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Abstract: Background/Objectives: Glucagon-like peptide-1 (GLP-1) receptor is currently one of the
most explored targets exploited for the management of diabetes and obesity, with many aspects of its
mechanisms behind cardiovascular protection yet to be fully elucidated. Research dedicated towards
the development of oral GLP-1 therapy and non-peptide ligands with broader clinical applications is
crucial towards unveiling the full therapeutic capacity of this potent class of medicines. Methods: This
study describes the virtual screening of a natural product database consisting of 695,133 compounds
for positive GLP-1 allosteric modulation. The database, obtained from the Coconut website, was
filtered according to a set of physicochemical descriptors, then was shape screened against the crystal
ligand conformation. This filtered database consisting of 26,325 compounds was used for virtual
screening against the GLP-1 allosteric site. Results: The results identified ten best hits with the XP
score ranging from −9.6 to −7.6 and MM-GBSA scores ranging from −50.8 to −32.4 and another 58
hits from docked pose filter and a second round of XP docking and MM-GBSA calculation followed
by molecular dynamics. The analysis of results identified hits from various natural products (NPs)
classes, to whom attributed antidiabetic and anti-obesity effects have been previously reported. The
results also pointed to β-lactam antibiotics that may be evaluated in drug repurposing studies for
off-target effects. The calculated ADMET properties for those hits revealed suitable profiles for further
development in terms of bioavailability and toxicity. Conclusions: The current study identified
several NPs as potential GLP-1 positive allosteric modulators and revealed common structural
scaffolds including peptidomimetics, lactams, coumarins, and sulfonamides with peptidomimetics
being the most prominent especially in indole and coumarin cores.

Keywords: GLP-1; natural products; virtual screening; molecular dynamics; oral therapy; repurposing;
chemical scaffolds

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder that is characterized by hyper-
glycemia. It arises due to defects in insulin secretion, action, or a combination of both [1].
DM has been classified into four types. The most prevalent type is type 2 DM (T2DM),
which accounts for approximately 90% of all diabetes cases [2]. T2DM is characterized by
insulin resistance, where insulin is produced but the body’s cells do not respond effectively
to it [1,3]. DM has been associated with increased associative morbidity and mortality, often
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as a consequence of macro- and microvascular complications. DM patients are often subject
to a decline in overall health status and reduced quality of life due to the development of
subsequent co-morbidities [4,5]. It is anticipated that DM will rank as the seventh leading
cause of death worldwide by 2030 [6]. According to The International Diabetes Federation
(IDF), approximately 250 million individuals globally are currently affected by diabetes,
with projections indicating that this figure could rise to 435 million by the year 2030 [4].
The pathophysiological development of T2DM is intertwined with obesity and together
they represent one of most significant threats to public health globally. The steady global
increase in DM is largely driven by the rising obesity rates. Recent studies indicate that the
prevalence of obesity has nearly tripled worldwide over the past 40 years, with a notable
increase in the incidence of T2D associated with this trend [4,7]. In 2024, the prevalence of
obesity among adults was reported to be alarmingly high, with estimates suggesting that
over one billion individuals are affected globally [8].

Saudi Arabia has among the highest obesity and diabetes rates in the Middle East.
Recent data indicate that more than a third of adults are classified as obese and over 20% of
the Saudi population suffers from DM, with T2DM being most prevalent [9,10]. Estimates
indicate that approximately 7 million individuals in the population are living with diabetes,
while nearly 3 million are classified as pre-diabetic [11]. The World Health Organization
(WHO) has highlighted that Saudi Arabia ranks as the second highest in the Middle East
and seventh globally in terms of diabetes prevalence [12]. Projections suggest that these
rates are expected to more than double by the year 2030 [13].

Consequently, these rising prevalence rates necessitate comprehensive and focused
intervention strategies to mitigate both obesity and DM prevalence. The management of
DM involves a range of therapeutic agents designed to achieve glycemic control and reduce
blood sugar levels. These agents can be categorized into several classes, including insulin
agents, insulin secretion-promoting agents, agents that enhance insulin sensitivity, and
gastrointestinal glucose absorption inhibitors [14]. While these medications are effective in
managing blood glucose levels, they may also be associated with several adverse effects,
including hypoglycemia, weight gain, edema, gastrointestinal disturbances, and in some
cases, a lack of efficacy [14].

