
Citation: Zhang, W.; Zeng, W.; Chen,

H.; Liu, J.; Yan, H.; Zhang, K.; Tao, R.;

Siok, W.T.; Wang, N. STANet: A Novel

Spatio-Temporal Aggregation Network

for Depression Classification with

Small and Unbalanced FMRI Data.

Tomography 2024, 10, 1895–1914.

https://doi.org/10.3390/

tomography10120138

Academic Editor: Emilio Quaia

Received: 17 September 2024

Revised: 21 November 2024

Accepted: 26 November 2024

Published: 28 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

STANet: A Novel Spatio-Temporal Aggregation Network for
Depression Classification with Small and Unbalanced FMRI Data
Wei Zhang 1 , Weiming Zeng 1,*, Hongyu Chen 1 , Jie Liu 1, Hongjie Yan 2, Kaile Zhang 3, Ran Tao 3,
Wai Ting Siok 3 and Nizhuan Wang 3,*

1 Lab of Digital Image and Intelligent Computation, College of Information Engineering, Shanghai Maritime
University, Shanghai 201306, China; 202230310117@stu.shmtu.edu.cn (W.Z.);
202330310129@stu.shmtu.edu.cn (H.C.)

2 Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University,
Lianyungang 222002, China

3 Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, China;
ran.tao@polyu.edu.hk (R.T.)

* Correspondence: zengwm86@163.com (W.Z.); wangnizhuan1120@gmail.com (N.W.)

Abstract: Background: Early diagnosis of depression is crucial for effective treatment and suicide
prevention. Traditional methods rely on self-report questionnaires and clinical assessments, lacking
objective biomarkers. Combining functional magnetic resonance imaging (fMRI) with artificial
intelligence can enhance depression diagnosis using neuroimaging indicators, but depression-specific
fMRI datasets are often small and imbalanced, posing challenges for classification models. New
Method: We propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression
by integrating convolutional neural networks (CNN) and recurrent neural networks (RNN) to
capture both temporal and spatial features of brain activity. STANet comprises the following
steps: (1) Aggregate spatio-temporal information via independent component analysis (ICA).
(2) Utilize multi-scale deep convolution to capture detailed features. (3) Balance data using
the synthetic minority over-sampling technique (SMOTE) to generate new samples for minority
classes. (4) Employ the attention-Fourier gate recurrent unit (AFGRU) classifier to capture long-term
dependencies, with an adaptive weight assignment mechanism to enhance model generalization.
Results: STANet achieves superior depression diagnostic performance, with 82.38% accuracy
and a 90.72% AUC. The Spatio-Temporal Feature Aggregation module enhances classification by
capturing deeper features at multiple scales. The AFGRU classifier, with adaptive weights and
a stacked Gated Recurrent Unit (GRU), attains higher accuracy and AUC. SMOTE outperforms
other oversampling methods. Additionally, spatio-temporal aggregated features achieve better
performance compared to using only temporal or spatial features. Comparison with existing
methods: STANet significantly outperforms traditional classifiers, deep learning classifiers, and
functional connectivity-based classifiers. Conclusions: The successful performance of STANet
contributes to enhancing the diagnosis and treatment assessment of depression in clinical settings
on imbalanced and small fMRI.

Keywords: depression; fMRI; independent component analysis (ICA); GRU; synthetic minority
over-sampling technique (SMOTE); adaptive fusion weight; Fourier transform

1. Introduction
1.1. fMRI-Informed Depression Diagnosis

Depression is a global mental disorder that affects approximately 5% of the adult
population, with a higher prevalence among women than men and senior adults than
younger adults [1]. It is characterized by persistent low mood or reduced interest in activities,
impacting emotions, cognition, and health, and serving as a risk factor for suicide [2]. The
etiology of depression is multifactorial, encompassing genetic, environmental, psychological,
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and social factors. Depression can be categorized etiologically as endogenous or exogenous,
reflecting different pathological mechanisms. Despite significant progress in the diagnosis
and treatment of depression within psychiatry, its etiology and pathophysiology remain
controversial and debated. Experienced psychiatrists can identify a wide range of depressive
symptoms, including persistent sadness, loss of interest, changes in appetite and sleep,
fatigue, difficulty concentrating, and thoughts of death or suicide. However, diagnostic
criteria for depression vary across cultures and clinical practices, adding to the complexity
of diagnosis [3,4]. Misdiagnoses can result in the adoption of improper treatment methods
and the prescription of incorrect medications, worsening the depressive condition and
posing a threat to the health of patients. Thus, developing a more reliable and precise
diagnostic approach is essential and critical.

Neuroimaging studies in the past two decades have reported that patients with
depression show atypical default mode network activity as measured by resting-state
functional magnetic resonance imaging (rs-fMRI), and rs-fMRI measures are indicative
of treatment effectiveness. Integrating behavioral measures with brain measures using
a machine learning approach may provide better diagnosis and prognosis of depression,
enhancing our understanding of the neurobiological mechanisms of depression and aiding
in the accurate identification of depression and its subtypes [5,6]. Noman et al. [7]
introduced graph autoencoder (GAE) and graph convolutional networks (GCN) in fMRI,
learnt the embedding representation of the brain network using GAE, and identified
depression by the learnt embedding. Lee et al. [3] utilized functional connectivity (FC)
through a multispectral GCN and proposed a multispectral fusion framework for more
reliable identification of major depressive disorder (MDD). Zhang et al. [8] proposed a deep
residual contraction denoising network with channel-sharing soft thresholds for automatic
depression identification. Additionally, Chen et al. [9] predicted depression using the
amplitude of low-frequency (ALFF) and degree centrality (DC) of relevant brain regions,
pinpointing abnormalities and providing insights into the underlying neural mechanisms.

1.2. fMRI-Informed Feature Integration

For a given time series, statistical domain features include histogram, interquartile
range, mean absolute deviation, median absolute deviation, root mean square, standard
deviation, and variance. Temporal domain features often encompass autocorrelation,
centroid, mean absolute differences, distance, and entropy. Spectral domain features,
derived from Fast Fourier Transform (FFT) or wavelet transformation (WT), include
the FFT mean coefficient, wavelet absolute mean, wavelet standard deviation, wavelet
variance, spectral distance, spectral entropy, wavelet entropy, and wavelet energy. Detailed
expressions of these features are provided by Barandas et al. [10]. Considering the
spatio-temporal properties of fMRI signals, integrating statistical, temporal, spectral, and
spatial domain features simultaneously can significantly enhance depression diagnosis.
Independent component analysis (ICA) is a commonly used method in fMRI data analysis,
simultaneously extracting temporal and spatial features related to brain activity [11].
Moreover, methods such as amplitude of low frequency fluctuations (ALFF) [12], fractional
ALFF (fALFF) [13], and spectrum contrast mapping (SCM) [14] are designed to map the
spatial activity patterns in fMRI data through the spectral domain analysis. In recent
years, the deep-learning-based fMRI feature integration has made great progress. For
instance, Yan et al. [15] proposed a multi-scale recurrent neural network (RNN) model,
which enabled classification schizophrenia and healthy controls by using time courses
of fMRI-independent components directly [16]. Mao et al. [17] proposed an automatic
diagnostic method using rs-fMRI data with spatio-temporal deep learning models based
on granular computing. Liu et al. [18] proposed a spatial-temporal co-attention learning
(STCAL) model for diagnosing ASD and ADHD which modeled the intermodal interactions
of spatial and temporal signal patterns. Lee et al. [3] presented a multi-atlas fusion
method that incorporates early and late fusion in a unified framework addressing the
limitations that restricted their ability to capture the complex, multi-scale nature of the
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brain’s functional networks. Lim et al. [19] showed a unified deep attentive spatio-spectral-
temporal feature fusion framework to overcome the limitations of considering only
a limited number of modes, which made it difficult to explore class-distinct spectral
information of noise-related components.

