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Abstract: The accuracy of node localization plays a crucial role in the performance and reliability
of wireless sensor networks (WSNs), which are widely utilized in fields like security systems and
environmental monitoring. The integrity of these networks is often threatened by the presence of
malicious nodes that can disrupt the localization process, leading to erroneous positioning and de-
graded network functionality. To address this challenge, we propose the security-aware localization
using bat-optimized malicious anchor prediction (BO-MAP) algorithm. This approach utilizes a
refined bat optimization algorithm to improve both the precision of localization and the security
of WSNs. By integrating advanced optimization with density-based clustering and probabilistic
analysis, BO-MAP effectively identifies and isolates malicious nodes. Our comprehensive simulation
results reveal that BO-MAP significantly surpasses six current state-of-the-art methods—namely, the
Secure Localization Algorithm, Enhanced DV-Hop, Particle Swarm Optimization-Based Localiza-
tion, Range-Free Localization, the Robust Localization Algorithm, and the Sequential Probability
Ratio Test—across various performance metrics, including the true positive rate, false positive rate,
localization accuracy, energy efficiency, and computational efficiency. Notably, BO-MAP achieves an
impressive true positive rate of 95% and a false positive rate of 5%, with an area under the receiver
operating characteristic curve of 0.98. Additionally, BO-MAP exhibits consistent reliability across
different levels of attack severity and network conditions, highlighting its suitability for deployment
in practical WSN environments.

Keywords: wireless sensor networks; localization; bat optimization; malicious nodes; clustering;
probabilistic analysis

1. Introduction

Wireless sensor networks (WSNs) are integral to a wide range of applications, includ-
ing environmental monitoring and security systems. These networks consist of numerous
sensor nodes distributed across extensive areas, responsible for gathering and relaying data
to central hubs for further analysis. The accuracy of the localization of the nodes, which is
the precise determination of the geographical positions of these sensor nodes, is critical for
the optimal operation of WSNs. Localization errors can pose significant challenges, such
as inaccurate data interpretation, diminished network performance, and in extreme cases
failure to meet mission objectives [1].

Given the frequent deployment of WSNs in challenging and often hostile environ-
ments, traditional localization techniques encounter considerable obstacles [2]. These
conventional methods typically assume that the network environment is benign, with all
nodes functioning correctly and without malicious interference. However, in real-world
deployments, WSNs are vulnerable to attacks where malicious nodes are introduced into
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the network. These nodes can propagate false location information, thereby disrupting the
localization process and threatening the overall security and reliability of the network [3].

The growing complexity of WSN applications, especially in security-critical areas,
underscores the necessity for advanced localization algorithms that can perform reliably
even in the presence of malicious nodes [4]. Although existing localization techniques have
made strides in improving accuracy and efficiency, they often fall short when subjected to
adversarial conditions. This highlights an urgent need for robust and secure localization
methods that can withstand and counteract such threats [5].

1.1. Motivation and Challenges

The presence of malicious nodes within wireless sensor networks (WSNs) represents a
significant threat to the accuracy and reliability of localization processes. These malicious
entities have the ability to manipulate or falsify location information, resulting in incorrect
node positioning and potentially compromising the entire network’s functionality. This
issue is especially critical in applications like security systems, where precise localization is
vital for the success of missions.

Recent advances in research have concentrated on improving the security and accuracy
of WSN localization by incorporating optimization algorithms, such as Particle Swarm
Optimization (PSO) and Genetic Algorithms (GAs) [6]. Although these techniques have
demonstrated potential in enhancing localization accuracy, they still encounter obstacles
related to computational efficiency and robustness, particularly when facing sophisticated
and coordinated attacks [7].

To overcome these challenges, the proposed security-aware localization using bat-
optimized malicious anchor prediction (BO-MAP) algorithm integrates a density-based
clustering model with a bat-inspired optimization strategy. The BO-MAP algorithm is
specifically designed to detect and isolate malicious nodes, thereby improving both the
accuracy of localization and the security of the network. By combining the advantages of
density-based clustering with probabilistic analysis, BO-MAP provides a more resilient and
efficient solution for WSN localization in environments prone to adversarial threats [8].

1.2. Objective

The primary objective of this research is to address the significant challenges related to
secure localization in WSNs by developing a robust and effective algorithm. This work aims
to introduce a novel localization algorithm, named BO-MAP, which combines bat-inspired
optimization with density-based clustering and probabilistic analysis. The integration of
these techniques was designed to enhance the identification and exclusion of malicious
nodes in WSNs, thereby improving both the accuracy of localization and the overall security
of the network.

The comprehensive performance evaluation compares BO-MAP with several state-of-the-
art localization methods, including the Secure Localization Algorithm (SLA) [9], Enhanced
DV-Hop (EDV-Hop) [10], Particle Swarm Optimization-Based Localization (PSO-Loc) [11],
Range-Free Localization (RFL) [12], the Robust Localization Algorithm (RLA) [13], and the
Sequential Probability Ratio Test (SPRT). The evaluation focuses on key performance metrics
such as the true positive rate (TPR), false positive rate (FPR), and overall localization accuracy.

Moreover, this research assesses the robustness of the BO-MAP algorithm under vary-
ing attack intensities and network conditions, demonstrating its potential applicability in
real-world WSN deployments where both security and reliability are of utmost importance.

1.3. Contributions

This research provides several significant contributions to the field of WSN localization:

1. Introduction of the BO-MAP Algorithm and Its Robustness: We propose a novel
algorithm, security-aware localization using BO-MAP, which integrates bat-inspired
optimization with density-based clustering and probabilistic analysis. This innovative
approach not only enhances localization accuracy and security by effectively detecting
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and excluding malicious nodes within WSNs but also maintains high localization
performance and low false positive rates under varying attack intensities and diverse
network conditions. This robustness highlights BO-MAP’s adaptability and reliability
in real-world operational scenarios, significantly advancing the state of the art in
secure WSN localization.

2. Thorough Performance Evaluation: Extensive simulations were conducted to assess
the performance of the BO-MAP algorithm. These evaluations compared BO-MAP
with six existing localization methods: the SLA, EDV-Hop, PSO-Loc, RFL, the RLA,
and the SPRT. The results clearly demonstrate BO-MAP’s superior performance across
multiple metrics, including the true positive rate (TPR), false positive rate (FPR),
localization accuracy, energy efficiency, and execution time.

3. Implementation and Validation Guidance: We offer detailed guidelines for imple-
menting the BO-MAP algorithm and validate its effectiveness through comprehensive
simulation results. These practical insights facilitate the application of the algorithm
in real-world WSNs, ensuring enhanced security and precision in the localization
of nodes.

By addressing critical challenges in WSN localization [14] and offering a robust and
efficient solution, this research significantly advances WSN technology and its application
in various critical domains.

The remainder of this work is organized as follows. Section 2 reviews related work,
including recent advancements in secure localization and optimization techniques for
WSNs. Section 3 details the proposed BO-MAP methodology, covering the conceptual
framework, network and communication model, attack detection model, clustering and
optimization strategy, and algorithm implementation. Section 4 outlines the experimental
setup and describes the evaluation metrics used in this study. Section 5 presents the
simulation results, including comparisons with existing methods, robustness assessments,
and sensitivity analyses. Finally, Section 6 concludes the paper with a summary of the
contributions and suggestions for future research directions.

2. Related Work

Localization in wireless sensor networks (WSNs) has been a major research focus
due to its essential role in enabling applications such as environmental monitoring and
disaster management. Traditional localization techniques are generally categorized into
range-based and range-free methods. Range-based methods, including the time of arrival
(TOA), Angle of Arrival (AOA), and Received Signal Strength Indicator (RSSI), rely on
measurements of the distance or angle between nodes to estimate positions. While these
methods typically offer higher accuracy, they require additional hardware and are more
energy-intensive [15].

However, range-free methods, such as Centroid Localization and DV-Hop, estimate
node positions based on connectivity and relative distances between nodes without the need
for precise measurements. Although these methods are less accurate, they are better suited
for resource-constrained WSNs due to their lower computational and energy demands.
Recent improvements in these methods have focused on enhancing accuracy and reducing
energy consumption through various optimization techniques, such as Genetic Algorithms
(GAs) and Particle Swarm Optimization (PSO).