Recently, significant interest has been directed towards glucagon-like peptide-1 (GLP-1),
an insulinotropic gastrointestinal hormone secreted mainly by intestinal L-cells in response
to nutrients [15]. GLP-1 receptor agonists (GLP-1 RAs) are presented as a promising and
innovative method for managing diabetes as they are the first antidiabetic agent without
the drawbacks of hypoglycemia or weight gain [16]. These drugs work by mimicking the
effects of the GLP-1 hormone and help regulate blood sugar levels by stimulating insulin
release, slowing gastric emptying, and reducing appetite [16,17]. Few GLP-1 RAs have been
approved by the U.S. Food and Drug Administration (FDA) for the treatment of T2DM and, in
some cases, obesity. Some of the most well-known GLP-1 RAs include exenatide, liraglutide,
semaglutide, and dulaglutide [18–21]. Among these, semaglutide and liraglutide have both
received FDA approval for weight management in addition to diabetes control [22–24]. The
dual role of GLP-1 RAs in controlling blood sugar and promoting weight loss has made them
a popular option for managing T2DM and obesity, conditions that are often co-existing and
mutually aggravating.

Presently, GLP-1 RAs are mostly administered via subcutaneous injections as the oral
delivery of peptide therapeutics is limited due to challenges in bioavailability [25]. The
oral GLP-1 RAs are rapidly degraded by dipeptidyl peptidase IV (DPP-IV) and shown
to have a short half-life in vivo [26]. The search for oral GLP-1 therapies is necessary, as
they offer a more convenient alternative that has the potential to enhance patient accep-
tance and adherence compared to traditional injectable treatments. Multiple attempts
have been made to overcome the bioavailability challenge. For example, the oral form
of semaglutide was approved in 2019 by the FDA as the first oral GLP-1 RAs for the
management of T2DM [27]. It is co-formulated with the absorption enhancer sodium N-(8-
[2-hydroxybenzoyl] amino) caprylate (SNAC). Oral semaglutide has demonstrated similar
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benefits to injectable forms, including effective blood glucose control, weight reduction,
and a low risk of hypoglycemia [28,29]. However, specific administration guidelines must
be implemented. It must be taken in the morning, on an empty stomach, at least 30 min
before any food, beverage, or other oral medications, and with a maximum of 120 mL of
water to ensure adequate drug absorption [27,28,30]. Still, its oral bioavailability is less than
1% [27,31]. Moreover, it may induce slightly greater severity of nausea and gastrointestinal
side effects compared to injectable GLP-1 RAs [32].

An alternative approach to overcome the absorption inconvenience is by developing
non-peptide GLP-1 RAs. In recent years, some non-peptidic orthosteric GLP-1 RAs that
share the same binding sites as the endogenous ligand have been described [33–35]. One of
the first reported non-peptide GLP-1 RAs is the cyclobutane derivative, Boc5 [36]. However,
Boc5 showed poor drug-like properties and has not been further developed as an oral
drug [37]. Since then, other non-peptide GLP-1 RAs such as LY3502970 (orforglipron),
TT-OAD2, and PF-06882961 (OWL-833) succeeded in entering clinical trials [31,38–41].
Despite extensive research and development efforts, none of the candidates have success-
fully made it to market thus far. The high conservation of the orthosteric binding sites for
GLP-1 presents a significant challenge in achieving high selectivity for GLP-1 receptors.
Additionally, the elongated structure of the GLP-1 binding groove, coupled with the pres-
ence of numerous interactions along this groove, complicates the task of mimicking the
peptide–receptor interactions using non-peptide molecules [42].