1.3. Data Imbalance in fMRI-Based Classification Task

Data imbalance in machine learning arises when classes within a dataset are unevenly
distributed, leading to biased model performance favoring the majority class and resulting
in inaccurate predictions and misleading evaluation metrics for minority classes [20].
This challenge is particularly prevalent in neuroimaging studies, where data acquisition
issues, such as subject absence during fMRI sessions, contribute to small and unbalanced
sample sizes [16]. Various data augmentation techniques have been developed to address
data imbalances and enhance classification models by expanding and balancing the
dataset. Random oversampling, a straightforward approach involving the replication
of minority class samples, has demonstrated effectiveness in several disease diagnostic
applications [21]. However, its performance can be limited when applied indiscriminately
across all samples. To mitigate these limitations, the synthetic minority over-sampling
technique (SMOTE) was introduced, which synthesizes new minority class samples
through interpolation [16,22–24]. For instance, Borderline-SMOTE is a modification of the
classical SMOTE and is mainly used when the importance of the boundary samples is high
and confusing [25]. SMOTE Tomek is a hybrid sampling technique that combines SMOTE
with the Tomek Link removal method, which is suitable for datasets with significant noise
and ambiguous boundaries [26]. SVMSMOTE integrates a support vector machine (SVM)
with SMOTE to handle complex boundary structures and high-dimensional data [27].
Additionally, adaptive synthetic sampling (ADASYN) focuses on synthesizing minority
class samples near decision boundaries, thereby enhancing model robustness [28]. These
methods, particularly ADASYN and SMOTE, are widely applied in neuroimaging to
improve minority class performance and overall model efficacy [16,23,24,29,30].

1.4. The Proposed Method

Based on the aforementioned considerations regarding intelligent depression diagnosis,
we propose a novel Spatio-Temporal Aggregation Network (STANet) aimed at significantly
improving the accuracy of depression diagnosis by addressing two key limitations in
current diagnostic models: (1) The challenge posed by small and unbalanced fMRI samples;
and (2) Inadequate integration of spatio-temporal features hindering effective fusion for
depression diagnosis.

The remainder of this paper is organized as follows: Section 2 presents the dataset
utilized, the preprocessing pipeline applied, and a detailed description of our proposed
STANet. Section 3 includes a comparative analysis of performance against existing methods
and ablation studies. Finally, Section 4 discusses the implications of our findings, including
the advantages and limitations of STANet, in Discussion and Conclusion.

2. Materials and Methods
2.1. Dataset

The dataset was sourced from OpenNeuro (https://openneuro.org/) under accession
number DS002748 [31]. It comprises 51 adult participants (13 Males and 38 Females)
diagnosed with depression and 21 healthy controls (6 Males and 15 Females). Detailed
demographic characteristics of the participants can be found in Bezmaternykh et al. [31].
Each session included 100 dynamic scans with 25 slices per brain volume. The resting-state
fMRI scanning was conducted at the International Tomography Center, Novosibirsk, using
a 3 T Ingenia scanner (Philips, Amsterdam, The Netherlands). Functional T2∗-weighted echo
planar imaging scans were acquired using a fat suppression mode with voxel dimensions
of 2 × 2 × 5 mm, a repetition time (TR) of 2500 ms, and an echo time (TE) of 35 ms.
Participants were instructed to lie still with their eyes closed for 6 min. They gave their

https://openneuro.org/


Tomography 2024, 10 1898

informed consent in accordance with the Helsinki Declaration and the ethics board of the
Research Institute of Molecular Biology and Biophysics in Novosibirsk.

2.2. Pipeline of Data Processing
2.2.1. Pre-Processing

As illustrated in Figure 1, the data processing pipeline in this study comprises three
sequential modules: Pre-processing, spatio-temporal feature aggregation, and classification.
The pre-processing module is designed to preprocess the fMRI data following the standard
pipeline using SPM12 software [32]. The initial five volumes of each scan were discarded
to ensure data stability and temporal differences between slices within a volume were
adjusted using the middlemost slice as the reference time point. No participant’s scan
had head movements exceeding 3 mm or head rotations exceeding 3◦. All brain data
were normalized to the Montreal Neurological Institute (MNI) space and smoothed with
a Gaussian kernel of 8 mm.
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Figure 1. The flow diagram distinguishing depression patients from healthy controls. n: number
of subjects; T: number of timepoints; N: number of source signals; V: voxel number of each spatial
component; R: number of RSNs. (a) Data preprocessing. (b) Spatio-temporal feature aggregation:
Integration of time series features and spatial features. (c) Classification: Randomly divide the data
into testing and training sets and use SMOTE for training sets, comparing the AFGRU Classifier with
traditional machine learning methods (such as Adaboost, Bayes, Decision Tree, etc.) or previous work.
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2.2.2. Model Architecture

In the Spatio-Temporal Feature Aggregation (STFA) module, we initially performed
ICA on the preprocessed fMRI data to extract time courses and corresponding spatial
maps. This was followed by multi-scale 2D convolution to form the fusion feature of
spatio-temporal representation for each subject. Specifically, the GIFT tool [33] was
employed to conduct Group ICA [34]. To obtain more stable independent components
(ICs), we utilized ICASSO [35] for the analysis, ultimately selecting 17 ICs based on the
optimal estimation of order number [36]. Furthermore, multiple linear regression was
applied to the time courses and spatial map features obtained by the ICA to determine the
spatial similarity with the resting-state network (RSN) atlas [37].

With regard to the classification module, the fusion features of spatio-temporal
representation generated by the STFA module for each subject are fed into various classifiers
to perform the depression classification task. Specifically, in the training stage, SMOTE is
applied to address the imbalance in fMRI samples.

2.3. STANet

The detailed structure of the proposed STANet is illustrated in Figure 2. It primarily
comprises three components: STFA, SMOTE, and the AFGRU classifier. The STFA module
is responsible for generating the fusion features of spatio-temporal representation. SMOTE
is employed to address the issue of data imbalance. The AFGRU classifier is designed to
enhance classification performance on the small-sized depression dataset.
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Figure 2. The detailed structure of STANet. (a) Spatio-Temporal Feature Aggregation: The pre-processed
data undergoes ICA to extract the independent component (IC) time courses and IC spatial maps,
and then the resulting spatial map features are subjected to multiple linear regression, pooled, and
concatenated with the time series before being fed into the next module. (b) Oversampling: The
data are randomly divided into training and testing sets. The SMOTE is applied to the training set
to balance the dataset. (c) AFGRU Classifier: The extracted features are input into the Multi-FGRU.
Features obtained at each stage are assigned adaptive weights, and classification performance is
evaluated using a 10-fold cross-validation strategy.
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2.3.1. STFA Module

STFA intelligently integrates multi-scale spatio-temporal information. Specifically,
STANet obtains time series and spatial features through ICA, then integrates the spatial
features with RSN for multiple linear regression, followed by a multi-scale spatio-temporal
integration. This selective mechanism allows for a more targeted and efficient use of
spatio-temporal features, potentially leading to better model performance.

Independent Component Analysis

Independent Component Analysis (ICA) is a widely-used technique to extract
independent features from high dimensional fMRI data. The core principle of ICA is to
decompose the observed mixed data into statistically and spatially independent components
and their associated time courses [11,38–42]. Let X denote a single subject’s fMRI data
with T time points and V voxels within brain. Here, S is an N × V matrix containing N
source signals, which are assumed unobservable, mutually statistically independent, and
non-Gaussian. Each row represents an independent component (IC). Furthermore, A is
a T × N unknown mixing matrix that contains the associated time courses of N source
signals. Consequently, the ICA model can be represented as:

X = AS. (1)

The objective of solving ICA is to estimate an N × T matrix W, such that Y is a good
approximation of the source signals S by the following formula:

Y = WX. (2)

Multiple Linear Regression

To capture the implicit relation between ICs Y generated by ICA in Formula (2), the
ICs were then mapped to a RSN template [37] to perform multiple linear regression. This
process results in a matrix representing spatial similarity features. The multiple linear
regression formula can be expressed as:

Q = Yβ, (3)

where Y represents the estimated source signals, Q denotes the spatial similarity matrix
between the estimated source signals and the RSN template with dimensions N × R, and β
is the regression coefficient matrix with dimensions V × R.