2.1. Secure Localization Algorithms

With the increasing deployment of WSNs in critical and hostile environments, the
demand for secure localization methods has become increasingly important. Traditional
localization techniques often assume that all nodes within the network are trustworthy,
which is not always the case in real-world scenarios. Malicious nodes can disrupt the
localization process by providing false location information, leading to significant errors in
the node positioning [16].
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To combat this issue, various secure localization algorithms have been developed. For
example, the Secure Localization Algorithm (SLA) incorporates cryptographic techniques
to ensure the authenticity and integrity of localization data. The Enhanced DV-Hop (EDV-
Hop) modifies the traditional DV-Hop algorithm by integrating security measures to
detect and exclude malicious nodes. Similarly, Robust Localization Algorithms (RLAs) use
redundancy and statistical methods to mitigate the impact of malicious nodes.

Probabilistic detection methods have also been employed to enhance the security of
localization in WSNs. These methods utilize statistical models to estimate the likelihood of
nodes being malicious based on their behavior or reported information. Techniques such
as Bayesian inference and Markov Random Fields allow for the probabilistic modeling of
node trustworthiness, enabling the network to isolate or mitigate the effects of malicious
nodes [17,18].

Another approach is the Sequential Probability Ratio Test (SPRT), which employs
statistical hypothesis testing to identify and isolate malicious nodes. Although these
methods have shown potential in improving localization security, they often involve trade-
offs in computational complexity and energy consumption, making them less suitable for
resource-constrained WSNs.

2.2. Optimization Algorithms in WSN Localization

Optimization algorithms have been extensively used to improve the accuracy and
efficiency of localization in wireless sensor networks (WSNs). Techniques such as Particle
Swarm Optimization (PSO), Genetic Algorithms (GAs), and the Firefly Algorithm (FA)
have been employed to optimize node placement, reduce localization errors, and minimize
energy consumption [2].

PSO, inspired by the social behavior of flocking birds or schooling fish, is particularly
popular due to its simplicity and effectiveness in finding near-optimal solutions. However,
PSO can suffer from premature convergence, especially in complex search spaces, which
can limit its effectiveness in highly dynamic WSN environments [19,20].

The GA, which leverages principles of natural selection and genetics, evolves solutions
over generations and offers robustness against local optima. The GA has been successfully
applied to various WSN localization problems, particularly those involving large search
spaces. However, the GA can be computationally intensive, limiting its applicability in
energy-constrained WSNs [21].

The FA, inspired by the flashing behavior of fireflies, has also been applied to WSN
localization [22]. The FA is effective in addressing multimodal optimization problems and
can adapt to dynamic network conditions. However, like other optimization algorithms,
the FA requires careful parameter tuning to achieve optimal performance [23,24].

The Bat Algorithm (BA), inspired by the echolocation behavior of bats, has recently
been applied to WSN localization. The BA simulates bats’ echolocation capabilities to
search for optimal solutions, balancing exploration and exploitation in the search space.
In WSN localization, the BA has shown advantages in the convergence speed and solution
accuracy over traditional algorithms like PSO and GAs. Its ability to adjust frequency
and loudness parameters allows the BA to navigate complex optimization landscapes
effectively, making it suitable for dynamic WSN environments [25,26].

Building upon these existing optimization techniques, the proposed BO-MAP algo-
rithm integrates the strengths of the Bat Algorithm with advanced clustering and proba-
bilistic detection methods. BO-MAP addresses the limitations of traditional algorithms,
such as premature convergence in PSO and high computational demands in GA, by intro-
ducing dynamic frequency modulation and adaptive parameter control. This integration
enhances both the convergence speed and localization accuracy, ensuring robust perfor-
mance in dynamic and hostile WSN environments. Additionally, BO-MAP incorporates
density-based clustering and the Sequential Probability Ratio Test (SPRT) to effectively
detect and exclude malicious nodes, thereby improving the overall security and reliability
of the localization process.
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2.3. Clustering Methods for WSNs

Clustering is another technique employed to enhance WSN localization. Clustering
involves grouping nodes into clusters, each managed by a cluster head, which simplifies
the localization process [27]. The Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) is a widely used clustering algorithm that identifies clusters based on the
node density, making it suitable for WSNs where node distribution may be uneven.

The DBSCAN does not require a predefined number of clusters and can effectively
identify and exclude outliers, making it robust against the presence of malicious nodes.
However, the effectiveness of the DBSCAN is dependent on the appropriate selection of
parameters, such as the minimum number of points required to form a cluster and the
distance threshold [28].

Recent enhancements to the DBSCAN have improved its applicability in WSNs. Adap-
tive versions of the DBSCAN adjust parameters in response to changes in the node density
and distribution, improving clustering accuracy in dynamic environments. Additionally,
integrating the DBSCAN with optimization algorithms like the BA has led to improved
cluster formation and energy efficiency, as the optimization algorithm can fine-tune cluster
parameters for optimal performance [29,30].

Recent studies have combined clustering with optimization algorithms to further
improve localization accuracy and security [31]. For example, clustering algorithms like
the DBSCAN have been integrated with PSO and GAs to optimize cluster formation and
improve the resilience of WSNs against attacks.

2.4. Research Gaps and Challenges

Despite considerable advancements, several challenges persist in achieving robust
and efficient localization in wireless sensor networks (WSNs). The primary issues include
the following.

• Computational Complexity: Secure localization methods often exhibit high computa-
tional complexity, particularly those employing cryptographic techniques or hybrid
algorithms. This complexity poses a significant challenge for WSNs, where sensor
nodes are constrained by limited processing power and energy resources. Algorithms
that require extensive computations can rapidly deplete the battery life, reducing the
overall operational time of the network.

• Sensitivity to Environmental Factors: The localization accuracy is highly vulnerable
to environmental factors such as noise, signal attenuation, and multipath effects.
Range-based methods are especially prone to these issues, leading to significant
localization errors in dynamic environments. Methods like the Enhanced DV-Hop and
Range-Free Localization also struggle with challenges related to node mobility and
environmental changes.

• Scalability and Adaptability: Scalability remains a critical concern for WSNs deployed
in large areas. Many existing methods find it difficult to maintain accuracy and
efficiency as the size of the network increases. Additionally, adaptability to chang-
ing network conditions and the presence of malicious nodes is crucial for practical
deployment but remains a significant challenge.

• Integration and Practical Implementation: Innovative approaches that integrate mul-
tiple optimization techniques are needed, harnessing their combined strengths to
address individual limitations. Hybrid methods capable of dynamically adjusting
to changing network conditions and malicious behaviors hold promise but require
practical validation. Bridging the gap between theoretical models and real-world ap-
plications necessitates extensive field testing and practical implementations to ensure
the applicability and effectiveness of these algorithms.

This review of existing localization methods in WSNs underscores both their strengths
and limitations [32]. Although there have been significant advances in secure localization
and optimization techniques, substantial challenges remain in developing methods that
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are robust, scalable, and secure against sophisticated attacks. The proposed BO-MAP
algorithm seeks to address these gaps by integrating bat optimization with density-based
clustering and probabilistic analysis, providing a comprehensive solution to accurate and
secure localization in dynamic and potentially hostile environments [33].

This proposed approach addresses the aforementioned research gaps through the
development of the BO-MAP algorithm, which integrates adaptive frequency-modulated
bat optimization (AFM-BO), the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN), and the Sequential Probability Ratio Test (SPRT) for secure and accurate
localization in WSNs. Specifically, BO-MAP reduces computational complexity by lever-
aging the efficiency of AFM-BO and the DBSCAN, enhances robustness to environmental
factors through adaptive parameter control and dynamic frequency modulation, improves
scalability and adaptability with its modular design and SPRT integration, and facilitates
integration and practical implementation by combining optimization, clustering, and prob-
abilistic detection techniques. These combined strengths address individual limitations
and ensure that BO-MAP can be effectively implemented in real-world WSN deployments,
as validated through extensive simulations and performance evaluations presented in
subsequent sections.

3. Proposed Methodology

The BO-MAP system leverages the synergistic integration of AFM-BO, clustering,
and probabilistic detection to create a secure and accurate localization framework. Unlike
traditional optimization-based methods that treat all nodes uniformly, BO-MAP specifically
identifies and excludes malicious nodes, thereby enhancing both the localization precision
and network security. This targeted approach ensures that the optimization process is not
compromised by adversarial nodes, leading to more reliable localization outcomes.

In comparison to existing optimization problem-solving techniques, which may not
differentiate between legitimate and malicious nodes, BO-MAP employs a multi-faceted
strategy that combines optimization with clustering and statistical testing. This compre-
hensive methodology not only optimizes the localization accuracy but also fortifies the
network against security threats, making it a significant advancement in the field of WSNs.

3.1. Problem Formulation

Wireless sensor networks (WSNs) are extensively utilized in various applications, in-
cluding security systems and environmental monitoring. The accuracy of node localization
is paramount to the performance and reliability of these networks. However, the presence
of malicious nodes poses a significant threat, potentially disrupting the localization process
and degrading the overall network functionality. This research aims to enhance both the ac-
curacy and security of node localization in WSNs by effectively identifying and mitigating
the impact of malicious nodes.