Positive allosteric modulation represents another valuable strategy for targeting GLP-1
R. Positive allosteric modulators (PAMs) bind to an allosteric site rather than the orthosteric
binding site leading to enhance the binding affinity and/or efficacy of natural agonists
at their respective receptors [43]. PAMs offer a distinctive therapeutic opportunity due
to their ability to demonstrate probe dependence and biased signaling [44]. Allosteric
sites exhibit less conservation compared to orthosteric sites, and targeting these sites
can enhance subtype selectivity while minimizing side effects [45]. Among the PAMs
studied for the GLP-1 receptor, the compounds developed by Novo Nordisk and Eli
Lilly (BETP, also known as compound B) and its derivatives are the most extensively
researched [42]. Recently, they reported the identification of PAM of the GLP-1R that
engages in a cooperative interaction with both the receptor and GLP-1 [46]. This discovery
exposes a new druggable pocket for a small molecule and presents exciting opportunities
for developing oral agents that can activate GLP-1R [46].

In this study, we virtually screen natural products (NPs) databases to find non-peptide
GLP-1 allosteric modulators that can bind to this druggable pocket. Given the accessibility
and cost-effectiveness of NP, these compounds may provide a solution to the challenge
of identifying an oral GLP-1 therapeutic agent. Medicinal plants play a significant role in
the management of various diseases worldwide, including DM. According to literature,
around 400 plants and 700 plant-based formulations have been documented globally for
the management of DM [47–49]. Moreover, recent studies have identified some medicinal
plants with modulatory activity on GLP-1 [15,48–51]. At the present time, the use of
medicinal plants is increasingly recognized and accepted, not just seen as an alternative
approach, but as a mainstream option, due to the extensive research and the implementation
of supportive policies [52].

2. Materials and Methods
2.1. Materials and Software

The molecular modeling software Maestro by Schrödinger (Version 2024-4 software
release) [53] (RDIA Grant 12990-iau-2023-iau-R-3-1-HW: P.O. 6947 License key: 03cb87b8-
723c-4fec-9b8c-8a58137d7a76) was used for computational studies. The desktop worksta-
tion was equipped with Intel® Core™ i7-10700F Processor, Linux Ubuntu 22.10 operating
system and an RTX 5000 graphics card.
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2.2. Database Preparation

The natural products (NPs) database consisting of 695133 NPs was downloaded from
the Coconut website “https://coconut.naturalproducts.net/ (accessed on 20 June 2024)”.
The obtained structures were filtered using Schrödinger’s Canva based on their physico-
chemical descriptors including MW, logP, number of rings, total heavy atoms count, total
charge, number of H-donors, number of H-acceptors, number of rotatable bonds, total
charge, and QED score. Final database filtration comprised no violation of rule of 5 [54]
and a natural product-like (NPL) score <2 [55].

2.3. Shape Screening

Shape screening was performed using the shape screening tool on Schrödinger Mae-
stro. The filtered database was first energy minimized in Maestro using the OPLS3 force
field and a default value of 0.30 Å for rmsd for non-hydrogen atoms and then subjected
to shape screening using the structure of the crystal ligand as the reference structure. The
typed pharmacophore technique was used for volume scoring. This technique evaluates
the compounds based on their pharmacophore features. The shape similarity (SS) score
was used to rank the compounds and a threshold of 0.3 was utilized to further filter the
database for virtual screening [56].

2.4. Crystal Structures

The Cryo-EM structure of the GLP-1 receptor in complex with G protein, GLP-1 pep-
tide, and a positive allosteric modulator (PDB ID: 6VCB) were extracted from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) [57,58].

2.5. Protein Preparation

The protein structure was prepared for docking using the Protein Preparation Work-
flow on Maestro. The preparation and minimization process were carried out at a pH of
7.4, and with adjusting ionization states. Polar hydrogens were added, and non-essential
water molecules were deleted from the structures. Finally, the receptors were optimized
using OPLS3 force field. In the final stage, the optimization and minimization on the
ligand–protein complexes were carried out with the OPLS3 force field and the default
value for rmsd of 0.30 Å for non-hydrogen atoms was used [59]. The receptor grids were
then created at the center of the bound ligand utilizing a 1.00 van der Waals (vdW) radius.
The scaling factor for vdW radius was used, along with a cutoff of 0.25 for partial charges.
The binding sites were contained inside a grid box of 20 Å3 using default parameters and
without any constraints.