Multi-Scale Convolution Layer

CNNs are highly effective at processing image data, particularly for extracting spatial
features. Given the spatial nature of fMRI data, we utilized CNNs to accurately identify
and extract key regions of brain activity.

To integrate local information, we employed multi-scale 2D convolutional layers using
five different scales of 2D convolution kernels. This approach facilitates comprehensive
feature extraction and efficient utilization of the available space for information extraction.
We utilized convolutional kernels of varying sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11) to
ensure diversity and comprehensiveness. To address the potential presence of negative
values during convolution, we incorporated a ReLU layer to maintain stability and
effectiveness in parameter learning. Subsequently, a 6 × 6 max-pooling layer was applied
for downsampling along the time dimension, resulting in feature representations of
uniform size for both time courses and spatial components. To further enhance the feature
representation, we concatenated the features obtained from the convolution kernels at
each scale for both time courses and spatial components. This final feature representation,
achieved through the concatenation layer, provides richer and more precise inputs for
subsequent oversampling methods.
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2.3.2. SMOTE

Due to the complexity and specificity of the fMRI, obtaining a sufficiently large number
of subjects is often challenging, resulting in small and unbalanced datasets. Directly feeding
such data into the classifier can cause it to overlearn from the majority class, skewing the
test results. To mitigate this issue, we employ SMOTE to process the training dataset,
synthesizing minority class data to achieve a balanced dataset. The balanced training set
is then used to train the classifiers. We opted to employ SMOTE primarily based on its
ability to generate new synthetic samples by interpolating between minority class instances
without introducing noise, effectively addressing the issue of data imbalance. Compared
to other methods, SMOTE preserves the distribution characteristics of the dataset, thus
reducing the risk of overfitting. Furthermore, the widespread use and robust performance
of SMOTE in numerous studies [16,23,24] underscore its effectiveness and reliability in
dealing with imbalanced datasets. Consequently, in this study, we utilize SMOTE and
achieved optimal results. Figure 3 illustrates the data distribution before and after SMOTE
processing, which successfully generates an approximately balanced training dataset.
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2.3.3. AFGRU Classifier

In the realm of time-series prediction and sequence modeling, selecting between LSTM
and GRU architectures is crucial [43]. Both are recurrent neural network variants designed
to address the vanishing gradient problem and capture long-term dependencies, yet they
possess distinct characteristics. The AFGRU classifier, which integrates stacked GRUs with
Fourier transform capabilities, exemplifies this comparison:

LSTM networks are renowned for their robustness in capturing long-term dependencies
due to their complex gate structure. As a more recent innovation, GRU is simpler and
more computationally efficient than LSTM. This streamlined structure allows GRUs to
train faster and often requires fewer parameters, which is advantageous for datasets with
limited size or computational resources. In the case of the AFGRU classifier, the choice
of GRU is driven by the need for a more computationally efficient model that can still
capture complex temporal patterns. The incorporation of Fourier transform within the
GRU framework enables the AFGRU Classifier to analyze both the time and frequency
domains. Additionally, the adaptive weighting mechanism applied to the outputs of the
stacked GRUs is a key feature of the AFGRU Classifier. This mechanism allows the network
to dynamically allocate weights to the features extracted at each time step, fine-tuning the
importance of different temporal intervals in the prediction process. This adaptability is
particularly beneficial in scenarios where the significance of time intervals can vary, as
is often the case in real-world time-series data. Consequently, the AFGRU Classifier was
deemed the most suitable for our study.
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Multi-FGRU

Considering the temporal features of fMRI in the latent space, we developed the AFGRU
Classifier. RNNs capture temporal correlations and incorporate historical information,
which is essential for fMRI data analysis [43]. We employed GRU [44], a robust mechanism
within RNNs. By stacking multiple GRU layers, we effectively address the issues of gradient
explosion and gradient vanishing, thereby enhancing the model’s representation and
learning capabilities to capture higher-level dynamic information. The integration of GRU
into the data processing flow allows for controlled information accumulation [45], including
selective addition of new information and selective forgetting of previously accumulated
information, with the hidden layer size set to 200. To further augment the model’s ability
to process complex neural signals, we incorporated the fast Fourier transform (FFT) into
the GRU model [46]. The FFT converts time-domain signals into frequency-domain signals,
enabling the extraction and analysis of characteristic information from different frequency
components. The combination of frequency-domain features and time-domain features
enables the model to more comprehensively understand and model the complex activity
patterns of the brain. Following the FGRU layer, we introduce an attention mechanism
layer to help the model focus on the most relevant parts of the input sequence. During
data processing, the information processed by the FGRU layer may gradually degrade.
However, the introduction of the attention mechanism enables us to better capture the
important features of different parts of the sequence, thereby reducing information loss.
This enhancement allows the model to more effectively handle long sequential data and
capture long-distance dependencies within the sequences.

Firstly, the proposed FGRU involves applying the FFT operation to the input data
as follows:

x f f t = Real(FFT(xt)), (4)

where xt denotes current moment input information, FFT(·) represents FFT operation, and
Real(·) means the extraction of the real part. Then, the GRU involves three main gating
processes: update gate, reset gate, and update the hidden state. The GRU unit update gate
and reset gate are expressed as:

zt = σ(Wz·
[

ht−1, x f f t

])
, (5)

rt = σ
(

Wr·
[

ht−1, x f f t

])
, (6)

where Wz denotes the weight matrix of the update gate, Wr represents the weight matrix of
the reset gate, ht−1 is hidden state at the previous moment, σ denotes the sigmoid function,
rt denotes the reset gate, and zt is the update gate. Meanwhile, the candidate hidden state
and the final hidden state are computed as:

∼
ht = tanh

(
W·

[
rt ∗ ht−1, x f f t

])
, (7)

ht = (1 − zt) ∗ ht−1 + zt ∗
∼
ht, (8)

where W denotes the weight matrix of the hidden layer, ht is the hidden state passed to the

next moment,
∼
ht is the candidate hidden state, and tanh is the hyperbolic tangent function.

These formulas describe the computational process for a single FGRU. In the AFGRU
classifier, each FGRU transforms ht from the previous step to generate deeper feature

representation. In calculating ht,
∼
ht is used to balance retained and updated information.

Combined with zt, the computation of ht retains old information while integrating new
information, allowing the model to make appropriate updates and adjustments as it
processes sequence data. Through these gating mechanisms, the FGRU selectively passes
information to the next time step, learning long-term dependencies more efficiently. The
AFGRU classifier leverages the strengths of both frequency domain transformations and
RNNs to identify and preserve intricate temporal patterns, enabling the model to learn
complex underlying time series patterns and features.
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Adaptive Weighting

Adaptive weighting is extensively used in signal processing, machine learning, image
processing, and other fields. It helps models better adapt to data characteristics during
training, thereby improving accuracy and generalization. In this study, initial weights are
set randomly, and 500 rounds of weight updates are performed. Adaptive weights are
assigned to X1, X2, X3, X4, X5, and X6 in the AFGRU Classifier (Figure 2) to enhance the
model’s generalization ability by treating each data step as part of feature processing. The
process of adaptive weighting is detailed in Algorithm 1.

Algorithm 1: Adaptive Weighting

Input: Sample data (xi, yi), sample data weights wi, training iteration number Li(0 < i ≤ 6)
Output: Optimal model
Initialization: Set wi to Gaussian distribution random number and ∑6

i=1 wi = 1
Start:

For i from 0 to Li:
#Train the model using the current weights
model = Train ((xi, yi), wi)
#Calculate the loss function
Loss = MSE (model, (xi, yi))
#Update sample weights to minimize the loss function

For j = 1 to 6:
Prediction value = model. predict (xi)
Truth value = yi
wi = wi*exp (−lr * (Prediction value—Truth value))

End for
#Normalize sample weights
For k = 1 to 6:

wi = wi/∑6
i=1 wi

End for
End for

Return

2.4. Performance Metrics

We employ four metrics—accuracy (ACC), F1-score, recall (Recall), and area under
the curve (AUC)—to evaluate the performance of STANet in classifying depression and
normal controls. The corresponding formulations are defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (9)

SEN =
TP

TP + FN
, PPV =

TP
TP + FP

, (10)

F1 − score = 2 ∗ SEN × PPV
SEN + PPV

, (11)

Recall =
TP

TP + FN
(12)

where TP, TN, FP, FN, and PPV stand for true positive, true negative, false positive, false
negative, and positive predictive value, respectively.