3.1.1. Problem Statement

The primary objective of this research is to develop an optimization-based localization
algorithm that minimizes the localization error while ensuring the security of WSNs against
malicious anchors. The problem is formulated as an optimization task where the goal
is to minimize the Root Mean Square Error (RMSE) between the estimated and actual
positions of sensor nodes, simultaneously detecting and excluding malicious nodes from
the localization process.

Previous studies have addressed localization accuracy in WSNs through various
optimization techniques. For instance, the DV-Hop algorithm [34] and its enhanced ver-
sions [35] have been widely used for range-based localization. However, these methods
often assume a benign network environment and do not account for the presence of
malicious nodes, which can significantly impair localization accuracy [36]. To address
these limitations, security-aware localization algorithms have been proposed, integrating
mechanisms to detect and mitigate the impact of malicious anchors [37,38].
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3.1.2. Objective Function

Given a set of anchor nodes A = {A1, A2, . . . , An} with known positions and a set of
sensor nodes S = {S1, S2, . . . , Sm} with unknown positions, the objective is to accurately
determine the positions Ŝ = {Ŝ1, Ŝ2, . . . , Ŝm} of the sensor nodes while minimizing the
impact of malicious anchors.

The localization error E is quantified using the Root Mean Square Error (RMSE)
between the estimated and actual positions of the sensor nodes:

E =

√
1
m

m

∑
i=1

∥∥Ŝi − Si
∥∥2 (1)

The objective is to minimize this error E, subject to various constraints imposed
by network conditions and the presence of malicious nodes. The BO-MAP algorithm,
enhanced by adaptive frequency-modulated bat optimization (AFM-BO), aims to find the
optimal position estimates Ŝ while identifying and mitigating the impact of malicious
nodes, denoted by M = {M1, M2, . . . , Mk}.

Previous optimization-based approaches, such as Particle Swarm Optimization (PSO) [39]
and Genetic Algorithms (GAs) [40], have been employed to enhance localization accuracy. How-
ever, these methods often require extensive computational resources and may not effectively
handle dynamic network conditions or the presence of multiple malicious nodes [41]. The
proposed AFM-BO seeks to overcome these challenges by introducing dynamic frequency mod-
ulation and adaptive parameter control, thereby improving both exploration and exploitation
capabilities during the optimization process.

3.1.3. Constraints

The optimization problem is subject to several constraints that ensure the feasibility
and robustness of the localization process:

• Communication Range: Sensor nodes can only communicate with anchor nodes within
a certain distance dmax from them. This constraint limits the set of anchor nodes that
can be utilized for localization [39]. Effective localization requires sufficient anchor
coverage to ensure that each sensor node can communicate with multiple anchors,
thereby enhancing localization accuracy [35].

• Malicious Nodes: The presence of malicious nodes M, which provide false position
information, must be detected and their influence excluded from the localization
process to maintain the network’s integrity [37,38]. Malicious nodes can manipulate
distance measurements or provide fabricated data, leading to significant localization
errors if not properly identified and mitigated [38].

• Environmental Noise: Measurement errors due to environmental noise, modeled as
Gaussian noise with variance σ2, affect the accuracy of distance estimates between
nodes [40]. Environmental factors such as signal attenuation, multipath effects, and
interference can introduce variability in the Received Signal Strength Indicator (RSSI) and
time of arrival (TOA) measurements, thereby impacting the localization precision [41].

The BO-MAP algorithm, utilizing AFM-BO, was designed to optimize the localiza-
tion process under these constraints by leveraging dynamic frequency modulation, adap-
tive parameter control, clustering, and probabilistic detection to mitigate the impact of
malicious nodes.

3.1.4. Optimization Approach

To achieve the objectives and navigate the constraints outlined above, the BO-MAP
algorithm integrates three key components:

• Adaptive Frequency-Modulated Bat Optimization (AFM-BO): AFM-BO enhances the
traditional bat optimization algorithm by introducing dynamic frequency modulation
and adaptive parameter control. This optimization technique effectively balances
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exploration and exploitation phases, enabling the algorithm to dynamically adjust the
search process based on the current solution’s fitness [42]. Consequently, AFM-BO
improves both the precision of localization and the efficiency of the optimization
process. Unlike standard optimization algorithms, AFM-BO can adapt to the evolving
landscape of the solution space, making it particularly effective in dynamic and hostile
network environments [43].

• Clustering with the DBSCAN: Clustering was employed to group sensor nodes and
identify outliers (potentially malicious nodes) based on their distance metrics. The
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
was utilized for this purpose due to its effectiveness in identifying clusters of arbitrary
shapes and handling noise [44]. A modified version of the DBSCAN was integrated
to adaptively select clustering parameters based on the node density and variance,
thereby enhancing the detection of malicious nodes in dynamic network conditions
[45]. This adaptive clustering approach ensures that legitimate clusters are accurately
identified while isolating anomalous nodes that may exhibit malicious behavior [46].

• Probabilistic Detection via the SPRT: The Sequential Probability Ratio Test (SPRT)
was implemented to statistically evaluate and exclude malicious nodes from the
localization process. The SPRT enables the real-time assessment of node legitimacy by
continuously monitoring discrepancies in distance measurements and updating the
likelihood of malicious behavior [47]. This probabilistic approach ensures the integrity
of the localization process by effectively isolating malicious nodes. By integrating the
SPRT with AFM-BO and DBSCAN clustering, BO-MAP provides a robust framework
for secure and accurate node localization in the presence of adversarial threats [48].

The integration of AFM-BO with clustering and probabilistic detection techniques
allows the BO-MAP algorithm to dynamically adapt to varying network conditions and
effectively mitigate the impact of malicious nodes. This comprehensive approach ensures
that localization accuracy is maximized while maintaining the **integrity** and **security**
of the network. Compared to traditional optimization methods, which may treat all nodes
uniformly without accounting for malicious behavior, BO-MAP selectively optimizes the
localization process by identifying and excluding harmful nodes, thereby enhancing both
performance and security [48].

3.2. Overview of the BO-MAP Model

The BO-MAP model was designed to enhance both the accuracy and security of
node localization in WSNs. This model integrates the advanced adaptive frequency-
modulated bat optimization algorithm (AFM-BO) with clustering and detection techniques
to effectively identify and mitigate the influence of malicious anchor nodes. The primary
objective of BO-MAP is to ensure precise localization while minimizing errors, making it
particularly suitable for deployment in environments where the network may be subject to
adversarial activities.

The BO-MAP model introduces several key innovations. The AFM-BO algorithm,
an enhanced version of the traditional bat optimization algorithm, incorporates dynamic
frequency modulation and adaptive parameter control. These enhancements optimize the
balance between exploration and exploitation during the search process, leading to more
accurate and efficient localization. Furthermore, the model employs dynamic clustering
techniques to identify and isolate malicious nodes, thus ensuring the robustness of the
localization process. The probabilistic detection of malicious nodes is conducted using
the Sequential Probability Ratio Test (SPRT), which enables the real-time identification of
malicious nodes and maintains the reliability of the network’s spatial information.

3.3. Network and Communication Model

In WSNs, nodes are deployed in a defined area where they communicate wirelessly
to perform various tasks such as environmental monitoring, security surveillance, and
disaster management. The network is modeled as a two-dimensional plane with sensor
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and anchor nodes distributed throughout the area. The positions of the anchor nodes
are indicated by coordinates Ai = [xi, yi], while the unknown nodes are represented by
Θ = [xθ , yθ ]. The anchor nodes are assumed to be fixed, and the unknown nodes need to
be localized based on the signals they receive from the anchors. As shown in Figure 1, the
network includes various types of nodes such as sink nodes, anchor nodes, and mobile
nodes; some areas are potentially blocked due to environmental factors or obstacles. These
blockages can significantly affect the communication between nodes and therefore affect
the accuracy of localization.

Sink Node Anchor Node Mobile Node Blockage

Figure 1. Node deployment in wireless sensor network.

The communication model involves the exchange of signals that are used to estimate
distances, ultimately determining the location of the unknown nodes. The BO-MAP model
employs two primary techniques for distance estimation: the TOA and RSSI.

The TOA measures the time it takes for a signal to travel from an anchor node to an
unknown node. The distance d(Θ, Ai) between an unknown node Θ and the i-th anchor
node Ai is calculated using the equation

ti =
d(Θ, Ai)

vp
+ Wi (2)

where the symbols correspond to the following:

• ti: the measured time of arrival of the signal from the anchor node Ai to the unknown
node Θ.

