal and peri-
neurial changes co-existed with signs of dental attrition and pathology.

This study was supported by grants from the Swedish Medical Research Council
(Project No. 3761) and the Odontological Faculty, Karolinska Institutet. We wish
to thank Ms Pippi Lindqvist and Ms Lotta Larsen for expert technical assistance,
and Ms Marianne Rapp for secretarial aid.
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