In clinical research and decision-making, evaluating key performance metrics for
diagnostic tests or predictive models is crucial for optimizing patient care. The recall
rate is essential for ensuring that patients who need treatment are identified, thereby
reducing the risk of severe outcomes. A high recall rate ensures timely intervention for
most patients requiring treatment. The F1-score offers a balanced assessment by combining
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recall and precision, aiding clinicians in achieving an appropriate balance in diagnostic
and treatment decisions. The AUC reflects the model’s ability to distinguish between
patients and non-patients, with a high AUC indicating greater reliability in clinical decision
support. This facilitates the development of more precise treatment plans. Therefore,
a comprehensive consideration of these metrics is vital for enhancing the accuracy of
clinical diagnoses and the efficacy of treatments.

3. Results
3.1. Experimental Setting

We employ a ten-fold cross-validation strategy at the subject level to evaluate the
performance of STANet. Specifically, all the subjects are evenly divided into ten sets. One
set is used as the test set, while the remaining nine sets are used for training. This process
is repeated ten times, allowing each set to be used for testing in turn. In Figure 1, the
pre-processing excludes the first five time points, leaving 95. The ICs are processed by GIFT
to determine the optimal number of 17 automatically. For the spatial components obtained
after ICA processing, multiple linear regression is performed with the RSN template [37],
resulting in spatial features of 90 × 17.

The training and classification of the classifiers in this study were conducted on
an Nvidia GeForce GTX3060 GPU with 12GB RAM, using classification models written in
Python 3.8 on a Windows 10 environment. During STANet training, the MSE loss function
was used with a learning rate empirically set to 0.01.

3.2. Performance Assessment of STFA Module in STANet
3.2.1. Performance Comparison Without STFA Module

We compared STANet with five traditional popular classifiers (decision tree (DT), SVM,
random forest (RF), Adaboost, logistic regression (LR)) and six RNN-based deep learning
models, all tested using ten-fold cross-validation. Among conventional classifiers, SVM performs
the best, with a classification accuracy of 66.61%. In contrast, STANet achieved a classification
accuracy of 82.38% and an AUC of 90.72%, significantly outperforming Adaboost, RF, LR,
DT, and SVM. Comparisons with other GRU-based RNN structures further verified the
advantages of the proposed model, showing improvements in classification accuracy.

Table 1 demonstrates the classification performance of the six methods using time
courses and spatial components of processed independent components as training data,
with SMOTE applied beforehand. Notably, STANet achieved a classification accuracy
of 82.38%, while traditional classifiers like SVM and RF had accuracies of around 65%,
significantly lower than STANet. The performance of individual GRU or LSTM models was
suboptimal. Combining a GRU layer with a 2D convolutional layer enhanced classification
performance. Therefore, our proposed STANet leverages the strengths of CNN and RNN
to learn both temporal and spatial features, and incorporates adaptive weights to improve
generalization, achieving the best performance.

Table 1. Classification performance comparison without the STFA module among competing methods.

Methods Accuracy F1-Score Recall AUC

Adaboost 51.25% 63.47% 62.33% 43.67%
DT 52.86% 64.74% 64.67% 44.83%

GRU 52.68% 60.19% 55.33% 45.50%
LSTM 47.32% 55.41% 51.33% 48.17%

LG 65.54% 78.69% 92.33% 51.33%
RF 63.75% 77.20% 90.00% 51.17%

SVM 66.61% 79.54% 94.00% 50.33%
STANet 82.38% 88.18% 82.38% 90.72%
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3.2.2. Performance Comparison with STFA Module

Comparison of Tables 1 and 2 reveals that data processed through STFA, followed by
classification using traditional classifiers, achieve higher ACC and AUC. This highlights
the importance of multi-scale convolution in data processing. The improved performance
metrics underscore STFA’s ability to effectively capture diverse features and patterns,
leading to more accurate and reliable classification outcomes. Transformers was added for
comparison, but it did not work well and made the model too bloated.

Table 2. Classification performance comparison with the STFA module among competing methods.

Method Accuracy F1-Score Recall AUC

STFA-Adaboost 77.86% 83.31% 82.67% 74.67%
STFA-DT 76.61% 82.39% 82.67% 72.17%

STFA-GRU 63.93% 73.03% 74.67% 52.83%
STFA-LSTM 43.04% 41.82% 44.00% 49.67%

STFA-LG 75.18% 83.30% 88.33% 75.83%
STFA-SVM 67.14% 72.22% 82.17% 28.42%
STFA-RF 68.21% 77.45% 80.67% 79.67%

STFA-Transformer 72.38% 82.21% 75.86% 83.72%
STANet 82.38% 88.18% 82.38% 90.72%

3.3. Performance Assessment of AFGRU Classifier in STANet

To verify the advantages of the AFGRU Classifier in STANet, we compared it with other
GRU-based RNN models. As shown in Table 3, the single LSTM achieved an accuracy of only
43%, while the single GRU reached 63%, indicating that GRU outperforms LSTM in both
ACC and AUC, whereas the stacked GRU model showed a clear advantage. After processing
the stacked GRU modules, we introduced an attention mechanism and assigned adaptive
weights to enhance the model generalization. Simply stacking GRU layers improved
accuracy to 66.67%. Introducing Fourier transforms and processing the frequency domain
of the data, the STFA-AtFGRU model increased accuracy to 73.49%, and the STFA-AdFGRU
model achieved 76.34%. Comprehensive processing with STFA-AFGRU further increased
ACC to 82.38% and AUC to 90.72%. Table 3 demonstrates that incorporating Fourier
transforms into GRU significantly improves ACC and AUC by leveraging frequency domain
information, enriching the model’s ability to capture complex temporal dependencies. The
AFGRU classifier’s superior performance underscores the benefit of integrating Fourier
transforms for advanced sequence modeling.

Table 3. Ablation performance comparison of STANet with regard to AFGRU classifier.

Methods Accuracy F1-Score Recall AUC

STFA-sLSTM 43.04% 41.82% 44.00% 49.67%
STFA-sGRU 63.93% 73.03% 74.67% 52.83%
STFA-dGRU 66.67% 71.54% 69.76% 77.72%

STFA-AtFGRU 73.49% 81.26% 82.33% 86.33%
STFA-AdFGRU 76.34% 84.03% 79.17% 87.11%
STFA(s)-AFGRU 77.78% 85.19% 80.40% 74.78%

STFA-AGRU 79.52% 86.24% 81.81% 89.72%
STANet(t) 66.67% 77.76% 69.81% 46.50%
STANet(s) 73.81% 82.84% 77.67% 81.44%

STANet 82.38% 88.18% 82.38% 90.72%
Notes: STFA: Spatio-temporal feature aggregation. STFA(s): Spatio-temporal feature aggregation (single-CNN),
is only convolutional kernel is 7 × 7 convolution. sLSTM: single-LSTM, only one layer of LSTM is used for
classification after the convolutional layer. sGRU: single-GRU, only one layer of GRU is used for classification.
dGRU: double-GRU, double layers of GRU are used for classification. AtFGRU: AFGRU classifier without
adaptive mechanism layer. AdFGRU: AFGRU classifier without attention mechanism layer. AGRU: AFGRU
classifier without Fourier transform. STANet(t) is STANet with only temporal information as input. STANet(s) is
STANet with only spatial information as input.
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In terms of convolutional layers, multiple scales are superior to single convolution,
as they capture richer data. Our proposed STANet assigns adaptive weights to data from
the GRU module, achieving optimal performance. This co-training approach enhances
convolutional visual representations and temporal dynamics, leading to better results.

By comparing Tables 2 and 3, it can be seen that deep learning can reach a higher accuracy
compared to traditional classification models, and it also confirms that the combination of
CNN and RNN can obtain a higher performance for classification of fMRI data.