• d(Θ, Ai): the Euclidean distance between the unknown node Θ and the i-th anchor
node Ai, which is the parameter being estimated.

• vp: the propagation speed of the signal, which is typically assumed to be the speed of
light in free space (approximately 3 × 108 m/s).

• Wi: the measurement error, modeled as a Gaussian random variable Wi ∼ N(0, σ2
W)

with zero mean and variance σ2
W , accounting for inaccuracies due to environmental

factors (e.g., noise, obstacles, multipath effects) and equipment limitations.

The equation models the relationship between the time of arrival, the distance, and the prop-
agation speed, incorporating the uncertainty introduced by real-world measurement errors.
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The RSSI estimates the distance based on the power of the received signal. The
relationship between the received power PR and the distance d(Θ, Ai) is given by

PR = PTi − 10α log
(

d(Θ, Ai)

d0

)
+ ϵi (3)

where the symbols correspond to the following:

• PTi is the transmitted power from the anchor node Ai.
• α is the path loss exponent that characterizes the rate at which the signal attenuates

with distance.
• d0 is a reference distance (typically 1 m).
• ϵi ∼ N(0, σ2

ϵ ) accounts for measurement noise, where N(0, σ2
ϵ ) denotes a Gaussian

distribution with a mean of zero and a variance of σ2
ϵ . The mean represents the

expected value (no bias in measurement noise), and the variance quantifies the spread
or variability of the noise.

The localization process begins by collecting distance measurements using TOA and
RSSI techniques. An initial position estimate for the unknown node is derived from
these measurements. However, due to potential measurement errors and the presence
of malicious nodes, this initial estimate may be inaccurate. The BO-MAP model refines
the localization using optimization and clustering techniques, which enhance accuracy by
mitigating the impact of erroneous or malicious data.

3.4. Attack Model

In the BO-MAP model, two primary categories of attacks are considered: location data
tampering and signal spoofing.

• Location Data Tampering: A malicious anchor node provides false location informa-
tion, disrupting the localization process and causing significant errors. The model
detects such tampering by analyzing data consistency using clustering techniques,
identifying outliers that may indicate malicious activity.

• Signal Spoofing: A more sophisticated attack where the signal characteristics, such
as timestamps or the transmission power, are altered by a malicious node to deceive
the localization process. The TOA-based distance estimation was modified to account
for this

ti =
d(Θ, Ai)

vp
+ Wi + δi (4)

where the symbols correspond to the following:

- ti is the measured time of arrival.
- vp is the propagation speed of the signal (assumed to be the speed of light).
- Wi ∼ N(0, σ2

W) represents measurement noise due to environmental factors,
modeled as a Gaussian distribution with mean zero (unbiased) and variance σ2

W
(quantifying noise variability).

- δi ∼ N(µδ, σ2
δ ) represents the malicious delay introduced by the attacker, where

µδ is the expected malicious delay and σ2
δ quantifies its variability.

These attack models provide a framework for understanding potential threats and
guide the development of detection mechanisms to ensure robust localization.

Attack Model and Its Integration

The proposed BO-MAP algorithm accounts for the presence of malicious anchor
nodes, which are modeled as nodes providing deliberately falsified localization data.
These malicious nodes exploit vulnerabilities by either manipulating time-based (TOA) or
signal-strength-based (RSSI) measurements, or by injecting spurious data into the network.
To address these adversarial conditions, the BO-MAP algorithm integrates the attack model
into its core components:
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• Clustering-Based Outlier Detection: The DBSCAN clustering technique is used to
identify high-density regions of normal data and isolate outliers, which often corre-
spond to malicious nodes. Adaptive parameter tuning ensures the algorithm remains
robust across varying attack intensities.

• Statistical Detection via the SPRT: The Sequential Probability Ratio Test (SPRT) eval-
uates deviations in distance measurements provided by anchor nodes. Statistical
thresholds, informed by the attack model, are dynamically adjusted to detect anchors
that consistently provide anomalous data.

• Optimization Adaptation: The adaptive frequency-modulated bat optimization (AFM-
BO) algorithm leverages the attack model to prioritize optimization paths that exclude
data from suspected malicious nodes, thereby minimizing localization errors.

The attack model was further utilized in simulation scenarios to evaluate the algorithm’s
performance under varying proportions of malicious nodes, attack intensities, and envi-
ronmental noise levels. This integration ensures that BO-MAP maintains high localization
accuracy and security, even in hostile WSN environments.

3.5. Clustering and Optimization
3.5.1. Clustering Approach

The BO-MAP model employs a modified version of the Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) algorithm to better suit the unique characteristics
of wireless sensor networks (WSNs) and to enhance malicious node detection. In the tradi-
tional DBSCAN, two critical parameters are required: the minimum number of points to
form a cluster (MinPts) and the neighborhood radius (ϵ). Clusters are formed by connect-
ing points that are within ϵ distance from each other and have at least MinPts neighbors.
While the standard DBSCAN effectively identifies clusters based on the point density and
can handle noise, it does not account for the dynamic and irregular node distributions
commonly found in WSNs, nor does it incorporate any trust or security considerations.

Our modified DBSCAN algorithm introduces an adaptive mechanism for selecting
the ϵ and MinPts parameters based on the local node density and the variance in node
positions (Vr). Specifically, we calculate the neighborhood radius ϵ using the variance of the
nodes’ positions (Vr), which allows the algorithm to adjust to areas of varying node density:

ϵ = κ × Vr (5)

where κ is a scaling factor determined empirically. The variance Vr is computed as

Vr =
1
N

N

∑
i=1

(
(xi − x̄)2 + (yi − ȳ)2

)
(6)

Here, (xi, yi) represents the position of node i, and (x̄, ȳ) is the mean position of all nodes.
By adapting ϵ based on Vr, the algorithm becomes more sensitive to the actual distribution
of nodes, improving cluster formation accuracy in heterogeneous networks.

Additionally, we integrated a trust metric into the clustering process. Each node is
assigned a trust level based on its communication behavior and data consistency. During
clustering, nodes with trust levels below a certain threshold are treated as noise, effectively
isolating potential malicious nodes from legitimate clusters. This integration enhances the
security of the localization process by preventing malicious nodes from influencing the
cluster formation and subsequent localization computations.

In Figure 2, the no. of clusters equaling two signifies that the modified DBSCAN
algorithm has identified two distinct clusters within the network based on the adapted pa-
rameters. This outcome demonstrates the algorithm’s ability to detect the inherent grouping
of nodes in the WSN, which is essential for efficient localization and communication. The
parameter Vr represents the variance of the nodes’ positions and is crucial in dynamically
adjusting the neighborhood radius ϵ for clustering. By incorporating Vr, the algorithm
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accounts for the spatial dispersion of nodes, leading to more accurate and context-aware
clustering results.

Start

Initialize Parameters and Perform
Node clustering

No. of Clusters  
Equal to 2?NoAdjust and Repeat

Clustering
Yes Save Clustering

Outcomes

No. of Clusters  
Equal to 3?No

Yes

Save jth Clustering Outcomes

Calculate Final Vote Counts

Final Vote Vr > N/2?Sample in Normal
Cluster Yes Sample in

Anomalous ClusterNo

End

Figure 2. Process flow of clustering model.

The clustering process begins by identifying high-density regions within the network,
which are then expanded to form clusters. These clusters represent groups of nodes that
are close in proximity, and the method ensures that outlier nodes that do not belong to any
cluster are effectively isolated. These outliers are often indicative of malicious nodes or
errors in data, and their identification is crucial for maintaining the accuracy and security
of the localization process. The adaptive nature of the clustering process allows it to
dynamically adjust to the characteristics of the data, ensuring that the clustering results are
robust against variations in the network density and topology.

3.5.2. Optimization Strategy

The optimization process within the BO-MAP model is driven by the adaptive frequency-
modulated bat optimization (AFM-BO) algorithm, which is tailored to enhance the accuracy
of node localization in WSNs. The algorithm mimics the echolocation behavior of bats,
where their movements are governed by the frequency, velocity, and position, dynamically
updated based on the fitness of the current solution.

Frequency Adjustment

At each iteration, the frequency fi of each bat is adjusted to fine-tune the exploration
of the search space. This adjustment is based on a random factor β, drawn from a uniform
distribution within [0, 1], ensuring diverse exploration:

fi = fmin + ( fmax − fmin)× β (7)
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Here, the symbols correspond to the following:

• fmin and fmax are the minimum and maximum frequency bounds, controlling the bat’s
step size.

• β is a random number in the range of [0, 1] that introduces stochasticity to prevent
premature convergence.

Velocity Update

The velocity vi(t + 1) of each bat is updated based on the current position of the bat
xi(t) and the best known position xbest. This update helps the bats move toward promising
regions in the search space:

vi(t + 1) = vi(t) + (xi(t)− xbest)× fi (8)

Here, the symbols correspond to the following:

• vi(t) and vi(t+ 1) are the velocities of the ith bat at iterations of t and t+ 1, respectively.
• xi(t) is the current position of the ith bat, and xbest is the best position found so far.
• fi is the frequency determined in the previous step.

Position Update

Once the velocity is updated, the new position xi(t + 1) of each bat is calculated by
adding the updated velocity to the current position:

xi(t + 1) = xi(t) + vi(t + 1) (9)

Here, the symbols correspond to the following:
• xi(t + 1) is the updated position of the ith bat.
• vi(t + 1) is the updated velocity of the bat.

Exploration and Exploitation

To balance exploration (searching new areas) and exploitation (refining known good
areas), the algorithm adjusts the pulse rate ri(t + 1) and loudness Ai(t + 1) of each bat.
These adjustments encourage the bats to focus on a local search as they approach the
optimal solution:

ri(t + 1) = ri(0)× [1 − exp(−γ × t)] (10)

Here, the symbols correspond to the following:

• ri(0) is the initial pulse rate of the ith bat.
• γ is the exponential decay factor, controlling the rate at which the pulse rate increases.
• t is the current iteration number.

The loudness Ai(t + 1) diminishes over time to refine the search around the best solution:

Ai(t + 1) = α × Ai(t) (11)

Here, the symbols correspond to the following:

• α is a constant reduction factor (0 < α < 1).
• Ai(t) is the loudness of the ith bat at iteration t.

In addition to the global search, the AFM-BO algorithm incorporates a local search
mechanism. When certain conditions are met, a bat performs a local search around the best
known solution xbest, introducing small perturbations to its position:

xi = xbest + ϵ × Ai(t) (12)

where ϵ is a random number drawn from a Gaussian distribution.
The process continues iteratively until a termination criterion is met, such as a prede-

fined number of iterations or the convergence of solutions. Throughout the optimization
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process, the AFM-BO algorithm adapts dynamically to the evolving landscape of the solu-
tion space, making it particularly effective in environments where the presence of malicious
nodes requires robust and adaptive optimization strategies.

Finally, the best solution identified by the bats is used in conjunction with the modified
DBSCAN clustering algorithm to refine the localization of nodes and detect malicious
nodes during the clustering process. The integration of AFM-BO with adaptive clustering
and probabilistic detection techniques ensures that the BO-MAP model achieves high
localization accuracy and security, even in challenging WSN environments.

3.6. Algorithm Implementation
Pseudocode of BO-MAP Algorithm

The pseudocode for the BO-MAP algorithm integrates the steps for both clustering
and optimization, Aglorithm 1:

Algorithm 1 AFM-BO Algorithm
1: Initialize bat population with random positions and velocities.
2: Define initial pulse rate ri and loudness Ai for each bat.
3: while termination criterion not met do
4: for each bat i in the population do
5: Update frequency fi based on current solution fitness:

fi = fmin + ( fmax − fmin)× F(xi)

6: Update velocity vi(t + 1) and position xi(t + 1):

vi(t + 1) = vi(t) + (xi(t)− xbest)× fi

xi(t + 1) = xi(t) + vi(t + 1)

7: if rand < ri then
8: Perform local search around the best solution:

xi = xbest + ϵ × Ai(t)

9: end if
10: if rand < Ai and new solution is better then
11: Accept the new solution:

xi = xi(t + 1)

12: Update pulse rate and loudness:

ri(t + 1) = ri(0)× [1 − exp(−γ × t)]

Ai(t + 1) = α × Ai(t)

13: end if
14: end for
15: Apply DBSCAN to cluster nodes based on bat positions.
16: Use SPRT to detect and exclude malicious nodes.
17: end while
18: Output the best solution.

The BO-MAP model offers a comprehensive solution for secure and accurate local-
ization in WSNs. By integrating adaptive optimization, dynamic clustering, and proba-
bilistic detection techniques, the model ensures robust performance even in the presence
of malicious nodes. The detailed methodology outlined above highlights the innovative
approaches employed to achieve high localization accuracy and enhanced network security
in dynamic and potentially hostile environments.

3.7. Detection Model

In the BO-MAP system, the detection model plays a crucial role in identifying and
mitigating the impact of malicious anchor nodes. This model relies on statistical analysis to
detect anomalies in distance measurements, which could indicate malicious behavior.

The process begins by considering an arbitrary, unidentified node represented by
Θ. Suppose there are n anchor nodes within the transmission range of Θ. The distance
estimations between Θ and the ith anchor node are calculated using the RSSI and TOA meth-
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ods. These estimations are denoted as drij (RSSI-based) and dtij (TOA-based), respectively.
The discrepancy between these two measurements for the ith anchor is represented by

Dij = dtij − drij (13)

where Dij signifies the difference between the TOA and RSSI measurements for the jth mea-
surement.

To determine whether an anchor node is acting maliciously, the model calculates
the variance in the reference error interval Di, which is the difference between the RSSI
measurement and the TOA measurement of the ith reference anchor:

Di = dti − dri (14)

Given that the unidentified node Θ has n anchors within its transmission range, and
for each anchor i there are mi measurement errors, the mean D̄i and variance s2

i of the
discrepancies between the two sets of metrics are calculated as follows:

D̄i =
∑j Dij

mi
(15)

s2
i =

∑j(Dij − D̄i)
2

mi − 1
(16)

The overall variance for the anchor measurements, considering all anchors within the
transmission range, is derived as

D̄ =
∑i D̄i

n
(17)

The model employs the Bland–Altman technique to define the limits of agreement
(LOAs), which are used to determine the confidence interval within which the measure-
ments are considered acceptable. The LOA is calculated as follows:

LOAl = D̄ − z(1−α/2) ×
√

s2
t (18)

LOAu = D̄ + z(1−α/2) ×
√

s2
t (19)

where the symbols correspond to the following:

• LOAl and LOAu represent the lower and upper bounds of the confidence interval,
respectively.

• z(1−α/2) is the critical value of the standard normal distribution corresponding to the
significance level α.

• s2
t is the generalized estimation of variance, given by

s2
t = s2

ϵ +

(
1 − 1

mh

)
s2

a (20)

where s2
ϵ represents the measurement noise variance, s2

a represents the anchor-related
variance, and mh is the harmonic mean of the number of samples.

To enhance the detection process, the Sequential Probability Ratio Test (SPRT) was
integrated into the model. The SPRT is a statistical method used for testing hypotheses
sequentially, allowing for the early termination of the test when sufficient evidence is
gathered. In the context of the BO-MAP system, the SPRT is employed to evaluate each
anchor node’s behavior in real time, enabling the system to make prompt decisions about
the legitimacy of each anchor.

The detection process involves continuously evaluating the observed discrepancies
Dij against the limits of agreement. The SPRT operates by calculating the cumulative log–
likelihood ratio Cij for each anchor node based on the discrepancies Dij. If Dy (the difference
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for the yth measurement) falls outside the interval of [LOAl , LOAu], the cumulative log–
likelihood ratio Cij is incremented. The decision rule is as follows:

If LOAl < Dy < LOAu, then Cij remains unchanged, (21)

else Cij is incremented. (22)

The relationship between the SPRT and the detection process is such that the SPRT
allows the system to continuously assess each anchor node independently. This means that
even after one anchor is classified as malicious or benign, the system proceeds to evaluate
the remaining anchors to ensure comprehensive security. This sequential evaluation is
crucial because the presence of multiple malicious anchors can have a compounded effect
on the accuracy of the localization, and the isolation of each malicious node individually
enhances the overall robustness of the system.

If Cij exceeds a predefined threshold Uj, the anchor node is classified as malicious. If it
remains within the bounds, the anchor is considered normal.

This flowchart (Figure 3) visually represents the steps involved in computing the
values of the observation sample, comparing them against the limits of agreement, and
finally classifying the anchor nodes as benign or malicious. The inclusion of the SPRT
within this process ensures that each anchor node is evaluated thoroughly, allowing the
system to maintain high detection accuracy and security standards. By continuing to
evaluate other anchors after one is classified, the BO-MAP model ensures that no malicious
node remains undetected, thus safeguarding the integrity of the localization process.

Start

Compute values of observation samples
based on suspicious anchor node

LOAi < Dy < LOAu?

Cij remains same

No

Cij ++

Lj < Cij < Uj?Yes

Verify more samples No

Cij ≥ Uj?

ith anchor is malicious ith anchor is normal i++

Check anchors?