STANet(t) and STANet(s) illustrate the importance of input type. Our model, which
combines time series and spatial regression inputs, significantly outperforms models using
either input alone. This synergy enhances the model’s overall accuracy and robustness.

3.4. Oversampling Strategy Impact on STANet

To compare the effects of different data balancing methods on classification performance,
we used six methods: Random oversampling, SMOTE, ADASYN, borderline-SMOTE,
SMOTE Tomek and SVMSMOTE. The classification results, shown in Table 4, indicate
that SMOTE significantly outperforms the other methods, achieving the highest AUC.
This suggests that the data generated by SMOTE is more consistent with the original data
distribution than the other methods.

Table 4. Performance comparison among different oversampling strategies adopted in STANet.

Method Accuracy F1-Score Recall AUC

Random Oversampling 76.67% 84.53% 78.38% 81.06%
SMOTE 82.38% 88.18% 82.38% 90.72%

ADASYN 75. 24% 82. 04% 85.14% 86.39%
Borderline-SMOTE 78.10% 85.75% 79.52% 85.39%

SMOTE Tomek 74.92% 83.58% 79.52% 88.06%
SVMSMOTE 72.38% 81.56% 75.10% 80.00%

3.5. Order Number Impact on STANet

To compare the effect of different numbers of ICs on classification performance, we
manually set the number of ICs to 15, 21, 24, and 27, with 17 as the best estimated number for
comparison. The classification results, shown in Table 5, indicate that the best performance
and highest AUC are achieved when the number of ICs is set to the best estimated value.

Table 5. Classification performance of STANet under different order numbers in ICA decomposition.

Number of ICs Accuracy F1-Score Recall AUC

15 72.38% 82.62% 74.81% 63.78%
17 (estimated) 82.38% 88.18% 82.38% 90.72%

21 68.10% 80.34% 69.76% 63.33%
24 63.81% 76.18% 69.00% 60.00%
27 69.52% 81.15% 73.71% 66.61%

Notes: Figures A1–A5 display the spatial maps obtained by ICA decomposition with varying order numbers.
Order number 17 is automatically estimated by GIFT v3.0b software.

3.6. Comparison with Other Competing Methods

As shown in Table 6, the proposed STANet significantly outperforms other state-of-the-art
models, suggesting that our model has the potential to aid in the diagnosis of depression.
Both Convolution-GRU [16] and Auto-ASD-Network [23] were chosen to balance the
dataset using SMOTE, and Co-Teaching Learning [47] has also been effective for fMRI-based
diagnosis of depression. Models like MsRNN [15], Spectral-GNN [3], and wck-CNN [48]
achieved only about 70% accuracy, indicating that STANet has superior performance
on the imbalanced depression dataset. In the realm of spatio-temporal modeling, while
models such as STCAL [18] and STGCN [49] have their own merits, STANet also has
demonstrated certain merits. The AFGRU classifier as part of the STANet dynamically
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adjusts the contribution of each layer or model. This adaptive mechanism enables the
model to focus more intently on salient information, thereby enhancing its ability to capture
and balance both long-term and short-term dependencies.

Table 6. Classification performance comparison among different competing models.

Method Input Accuracy F1-Score Recall

Convolution-GRU Time Courses 65.24% 77.58% 69.24%
Auto-ASD-Network Time Courses 75.24% 83.67% 79.57%

MsRNN Time Courses 73.81% 82.72% 76.48%
Co-Teaching Learning FC Matrix 70.95% 79.40% 79.19%

Spectral-GNN FC Matrix 69.59% 70.07% 68.99%
wck-CNN FC Matrix 63.04% 59.84% 58.69%

STCAL Spatio-Temporal 76.67% 84.75% 79.19%
STANet Spatio-Temporal 82.38% 88.18% 82.38%

In 2022, Dai et al. [50] and Chen et al. [9] trained and validated their models using the
same dataset, achieving an accuracy of 68.9% and an AUC of 89.4%. These results indicate
that STANet significantly outperformed other studies in terms of performance.

4. Discussion
4.1. Performance Analysis

For a long time, the diagnosis of depression has primarily relied on a comprehensive
assessment of clinical symptoms. Recently, numerous studies have attempted to identify
stable fMRI-based biomarkers using machine learning techniques. In this study, to further
diagnose depression, we employed the ICA method to extract independent components.
The resulting time courses and spatial components were integrated using STFA. We then
applied the SMOTE method to balance the training set by adjusting the number of minority
samples. The AFGRU classifier was utilized to extract potential information from the
temporal dimension of the data. Finally, adaptive weighting was employed to enhance the
model’s ability to handle new samples. This approach achieved an accuracy of 82.38% and
an AUC of 90.72%, representing a 5% improvement in accuracy compared to traditional
methods. These results indicate a significant enhancement in the predictive discrimination
ability of deep learning in neuroimaging.

In this study, we employed traditional classifiers such as SVM, DT, RF, and LG.
However, the results indicate that these traditional classifiers performed poorly. This
may be attributed to the high feature dimensions and strong nonlinearity present in the
data, which adversely affect classification performance. In contrast, classifiers such as SVM
and LG are essentially linear classifiers with stringent data requirements. Compared to
other deep learning methods, it further demonstrated the superior performance of STANet.
Additionally, the FC matrix [51] was used as an input for classification in the neuroimaging
field, as shown in Table A1. The results clearly indicate that the classification performance
using the FC matrix is inferior to that obtained using ICs as input.

4.2. Diagnostic Analysis of Depression

Several studies have shown that the diagnosis of depression is related to the frontal
lobe [52], parietal lobe, temporal hippocampus, and amygdala [51], among others. Frontal
lobe trauma may lead to executive function deficits, decision-making difficulties, and
difficulties in emotion regulation; the temporal and parietal lobes have been associated with
memory problems, language deficits, and difficulties in spatial perception; the amygdala
and the hippocampus [53] are closely linked functionally and work together to process
and remember emotionally relevant information. Similar results were observed in the ICA
results of fMRI in this study, which also proves that ICA is a good tool for studying brain
patterns. From previous studies, we can learn indirectly through classifiers or statistical
methods, whereas ICA provides us with the opportunity to directly study the independent
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components of brain activity in combination with classification methods. In terms of
the proposed STANet method, it may be beneficial in identifying brain network features
associated with different subtypes of depression, revealing neurobiological differences
between these subtypes, and enhancing clinical diagnostic accuracy. By objectively measuring
biomarkers of brain activities, this method likely provides quantitative indicators for
diagnosis and treatment evaluation. This helps monitor disease progression and treatment
effects, offering a scientific basis for treatment adjustment.

4.3. Limitation and Future Work

Regarding the proposed STANet, specific values are not assigned to the hidden states
of each GRU, which likely enhances performance by incorporating a weighted mechanism
within the GRU in the future. However, we recognize that the current tools may not be
readily accessible to clinicians. To address this gap, we are actively implementing a dedicated
toolbox tailored to the requirements of clinicians or psychologists, which will be accessible
publicly in future. The homogeneity and heterogeneity of the diagnostic structures were not
analyzed in depth in this study, potentially affecting the generalizability and objectivity of
the results. Future studies should consider these factors to enhance the robustness of the
assessment. Furthermore, structural brain imaging plays a pivotal role in depression research,
uncovering critical anatomical alterations which are associated with disease symptoms and
cognitive impairments [54–56]. In future work, we aim to integrate structural MRI with
fMRI, providing a more comprehensive set of biomarkers for the diagnosis and treatment
of depression. Meanwhile, we will address issues such as sample size, population diversity,
and fMRI data biases by establishing a multi-center collaboration project. This initiative will
highlight the impact of these factors on the generalizability and performance of our model.