End

Yes
No

Yes

No

Yes

Figure 3. Flowchart of the detection process in the BO-MAP model.

3.8. Node Probability Analysis Test (NPAT)

The Node Probability Analysis Test (NPAT) extends the detection process by incor-
porating a hypothesis-testing mechanism that does not require a predefined number of
samples. This flexibility allows the system to dynamically gather additional samples and
tests when the stated hypotheses cannot be conclusively determined from prior testing. The
key component in the NPAT is the MAP hypothesis-testing subset, which determines the
required precision level by accumulating the necessary number of samples. The correlation
between the variance between two measurements and the reference error interval is vital for
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MAP, as shown in the following equation, where Xij represents a Bernoulli random variable:

Xij =

{
0 if LOAl ≤ Dij ≤ LOAu

1 otherwise
(23)

The difference represents the TOA and RSS readings produced from the jth anchor. The
probability of the occurrence for the Bernoulli variable Xij = 1 is defined as p = P(Xij = 1).
If p is less than or equal to a predefined threshold p′, the linked anchor is not considered
malicious, and vice versa.

In practical applications, it may be challenging to establish the threshold p′, and
improper selection can lead to incorrect determinations. To mitigate this, two restrictions,
p0 and p1, were provided to reduce the likelihood of incorrect hypothesis selection during
testing. The anchor is considered benign if p ≤ p0 and malignant if p ≥ p1.

For MAP-based anchor verification with J observed samples, the following opposing
hypotheses are presented:

H0 : p ≤ p0 (Anchor is benign.)

H1 : p > p1 (Anchor is malicious.)

The probability ratio for j samples is calculated using the following equation:

λij =
P(Xi1, Xi2, . . . , Xij|H1)

P(Xi1, Xi2, . . . , Xij|H0)
(24)

Assuming the mutual independence of Xij, the equation can be expressed in logarith-
mic form:

ln λij =
j

∑
k=1

ln
(

P(Xik|H1)

P(Xik|H0)

)
(25)

If Cij represents the instances where λij = 1 in j samples, the following equation
is obtained:

ln λij = Cij ln
(

p1

p0

)
+ (j − Cij) ln

(
1 − p1

1 − p0

)
(26)

The decision-making process involves comparing ln λij to predefined thresholds,
continuing the test if necessary:

ln
(

β

1 − α

)
< ln λij < ln

(
1 − β

α

)
(27)

In the proposed BO-MAP framework, the Node Probability Analysis Test (NPAT) plays a
crucial role in enhancing the security and accuracy of the localization process. The NPAT is
integrated as a post-processing step following the initial localization phase, where it evaluates
the legitimacy of detected anchor nodes. Specifically, after the BO-MAP algorithm performs
node localization using adaptive frequency-modulated bat optimization (AFM-BO) and clus-
ters sensor nodes using the DBSCAN, the NPAT is employed to analyze the probability of each
anchor node being malicious. By dynamically adjusting the number of samples based on the
MAP hypothesis testing, the NPAT ensures that the determination of malicious nodes is both
accurate and efficient, without imposing a fixed computational burden. This integration allows
BO-MAP to adapt to varying network conditions and attack intensities, thereby maintaining
high localization accuracy and network integrity. Furthermore, the NPAT’s ability to dynami-
cally gather samples enhances BO-MAP’s scalability and adaptability, making it well suited for
deployment in large-scale and dynamic WSN environments.
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3.9. Interval Analysis

Interval analysis was employed to calculate the reference error interval of the TOA
and RSS measurement difference in MAP, revealing only the characteristics of the analyzed
sample. However, this interval does not infer general distribution, potentially leading
to inaccurate consistency assessments. Therefore, confidence intervals were calculated
to establish precise consistency boundaries, ensuring a more effective malicious anchor
detection method. The standard error estimates for LOAl and LOAu are calculated using
the following equations:

var(LOAl) = var(LOAu) (28)

The top and bottom of the 100 (1 − β)% assurance interval for LOAl and LOAu are
calculated as follows:

LOAl±z1−β/2
×

√
var(LOAl) (29)

LOAu±z1−β/2 ×
√

var(LOAu) (30)

Finally, the proposed algorithm’s reference error interval is calculated using:

LOAl−z1−β/2
×

√
var(LOAl) + LOAu+z1−β/2 ×

√
var(LOAu) (31)

In the proposed BO-MAP framework, interval analysis plays a pivotal role in en-
hancing the accuracy and reliability of malicious anchor detection. By calculating precise
confidence intervals for the TOA and RSS measurement differences, BO-MAP establishes
stringent consistency boundaries that distinguish between legitimate and malicious nodes.
This refined interval estimation allows BO-MAP to more effectively identify anomalies
in the sensor data, thereby reducing false positives and improving the overall robustness
of the localization process. Additionally, the dynamic adjustment of confidence intervals
based on real-time network conditions ensures that BO-MAP remains adaptable to varying
environmental factors, maintaining high detection accuracy even in highly dynamic and
hostile network environments. This integration of interval analysis into BO-MAP not only
addresses the limitations of traditional consistency assessments but also contributes to the
algorithm’s scalability and efficiency in large-scale WSN deployments.

4. Experimental Setup and Evaluation
4.1. Simulation Environment and Parameter Settings

The experimental evaluation of the BO-MAP model was conducted in a simulated
wireless sensor network environment using MATLAB. The simulation aimed to replicate
real-world deployment scenarios with varying network conditions, including different
levels of node density, environmental noise, and the presence of obstacles. The network was
modeled as a two-dimensional grid with sensor and anchor nodes distributed randomly
across the area.

Key parameter settings used in the simulation are outlined in Table 1, which align with
the previously established network and optimization models. The simulation scenarios
included a range from small-scale deployments (50 nodes) to large-scale networks (up to
500 nodes) to evaluate the model’s scalability and robustness.

The network and communication model parameters, including TOA and RSSI dis-
tance estimation techniques, were implemented according to the specifications detailed
in previous sections. The BO-MAP model’s AFM-BO algorithm was initialized with these
parameters, ensuring consistency with the described clustering and detection processes.
The simulation environment was designed to evaluate BO-MAP under various network
conditions, including different levels of node density, environmental noise, and the pres-
ence of obstacles, to test its scalability, robustness, and performance in scenarios similar to
the real world.
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Table 1. Simulation parameter settings.

Parameter Value/Range

Node Density 10 to 50 nodes per unit area
Signal Propagation Speed (vp) Speed of light

Path Loss Exponent (α) 2 to 4 (depending on environment)
Noise Variance (σ2

ϵ ) Gaussian with zero mean
Initial Pulse Rate (ri) 0.5

Loudness (Ai) 0.5
Frequency Range ( fmin to fmax) 0 to 2
Decay Factor for Pulse Rate (γ) 0.9
Decay Factor for Loudness (α) 0.9

Clustering Parameters (DBSCAN) minPts = 4, ϵ adapted per scenario
Adaptive Frequency Modulation Factor 0.1 to 2.0

Maximum Iterations (AFM-BO) 100 to 200
Population Size (AFM-BO) 50 to 100

Detection Threshold Adjusted per simulation scenario

4.2. Evaluation Metrics and Experimental Procedure

To evaluate the performance of the BO-MAP model, the following metrics were utilized:
Accuracy Metrics: The Root Mean Square Error (RMSE) was the primary metric used

to assess localization accuracy. The RMSE is defined as

RMSE =

√√√√ 1
N

N

∑
i=1

(
d̂i − di

)2
(32)

where d̂i is the estimated distance and di is the actual distance between the nodes, and
N is the total number of measurements. Additionally, the true positive rate (TPR) and
false positive rate (FPR) were measured to evaluate the effectiveness of the malicious node
detection process. These are calculated as

TPR =
True Positives

True Positives + False Negatives
(33)

FPR =
False Positives

False Positives + True Negatives
(34)

Computational Efficiency: The computational efficiency of the BO-MAP model was
evaluated by measuring the total execution time across various network sizes and configu-
rations. The complexity of the algorithm was determined by analyzing its time complexity
with respect to the number of nodes and iterations, given by O(n · iter).

Robustness and Scalability: The robustness of the model was tested under different noise
levels and varying proportions of malicious anchors. The ability to maintain a low localization
error and high detection accuracy despite adversarial conditions was a key focus. Scalability
was further assessed by incrementally increasing the network size and observing the impact
on performance metrics. The network lifetime, defined as the duration for which the network
can sustain its operations before energy depletion, was also considered as a metric:

Network Lifetime = min
i=1,2,...,n

(
Ei
Pi

)
(35)

where Ei is the energy of the ith node, and Pi is its power consumption.

4.3. Comparative Analysis and Experimental Results

The performance of the BO-MAP model was compared against several baseline meth-
ods, including the SLA, EDV-Hop, PSO-Loc, RFL, the RLA, and the Sequential Probability
Ratio Test. These comparisons were conducted under varying environmental conditions
to demonstrate the superiority of the BO-MAP model, particularly in scenarios with high
levels of malicious activity.
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Performance under Varying Conditions: The experimental results showed that the
BO-MAP model consistently outperformed the baseline methods across different scenarios.
The model achieved lower RMSE values, a higher TPR, and a lower FPR, demonstrating its
effectiveness in both accurate localization and robust malicious node detection. Addition-
ally, the Area Under the Curve (AUC) was used to evaluate the overall performance of the
detection algorithm, calculated as

AUC =
∫ 1

0
TPR(x) dx (36)

Experimental Procedure: The experimental procedure began with the initialization
of the simulation environment, followed by the random placement of nodes and the
configuration of network parameters. Distance measurements were collected using TOA
and RSSI techniques. The BO-MAP model was then applied for localization and detection,
with results collected across multiple simulation runs to account for variability due to
random node placement and environmental noise.

Data Collection and Processing: All relevant data, including raw distance measure-
ments, estimated node positions, and detection outcomes, were meticulously collected
at each step. Post-processing involved calculating the evaluation metrics and comparing
them against the baseline methods. Statistical tests, such as the ANOVA, were conducted
to ensure the significance of the results, providing robust conclusions about the BO-MAP
model’s performance.

5. Results and Discussion

This section presents a comprehensive analysis of the experimental results obtained
by evaluating the proposed BO-MAP algorithm. The results are compared with several
state-of-the-art approaches, focusing on various performance metrics, including the TPR,
FPR, AUC, localization accuracy, energy consumption, execution time, and robustness
under varying attack intensities and network conditions.

5.1. Performance Evaluation
5.1.1. Comparison with Existing Methods

The BO-MAP algorithm was benchmarked against leading localization algorithms,
including the SLA, EDV-Hop, PSO-Loc, RFL, and the RLA. Table 2 presents the key perfor-
mance metrics, where the BO-MAP algorithm consistently outperformed the alternatives
in terms of the TPR, FPR, AUC, and localization accuracy.

Table 2. Performance comparison of BO-MAP with existing methods.

Method TPR FPR AUC Localization Accuracy (m) Execution Time (ms)

BO-MAP 0.95 0.05 0.98 1.5 550
SLA 0.85 0.15 0.90 2.8 600

EDV-Hop 0.80 0.18 0.88 3.1 620
PSO-Loc 0.87 0.13 0.92 2.5 580

RFL 0.82 0.17 0.89 2.9 605
RLA 0.86 0.14 0.91 2.7 590

As seen in the table, the BO-MAP model demonstrated a significant improvement in
the TPR, indicating a higher ability to correctly identify malicious anchors. Additionally,
the FPR was notably lower, suggesting fewer false alarms. The AUC values further confirm
that BO-MAP provides a superior discriminatory capability between benign and malicious
nodes, which is critical for accurate and reliable localization in WSNs.

5.1.2. Analysis of True Positive Rate (TPR) and False Positive Rate (FPR)

Figure 4 illustrates the relationship between the TPR and FPR across different levels
of attack intensity. The BO-MAP algorithm maintained a consistently high TPR while



Sensors 2024, 24, 7893 21 of 30

keeping the FPR at a minimal level, even as the intensity of attacks increased. This balance
is crucial for ensuring that the algorithm not only detects malicious nodes effectively but
also minimizes the risk of falsely accusing benign nodes.

Figure 4. Overall analysis of TPR and FPR.

The superior performance of BO-MAP in maintaining a high TPR underlines its robust-
ness in detecting various types of malicious activities, ensuring that the localization process
remains reliable even in adversarial environments. The low FPR further demonstrates the
algorithm’s precision in distinguishing between malicious and non-malicious nodes, which
is vital for reducing unnecessary energy consumption and the processing overhead.

5.1.3. ROC Curve and AUC Analysis

The receiver operating characteristic (ROC) curve and the Area Under the Curve (AUC)
are critical metrics for evaluating the performance of the BO-MAP algorithm. The ROC
curve, shown in Figure 5, plots the TPR against the FPR, providing a visual representation
of the trade-off between true and false detections at different threshold settings. The
AUC quantifies this trade-off into a single value, with values closer to one indicating
better performance.

The AUC values for the BO-MAP algorithm (0.98) indicate that it significantly out-
performs existing methods, such as the SLA and EDV-Hop. The nearly perfect AUC score
suggests that BO-MAP can reliably distinguish between benign and malicious nodes across
various scenarios, ensuring high accuracy in node localization and security.
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Figure 5. Comparison of ROC curve and AUC analysis.

5.1.4. Localization Accuracy Analysis

The accuracy of the BO-MAP algorithm in estimating the positions of the sensor nodes
was evaluated using the RMSE as the primary metric. Figure 6 illustrates the localization
accuracy of BO-MAP compared to other methods across different network conditions.

Figure 6. Comparison of localization accuracy analysis.
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The results show that BO-MAP achieves the lowest RMSE across various scenarios,
indicating its superior accuracy in localizing sensor nodes. This improvement can be
attributed to the algorithm’s ability to effectively mitigate the impact of malicious nodes
and environmental noise on the localization process.

5.2. Comparison of Impact of Malicious Attack Intensity

The robustness of the BO-MAP algorithm was further tested by varying the intensity of
malicious attacks. Figure 7 shows how the TPR and FPR vary as the severity of the attacks
increases. The analysis reveals that BO-MAP maintains high TPR levels even under severe
attack conditions, demonstrating its resilience against aggressive malicious behaviors.

Figure 7. Impact of malicious attack intensity analysis.

The increase in the TPR with higher attack intensities can be attributed to the significant
deviations in TOA and RSSI measurements caused by strong malicious influences. These
deviations are effectively captured by BO-MAP, allowing the algorithm to detect and isolate
malicious nodes more effectively. This capability is crucial for maintaining the accuracy
and reliability of the WSN in hostile environments.

5.3. Sensitivity and Robustness Analysis

The sensitivity and robustness of the BO-MAP algorithm were evaluated by analyzing
its performance under varying network conditions, including changes in the node density,
measurement noise, and anchor distribution. Figure 8 highlights the algorithm’s ability to
maintain high detection accuracy and a low localization error across different scenarios.

The analysis shows that BO-MAP is particularly robust in sparse networks, where
fewer nodes are available for localization. The algorithm’s adaptive nature allows it to
dynamically adjust its parameters based on the current network conditions, ensuring consis-
tent performance even in challenging environments. The ability to maintain accuracy under
varying noise levels and node densities further underscores the algorithm’s suitability for
real-world WSN deployments.
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Figure 8. Robustness analysis.

5.4. Complexity Analysis

The computational complexity of the BO-MAP algorithm was thoroughly analyzed
to ensure its practicality for real-time deployment in wireless sensor networks (WSNs).
This section presents a detailed breakdown of the computational complexity of its key
components: clustering, detection (using the SPRT), and optimization (using AFM-BO).
The overall complexity of the algorithm was derived by combining the complexities of
these components.

5.4.1. Clustering Complexity

The DBSCAN clustering algorithm, employed in BO-MAP, is used to identify clusters
and outliers. The complexity of the DBSCAN is influenced by the number of nodes (N) and
the average number of neighbors per node (k).

The DBSCAN algorithm iterates over all N nodes to assess their density and expand
clusters, which requires operations proportional to O(N). Additionally, for each node,
distance calculations with its neighbors are performed. Utilizing an efficient indexing
structure such as a k-d tree reduces the complexity of this step to O(k log N). Consequently,
the total complexity of the DBSCAN clustering step is O(N log N). This makes the DBSCAN
suitable for handling large datasets with a reasonable computational burden.

5.4.2. Detection Complexity (SPRT)

The Sequential Probability Ratio Test (SPRT) evaluates each anchor node to deter-
mine its likelihood of being malicious. Let M denote the number of samples collected
for detection.

For each node, the SPRT updates the cumulative log–likelihood ratio based on M
samples, which involves operations proportional to O(M). The decision-making process,
which involves comparing the likelihood ratio to predefined thresholds, is a constant time
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operation. Since the SPRT is applied to all N nodes independently, the overall complexity
for the detection step is O(N · M). This ensures that the detection process scales linearly
with the number of nodes and the number of samples required for accurate detection.