5. Conclusions

In this study, we proposed STANet for diagnosing depressive disorder, integrating
CNN and RNN to capture both temporal and spatial features of brain activity, which includes
spatio-temporal feature aggregation, multi-scale deep convolution, data balancing with
SMOTE, and the AFGRU classifier with an assignment of adaptive weights. Experimental
results demonstrate that STANet achieves superior diagnostic performance and outperforms
traditional classifiers, deep learning classifiers, and functional connectivity-based classifiers.
This approach provides a robust framework for leveraging fMRI and artificial intelligence
to improve the accuracy and reliability of depression diagnosis. Our diagnostic approach
is expected to improve the recognition rate of depression based on brain fMRI scanning,
thereby facilitating timely treatment and improving patient prognosis. Additionally, by
optimizing the diagnostic process, we can reduce misdiagnoses and missed diagnoses,
thereby improving the effective use of medical resources.
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Appendix A. Traditional Classifiers Based on the FC Matrix

Considering that the functional connectivity (FC) matrix is often used as an input
for a classification task, we obtained the FC matrix of the subjects based on the AAL116
template [57] for performance comparison. Given that the FC matrix is not time series
data, we selected classical classifiers, all trained using ten-fold cross-validation. As shown
in Table A1, Bayes achieved the highest classification accuracy of 63.75%. The AUC
only reached 48.33%, slightly lower than 55.00% AUC of DT, but with more balanced
performance. This suggests that the traditional classifiers represented by SVM and Bayes
are more advantageous in the classification of the FC matrix. However, the accuracy and
AUC of traditional classifiers did not exceed 60%. In contrast, the deep learning model
demonstrated superior classification performance in this study, while most traditional
classifiers performed poorly. This indicates that the deep learning model is more suitable
for the classification task in this study compared to traditional classification models.

Table A1. Classification performance comparison among traditional classifiers based on the FC matrix.

Methods Accuracy F1-Score Recall AUC

Adaboost 52.50% 61.43% 59.00% 48.67%
Bayes 63.75% 76.12% 84.33% 48.33%

DT 59.46% 66.81% 66.67% 55.00%
RF 62.14% 75.11% 84.00% 40.33%
LG 51.25% 65.12% 68.33% 32.00%

SVM 60.89% 73.92% 65.65% 47.17%
Notes: The Pearson correlation coefficients between each pair of brain regions were calculated using the AAL116
template, resulting in a functional connectivity matrix as input for this dataset.

Appendix B. Results of Group ICA

Tomography 2024, 10, FOR PEER REVIEW 16 
 

 

Table A1. Classification performance comparison among traditional classifiers based on the FC 
matrix. 

Methods Accuracy F1-Score Recall AUC 
Adaboost 52.50% 61.43% 59.00% 48.67% 

Bayes 63.75% 76.12% 84.33% 48.33% 
DT 59.46% 66.81% 66.67% 55.00% 
RF 62.14% 75.11% 84.00% 40.33% 
LG 51.25% 65.12% 68.33% 32.00% 

SVM 60.89% 73.92% 65.65% 47.17% 
Notes: The Pearson correlation coefficients between each pair of brain regions were calculated using 
the AAL116 template, resulting in a functional connectivity matrix as input for this dataset. 

Appendix B. Results of Group ICA 

 
Figure A1. Results of spatial maps after group ICA with order number equal to 15. Figure A1. Results of spatial maps after group ICA with order number equal to 15.

https://openneuro.org/


Tomography 2024, 10 1910Tomography 2024, 10, FOR PEER REVIEW 17 
 

 

 
Figure A2. Results of spatial maps after group ICA with estimated order number equal to 17. Figure A2. Results of spatial maps after group ICA with estimated order number equal to 17.

Tomography 2024, 10, FOR PEER REVIEW 18 
 

 

 
Figure A3. Results of spatial maps after group ICA with order number equal to 21. 

Figure A3. Results of spatial maps after group ICA with order number equal to 21.



Tomography 2024, 10 1911
Tomography 2024, 10, FOR PEER REVIEW 19 
 

 

 
Figure A4. Results of spatial maps after group ICA with order number equal to 24. Figure A4. Results of spatial maps after group ICA with order number equal to 24.

Tomography 2024, 10, FOR PEER REVIEW 20 
 

 

 
Figure A5. Results of spatial maps after group ICA with order number equal to 27. 

References 
1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and 

territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. 

Figure A5. Cont.



Tomography 2024, 10 1912

Tomography 2024, 10, FOR PEER REVIEW 20 
 

 

 
Figure A5. Results of spatial maps after group ICA with order number equal to 27. 

References 
1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and 

territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. 

Figure A5. Results of spatial maps after group ICA with order number equal to 27.

References
1. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and

territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150.
[CrossRef]

2. Hatami, A.; Ranjbar, A.; Azizi, S. Utilizing fMRI and Deep Learning for the Detection of Major Depressive Disorder: A MobileNet
V2 Approach. In Proceedings of the 2024 International Congress on Human-Computer Interaction, Optimization and Robotic
Applications (HORA), Istanbul, Turkey, 23–25 May 2024; pp. 1–5.

3. Lee, D.J.; Shin, D.H.; Son, Y.H.; Han, J.W.; Oh, J.H.; Kim, D.H.; Jeong, J.H.; Kam, T.E. Spectral Graph Neural Network-Based
Multi-Atlas Brain Network Fusion for Major Depressive Disorder Diagnosis. IEEE J. Biomed. Health 2024, 28, 2967–2978. [CrossRef]
[PubMed]

4. Sen, B.; Cullen, K.R.; Parhi, K.K. Classification of Adolescent Major Depressive Disorder via Static and Dynamic Connectivity.
IEEE J. Biomed. Health Inf. 2021, 25, 2604–2614. [CrossRef]

5. Gordon, E.M.; Chauvin, R.J.; Van, A.N.; Rajesh, A.; Nielsen, A.; Newbold, D.J.; Lynch, C.J.; Seider, N.A.; Krimmel, S.R.; Scheidter,
K.M.; et al. A somato-cognitive action network alternates with effector regions in motor cortex. Nature 2023, 617, 351–359.
[CrossRef] [PubMed]

6. Raimondo, L.; Oliveira, I.A.F.; Heij, J.; Priovoulos, N.; Kundu, P.; Leoni, R.F.; van der Zwaag, W. Advances in resting state fMRI
acquisitions for functional connectomics. Neuroimage 2021, 243, 13. [CrossRef] [PubMed]

7. Noman, F.; Ting, C.M.; Kang, H.; Phan, R.C.W.; Ombao, H. Graph Autoencoders for Embedding Learning in Brain Networks and
Major Depressive Disorder Identification. IEEE J. Biomed. Health Inf. 2024, 28, 1644–1655. [CrossRef]

8. Zhang, Y.; Liu, X.; Zhang, Z. DDN-Net: Deep Residual Shrinkage Denoising Networks with Channel-Wise Adaptively Soft
Thresholds for Automated Major Depressive Disorder Identification. ICASSP 2024–2024. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 1626–1630.

9. Chen, F.; Wang, L.; Ding, Z. Alteration of whole-brain amplitude of low-frequency fluctuation and degree centrality in patients
with mild to moderate depression: A resting-state functional magnetic resonance imaging study. Front. Psychiatry 2022, 13,
1061359. [CrossRef] [PubMed]

10. Barandas, M.; Folgado, D.; Fernandes, L.; Santos, S.; Abreu, M.; Bota, P.; Liu, H.; Schultz, T.; Gamboa, H. TSFEL: Time series
feature extraction library. SoftwareX 2020, 11, 100456. [CrossRef]

11. Shi, Y.; Zeng, W.; Wang, N. SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis. Comput.
Methods Programs Biomed. 2017, 148, 137–151. [CrossRef]

12. Zang, Y.; He, Y.; Zhu, C.; Cao, Q.; Sui, M.; Liang, M.; Tian, L.; Jiang, T.; Wang, Y. Altered baseline brain activity in children with
ADHD revealed by resting-state functional MRI. Brain Dev. 2007, 29, 83–91.