5.4.3. Optimization Complexity (AFM-BO)

The adaptive frequency-modulated bat optimization (AFM-BO) algorithm enhances
localization accuracy by refining node positions.

Initializing the population of P bats requires operations proportional to O(P). Cal-
culating the fitness of each bat, which depends on the positions of all N nodes, incurs a
complexity of O(P · N). Updating the positions of P bats involves operations proportional
to O(P) per iteration. Considering that the algorithm runs for a maximum of T iterations,
the overall complexity of the AFM-BO optimization process is O(P · N · T). This linear
scalability with respect to the population size, number of nodes, and iterations ensures that
AFM-BO remains efficient even as the network size increases.

5.4.4. Overall Computational Complexity

The total computational complexity of the BO-MAP algorithm was obtained by sum-
ming the complexities of its components.

The BO-MAP algorithm operates with a total complexity of O(N log N + N · M +
P · N · T). Here, N log N accounts for the clustering process using the DBSCAN, N · M
corresponds to the SPRT-based detection, and P · N · T represents the AFM-BO optimization
process.

Although BO-MAP introduces an additional computational overhead compared to
simpler methods, the increased accuracy and robustness justify the added complexity.
Table 3 summarizes the complexities of BO-MAP and baseline methods, highlighting the
trade-offs between computational demands and performance improvements.

Table 3. Complexity comparison of BO-MAP and baseline methods.

Method Complexity

BO-MAP O(N log N + N · M + P · N · T)
SLA O(N2)

EDV-Hop O(N · M)
PSO-Loc O(P · N · T)

5.4.5. Execution Time and Practical Implications

The execution time of BO-MAP was evaluated on various network sizes, as shown
in Figure 9. While BO-MAP exhibits slightly higher execution times due to its advanced
clustering and optimization processes, it remains within practical limits for real-time ap-
plications. The efficient integration of the DBSCAN, the SPRT, and AFM-BO ensures that
BO-MAP achieves a balance between computational demands and performance improve-
ments. This analysis confirms that BO-MAP can be efficiently implemented in real-time
WSNs, balancing accuracy with computational demands.

The computational complexity analysis reveals that the BO-MAP algorithm operates
with a complexity of O(N log N + N · M + P · N · T). The dominant term O(N · M) is
attributed to the SPRT component, which is critical for ensuring the security of the lo-
calization process by effectively identifying malicious nodes. Although this introduces
an additional computational overhead, the trade-off between increased complexity and
enhanced security and accuracy is favorable for applications where reliability is paramount.
Furthermore, the use of AFM-BO optimizes the search process, mitigating some of the
computational costs associated with traditional optimization algorithms.

In practical scenarios, the values of N and M are typically constrained by the network
size and the required detection sensitivity, respectively. Empirical evaluations, as depicted
in Figure 9, demonstrate that BO-MAP maintains efficient execution times even as the
network scales, ensuring its applicability in large-scale WSN deployments.
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Figure 9. Execution time comparison of BO-MAP and existing methods.

5.5. ANOVA Test and Statistical Analysis

To validate the statistical significance of the performance improvements observed
with the BO-MAP algorithm, an Analysis of Variance (ANOVA) test was conducted. The
ANOVA test focused on the TPR across different localization methods, including BO-MAP,
the SLA, the EDV-Hop, and PSO-Loc, under specific network conditions. The objective
was to determine whether the observed differences in the TPR among these methods were
statistically significant.

5.5.1. ANOVA Test Setup

The setup for the ANOVA test was as follows:

• Dependent Variable: True positive rate (TPR).
• Independent Variable: Localization method (BO-MAP, SLA, EDV-Hop, PSO-Loc).
• Conditions:

1. Node density: 50, 100, 150, 200, and 250 nodes per unit area.
2. Attack intensity: low (0.1), medium (0.3), and high (0.5).

The results of the ANOVA test showed that there is a statistically significant difference
in the TPR across the different localization methods (p-value < 0.05). A subsequent post
hoc analysis using Tukey’s HSD test revealed that the BO-MAP algorithm significantly
outperformed the other methods, particularly in scenarios characterized by higher attack
intensities and varied node densities.

5.5.2. Statistical Analysis of AUC and Energy Consumption

Beyond the TPR, additional statistical analyses were conducted on the AUC values
and energy consumption across the various localization methods. The findings, depicted
in Figure 10, demonstrate statistically significant differences in these metrics among the
methods under consideration.

The ANOVA results for the AUC indicate that BO-MAP achieves significantly higher
AUC values compared to other methods, underscoring its superior performance in dif-
ferentiating between malicious and benign nodes. The energy consumption analysis also
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shows that while BO-MAP requires slightly more energy due to its advanced detection and
clustering processes, this increase is statistically justified by the substantial improvements
in accuracy and robustness.

Figure 10. Statistical analysis—ANOVA results for AUC and energy consumption.

5.5.3. Interpretation of Statistical Results

The statistical analysis corroborates the performance improvements of the BO-MAP
algorithm, demonstrating that the gains in the TPR, AUC, and robustness are not only
practically significant but also statistically significant. This suggests that the observed
enhancements are a direct result of the BO-MAP algorithm’s design and are not due to
random variability in the data.

The combination of the ANOVA test and post hoc analysis provides compelling
evidence that the BO-MAP algorithm consistently outperforms existing methods across a
range of network conditions. This robust statistical validation supports the effectiveness
and reliability of the BO-MAP approach in improving security and localization accuracy.

5.6. Discussion of Findings

The findings from the experimental and statistical analyses demonstrate the BO-MAP
algorithm’s significant advantages over existing methods in terms of detection accuracy,
energy efficiency, and robustness. The integration of adaptive optimization, clustering, and
probabilistic detection techniques provides a comprehensive solution for enhancing the
security and reliability of WSNs.

One of the key findings is the algorithm’s ability to maintain high detection accu-
racy even in the presence of high noise levels and severe attacks. This is particularly
important for real-world deployments, where networks are often exposed to unpredictable
environmental factors and adversarial activities. However, the work also identifies po-
tential limitations, particularly in terms of computational complexity. While the BO-MAP
algorithm provides substantial improvements in detection accuracy, the additional com-
putational overhead may pose challenges for resource-constrained WSNs. Future work
should focus on optimizing the algorithm to reduce this overhead while maintaining its
high performance.
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Overall, the BO-MAP algorithm represents a significant advancement in the field of
secure localization for WSNs. Its ability to balance accuracy, efficiency, and robustness
makes it a promising solution for enhancing the security of wireless sensor networks in
various applications.

Limitations

While the BO-MAP algorithm demonstrates significant improvements in localization
accuracy and security, it does have certain limitations. The computational complexity of
the algorithm, which involves intensive clustering and probabilistic detection processes,
may pose challenges in resource-constrained environments, particularly in terms of the
processing power and energy consumption. Additionally, the algorithm’s performance in
extremely dense or large-scale networks might require further optimization to maintain
efficiency and scalability. Moreover, the BO-MAP model has been validated primarily
through simulations, and its performance in real-world deployments with dynamic and
unpredictable environmental conditions remains to be thoroughly tested. Addressing
these limitations is crucial for enhancing the algorithm’s applicability in a wider range of
network scenarios.

6. Conclusions and Future Work

The BO-MAP algorithm presented in this research significantly enhances the accuracy
and security of node localization in wireless sensor networks. By integrating AFM-BO
with clustering and probabilistic detection techniques, BO-MAP effectively identifies and
mitigates the impact of malicious anchor nodes. The extensive simulation results demon-
strate that BO-MAP consistently outperforms existing state-of-the-art methods in various
performance metrics, including the TPR, FPR, AUC, localization accuracy, energy con-
sumption, and robustness under varying attack intensities and network conditions. These
improvements make BO-MAP a robust and scalable solution for secure localization in
WSNs, with practical applications in critical areas such as security surveillance, environ-
mental monitoring, and disaster management. However, the computational complexity of
BO-MAP, while within acceptable limits, could present challenges in resource-constrained
environments, highlighting the need for further optimization.

Future work will focus on addressing the computational complexity of the BO-MAP
algorithm, particularly in large-scale and ultra-dense networks, where processing power
may be limited. Additionally, real-world deployments of BO-MAP will be essential to
validate its performance in practical WSN applications, providing insights into its effective-
ness under actual network conditions. Further research could also explore the integration
of BO-MAP with other security mechanisms, such as encryption and intrusion detection
systems, to create a more comprehensive security framework for WSNs. Adapting BO-MAP
to heterogeneous networks, where nodes have varying capabilities and energy resources,
will be another important area of exploration, ensuring that the algorithm can effectively
operate in diverse and complex network environments.
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