13. Zou, Q.; Zhu, C.; Yang, Y.; Zuo, X.; Long, X.; Cao, Q.; Wang, Y.; Zang, Y. An improved approach to detection of amplitude of
low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods 2008, 172, 137–141. [CrossRef]
[PubMed]

https://doi.org/10.1016/S2215-0366(21)00395-3
https://doi.org/10.1109/JBHI.2024.3366662
https://www.ncbi.nlm.nih.gov/pubmed/38363664
https://doi.org/10.1109/JBHI.2020.3043427
https://doi.org/10.1038/s41586-023-05964-2
https://www.ncbi.nlm.nih.gov/pubmed/37076628
https://doi.org/10.1016/j.neuroimage.2021.118503
https://www.ncbi.nlm.nih.gov/pubmed/34479041
https://doi.org/10.1109/JBHI.2024.3351177
https://doi.org/10.3389/fpsyt.2022.1061359
https://www.ncbi.nlm.nih.gov/pubmed/36569607
https://doi.org/10.1016/j.softx.2020.100456
https://doi.org/10.1016/j.cmpb.2017.07.001
https://doi.org/10.1016/j.jneumeth.2008.04.012
https://www.ncbi.nlm.nih.gov/pubmed/18501969


Tomography 2024, 10 1913

14. Yu, Q.; Cai, Z.; Li, C.; Xiong, Y.; Yang, Y.; He, S.; Tang, H.; Zhang, B.; Du, S.; Yan, H.; et al. A novel spectrum contrast mapping
method for functional magnetic resonance imaging data analysis. Front. Hum. Neurosci. 2021, 15, 739668. [CrossRef]

15. Yan, W.Z.; Calhoun, V.; Song, M.; Cui, Y.; Yan, H.; Liu, S.F.; Fan, L.Z.; Zuo, N.M.; Yang, Z.Y.; Xu, K.B.; et al. Discriminating
schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data. EBioMedicine 2019, 47, 543–552.
[CrossRef] [PubMed]

16. Wang, S.; Duan, F.; Zhang, M.X. Convolution-GRU Based on Independent Component Analysis for fMRI Analysis with Small
and Imbalanced Samples. Appl. Sci. 2020, 10, 17. [CrossRef]

17. Mao, Z.; Su, Y.; Xu, G.; Wang, X.; Huang, Y.; Yue, W.; Sun, L.; Xiong, N. Spatio-temporal deep learning method for adhd fmri
classification. Inf. Sci. 2019, 499, 1–11. [CrossRef]

18. Liu, R.; Huang, Z.-A.; Hu, Y.; Zhu, Z.; Wong, K.-C.; Tan, K.C. Spatial–temporal co-attention learning for diagnosis of mental
disorders from resting-state fMRI data. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 10591–10605. [CrossRef]

19. Lim, M.; Heo, K.-S.; Kim, J.-M.; Kang, B.; Lin, W.; Zhang, H.; Shen, D.; Kam, T.-E. A Unified Multi-Modality Fusion Framework
for Deep Spatio-Temporal-Spectral Feature Learning in Resting-State fMRI Denoising. IEEE J. Biomed. Health 2024, 28, 2067–2078.
[CrossRef] [PubMed]

20. Kaur, H.; Pannu, H.S.; Malhi, A.K. A systematic review on imbalanced data challenges in machine learning: Applications and
solutions. ACM Comput. Surv. 2019, 52, 1–36. [CrossRef]

21. Zhang, J.; Chen, L. Clustering-based undersampling with random over sampling examples and support vector machine for
imbalanced classification of breast cancer diagnosis. Comput. Assist. Surg. 2019, 24 (Suppl. S2), 62–72. [CrossRef] [PubMed]

22. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J Artif. Intell. Res.
2002, 16, 321–357. [CrossRef]

23. Eslami, T.; Saeed, F. Auto-ASD-network: A technique based on deep learning and support vector machines for diagnosing autism
spectrum disorder using fMRI data. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics, New York, NY, USA, 7–10 September 2019; pp. 646–651.

24. Riaz, A.; Asad, M.; Alonso, E.; Slabaugh, G. Fusion of fMRI and non-imaging data for ADHD classification. Comput. Med. Imaging
Graph. 2018, 65, 115–128. [CrossRef] [PubMed]

25. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. International
Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887.

26. Zeng, M.; Zou, B.; Wei, F.; Liu, X.; Wang, L. Effective prediction of three common diseases by combining SMOTE with Tomek
links technique for imbalanced medical data. In Proceedings of the 2016 IEEE International Conference of Online Analysis and
Computing Science (ICOACS), Chongqing, China, 28–29 May 2016; pp. 225–228.

27. Wang, J.; Zou, C.; Fu, G. AWSMOTE: An SVM-Based Adaptive Weighted SMOTE for Class-Imbalance Learning. Sci. Program
2021, 2021, 9947621. [CrossRef]

28. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the 2008 IEEE IJCNN, Hong Kong, China, 1–8 June 2008; pp. 1322–1328.

29. Chen, Y.; Chang, R.; Guo, J. Effects of data augmentation method borderline-SMOTE on emotion recognition of EEG signals
based on convolutional neural network. IEEE Access 2021, 9, 47491–47502. [CrossRef]

30. Koh, J.E.W.; Jahmunah, V.; Pham, T.-H.; Oh, S.L.; Ciaccio, E.J.; Acharya, U.R.; Yeong, C.H.; Fabell, M.K.M.; Rahmat, K.;
Vijayananthan, A.; et al. Automated detection of Alzheimer’s disease using bi-directional empirical model decomposition. Pattern
Recognit. Lett. 2020, 135, 106–113. [CrossRef]

31. Bezmaternykh, D.D.; Melnikov, M.Y.; Savelov, A.A.; Kozlova, L.I.; Petrovskiy, E.D.; Natarova, K.A.; Shtark, M.B. Brain Networks
Connectivity in Mild to Moderate Depression: Resting State fMRI Study with Implications to Nonpharmacological Treatment.
Neural Plast. 2021, 2021, 8846097. [CrossRef] [PubMed]

32. Friston, K.J.; Holmes, A.; Worsley, K.J.; Poline, J.-B.; Frith, C.D.; Frackowiak, R.S.J. Statistical parametric maps in functional
imaging: A general linear approach. Hum. Brain Mapp. 1994, 2, 189–210. [CrossRef]

33. Correa, N.; Adali, T.; Li, Y.O.; Calhoun, V.D. Comparison of blind source separation algorithms for FMRI using a new Matlab
toolbox: GIFT. In Proceedings of the IEEE ICASSP, Philadelphia, PA, USA, 23 March 2005.

34. Erhardt, E.B.; Rachakonda, S.; Bedrick, E.J.; Allen, E.A.; Adali, T.; Calhoun, V.D. Comparison of Multi-Subject ICA Methods for
Analysis of fMRI Data. Hum. Brain Mapp. 2011, 32, 2075–2095. [CrossRef]

35. Himberg, J.; Hyvarinen, A. Icasso: Software for investigating the reliability of ICA estimates by clustering and visualization. In
Proceedings of the 2003 IEEE Workshop on Neural Networks for Signal Processing, Toulouse, France, 17–19 September 2003;
pp. 259–268.

36. Li, Y.O.; Adalı, T.; Calhoun, V.D. Estimating the number of independent components for functional magnetic resonance imaging
data. Hum. Brain Mapp. 2007, 28, 1251–1266. [CrossRef]

37. Smith, S.M.; Fox, P.T.; Miller, K.L.; Glahn, D.C.; Fox, P.M.; Mackay, C.E.; Filippini, N.; Watkins, K.E.; Toro, R.; Laird, A.R.; et al.
Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 2009, 106, 13040–13045.
[CrossRef]

38. Shi, Y.; Zeng, W.; Wang, N.; Zhao, L. A new method for independent component analysis with priori information based on
multi-objective optimization. J. Neurosci. Methods 2017, 283, 72–82. [CrossRef] [PubMed]

39. Wang, N.; Zeng, W.; Chen, L. A fast-FENICA method on resting state fMRI data. J. Neurosci. Methods 2012, 209, 1–12.

https://doi.org/10.3389/fnhum.2021.739668
https://doi.org/10.1016/j.ebiom.2019.08.023
https://www.ncbi.nlm.nih.gov/pubmed/31420302
https://doi.org/10.3390/app10217465
https://doi.org/10.1016/j.ins.2019.05.043
https://doi.org/10.1109/TNNLS.2023.3243000
https://doi.org/10.1109/JBHI.2024.3355966
https://www.ncbi.nlm.nih.gov/pubmed/38241107
https://doi.org/10.1145/3343440
https://doi.org/10.1080/24699322.2019.1649074
https://www.ncbi.nlm.nih.gov/pubmed/31403330
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.compmedimag.2017.10.002
https://www.ncbi.nlm.nih.gov/pubmed/29137838
https://doi.org/10.1155/2021/9947621
https://doi.org/10.1109/ACCESS.2021.3068316
https://doi.org/10.1016/j.patrec.2020.03.014
https://doi.org/10.1155/2021/8846097
https://www.ncbi.nlm.nih.gov/pubmed/33510782
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/hbm.21170
https://doi.org/10.1002/hbm.20359
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1016/j.jneumeth.2017.03.018
https://www.ncbi.nlm.nih.gov/pubmed/28363450


Tomography 2024, 10 1914

40. Wang, N.; Zeng, W.; Chen, L. SACICA: A sparse approximation coefficient-based ICA model for functional magnetic resonance
imaging data analysis. J. Neurosci. Methods 2013, 216, 49–61. [CrossRef]

41. Wang, N.; Zeng, W.; Shi, Y.; Ren, T.; Jing, Y.; Yin, J.; Yang, J. WASICA: An effective wavelet-shrinkage based ICA model for brain
fMRI data analysis. J. Neurosci. Methods 2015, 246, 75–96. [PubMed]

42. Wang, N.; Chang, C.; Zeng, W.; Shi, Y.; Yan, H. A novel feature-map based ICA model for identifying the individual,
intra/inter-group brain networks across multiple fMRI datasets. Front. Neurosci. 2017, 11, 510. [CrossRef]

43. Li, Q.; Wu, X.; Liu, T.M. Differentiable neural architecture search for optimal spatial/temporal brain function network
decomposition. Med. Image Anal. 2021, 69, 14. [CrossRef]

44. Ahmad, T.; Wu, J. SDIGRU: Spatial and Deep Features Integration Using Multilayer Gated Recurrent Unit for Human Activity
Recognition. IEEE Trans. Comput. 2024, 11, 973–985. [CrossRef]

45. Che, Z.P.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing
Values. Sci. Rep. 2018, 8, 12. [CrossRef] [PubMed]

46. Wang, L.; Ma, Q.; Sun, X.; Xu, Z.; Zhang, J.; Liao, X.; Wang, X.; Wei, D.; Chen, Y.; Liu, B.; et al. Frequency-resolved connectome
alterations in major depressive disorder: A multisite resting fMRI study. J. Affect. Disord. 2023, 328, 47–57. [CrossRef] [PubMed]

47. Zhang, X.; Su, J.; Gan, M.; Zhang, Y.; Fan, Z.; Zeng, L.L. Co-Teaching Learning from Noisy Labeled FMRI Data for Diagnostic
Classification of Major Depression. In Proceedings of the 2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT),
Quzhou, China, 10–12 November 2023; pp. 404–409.

48. Jie, B.; Liu, M.; Lian, C.; Shi, F.; Shen, D. Designing weighted correlation kernels in convolutional neural networks for functional
connectivity based brain disease diagnosis. Med. Image Anal. 2020, 63, 101709. [CrossRef]

49. Li, Y.; Song, X.; Chai, L. Classification of Alzheimer’s Disease via Spatial-Temporal Graph Convolutional Networks. In Proceedings
of the 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China, 25–27 May 2024; pp. 838–843.

50. Dai, P.; Xiong, T.; Zhou, X.; Ou, Y.; Li, Y.; Kui, X.; Chen, Z.; Zou, B.; Li, W.; Huang, Z. The alterations of brain functional
connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data. Behav. Brain
Res. 2022, 435, 114058. [CrossRef] [PubMed]

51. Fair, D.A.; Cohen, A.L.; Dosenbach, N.U.F.; Church, J.A.; Miezin, F.M.; Barch, D.M.; Raichle, M.E.; Petersen, S.E.; Schlaggar, B.L.
The maturing architecture of the brain’s default network. Proc. Natl. Acad. Sci. USA 2008, 105, 4028–4032. [CrossRef] [PubMed]

52. Zhou, H.X.; Chen, X.; Shen, Y.Q.; Li, L.; Chen, N.X.; Zhu, Z.C.; Castellanos, F.X.; Yan, C.G. Rumination and the default mode
network: Meta-analysis of brain imaging studies and implications for depression. Neuroimage 2020, 206, 9. [CrossRef] [PubMed]

53. Klug, M.; Enneking, V.; Borgers, T.; Jacobs, C.M.; Dohm, K.; Kraus, A.; Grotegerd, D.; Opel, N.; Repple, J.; Suslow, T.; et al.
Persistence of amygdala hyperactivity to subliminal negative emotion processing in the long-term course of depression. Mol.
Psychiatry 2024, 29, 1501–1509. [CrossRef] [PubMed]

54. Mousavian, M.; Chen, J.; Greening, S. Depression Detection Using Feature Extraction and Deep Learning from sMRI Images. In
Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL,
USA, 16–19 December 2019; pp. 1731–1736.

55. Kipli, K.; Kouzani, A.Z.; Xiang, Y. An Empirical Comparison of Classification Algorithms for Diagnosis of Depression from Brain
SMRI Scans. In Proceedings of the 2013 International Conference on Advanced Computer Science Applications and Technologies,
Kuching, Malaysia, 23–24 December 2013; pp. 333–336.

56. Qu, X.; Xiong, Y.; Zhai, K.; Yang, X.; Yang, J. An Efficient Attention-Based Network for Screening Major Depressive Disorder
with sMRI. In Proceedings of the 2023 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP),
Queenstown, New Zealand, 21–24 November 2023; pp. 1–6.

57. Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated
anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 2002, 15, 273–289. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jneumeth.2013.03.014
https://www.ncbi.nlm.nih.gov/pubmed/25791013
https://doi.org/10.3389/fnins.2017.00510
https://doi.org/10.1016/j.media.2021.101974
https://doi.org/10.1109/TCSS.2023.3249152
https://doi.org/10.1038/s41598-018-24271-9
https://www.ncbi.nlm.nih.gov/pubmed/29666385
https://doi.org/10.1016/j.jad.2023.01.104
https://www.ncbi.nlm.nih.gov/pubmed/36781144
https://doi.org/10.1016/j.media.2020.101709
https://doi.org/10.1016/j.bbr.2022.114058
https://www.ncbi.nlm.nih.gov/pubmed/35995263
https://doi.org/10.1073/pnas.0800376105
https://www.ncbi.nlm.nih.gov/pubmed/18322013
https://doi.org/10.1016/j.neuroimage.2019.116287
https://www.ncbi.nlm.nih.gov/pubmed/31655111
https://doi.org/10.1038/s41380-024-02429-4
https://www.ncbi.nlm.nih.gov/pubmed/38278993
https://doi.org/10.1006/nimg.2001.0978

	Introduction 
	fMRI-Informed Depression Diagnosis 
	fMRI-Informed Feature Integration 
	Data Imbalance in fMRI-Based Classification Task 
	The Proposed Method 

	Materials and Methods 
	Dataset 
	Pipeline of Data Processing 
	Pre-Processing 
	Model Architecture 

	STANet 
	STFA Module 
	SMOTE 
	AFGRU Classifier 

	Performance Metrics 

	Results 
	Experimental Setting 
	Performance Assessment of STFA Module in STANet 
	Performance Comparison Without STFA Module 
	Performance Comparison with STFA Module 

	Performance Assessment of AFGRU Classifier in STANet 
	Oversampling Strategy Impact on STANet 
	Order Number Impact on STANet 
	Comparison with Other Competing Methods 

	Discussion 
	Performance Analysis 
	Diagnostic Analysis of Depression 
	Limitation and Future Work 

	Conclusions 
	Appendix A
	Appendix B
	References