2.6. Ligand Library Preparation

The final filtered ligands were prepared using the built-in LigPrep tool in the virtual
screening workflow available in Maestro. The ligands’ three-dimensional structures were
created by adding missing hydrogens and generating the most likely ionization states at a pH
of 7 ± 2 using Epik. Ligands’ geometry was then optimized with the OPLS3 force field with
tautomer generation, desalting and producing 32 isomers per ligand at most [59]. The produced
conformations represented the initial input structures for the virtual screening workflow.

2.7. Validation of Molecular Docking

The validation of the molecular docking method was performed to evaluate the
accuracy of Maestro Glide to predict docking poses for the studied protein [60,61]. The
crystal ligand was docked into GLP-1 receptor using the same criteria used for library
screening. The docked pose with the lowest binding energy was aligned with the crystal
structure conformation using Maestro’s structure superimposition feature. The root mean
square deviation (RMSD) of the alignment was then calculated.

https://coconut.naturalproducts.net/
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2.8. Virtual Screening

The virtual screening workflow involved three steps: high throughput virtual screen-
ing (HTVS), standard precision docking (SP), and extra precision docking (XP). For each
docking protocol, flexible docking was selected with performing post-docking minimiza-
tion, generating three poses per compound and holding 10% of the best scoring compounds.
No more filters or constraints were applied in the docking process. The specific parameters
used were a van der Waals (vdw) radius scaling factor of 0.80 and a partial charge cut-off
of 0.15. The XP score was utilized to rank ligands and determine hit molecules. Molecular
mechanics–generalized Born surface area (MM-GBSA) binding free energy calculation was
applied from the virtual screening workflow to estimate the binding affinity for the top hit
compounds using the Prime MM-GBSA module.

2.9. Docked Poses Filter

The docking output from the SP and XP docking was subjected to docked poses
filtration based on previous experimental findings in the crystal structure using the pose
filter tool in Maestro. The filtration criteria utilized were selected to must be all fulfilled
and included contact with Leu 142 within 5 Å, π-π contact with Tyr 145 within 5 Å, H bond
with Lys 202 within 2.5 Å, maximum H bond distance of 2.5 Å, minimum H bond-donor
angle of 90 and H bond-acceptor angle of 60, and contact with Phe 12, Val 16, and Leu 20.

2.10. Molecular Dynamics

Molecular dynamic (MD) simulation studies were conducted using the Desmond
Module on Schrödinger’s Maestro platform as previously described. In brief, the ligand–
protein complex in its optimal docked configuration was first minimized using the Protein
Preparation Wizard and prepared for MD simulation using the system builder application of
Desmond. The simulation environment generated contained a water-based solvent system:
the TIP3P water model. An orthorhombic simulation box with a 10 Å buffer parameter from
the protein surface was generated; the entire system was neutralized by calculating and
adding the required number of counter ions and 0.15 M NaCl in order to attain isosmotic
conditions. MD simulation was carried out at a temperature and atmospheric pressure of
300 K and 1.013 bar, respectively. The simulation was run for a total of 100 nanoseconds
(1001 frames were saved in order to compile the trajectory). Analysis was run and results
presented using the simulation interaction diagram tool of Desmond.

2.11. ADMET Profiling

We used the pkCSM web server (http://biosig.unimelb.edu.au/pkcsm/prediction
accessed on 11 November 2024) [62], in predicting the ADMET absorption, distribution,
metabolism, excretion, and toxicity descriptors together with drug-likeness properties
for the finally selected potential inhibitors. A total of eight molecular descriptors were
generated in calculating the ADMET attributes in the potential KHK hits. In addition,
Swiss ADME www.swissadme.ch/ accessed 11 November 2024 [63] was implemented
for the calculation of the physicochemical properties, medicinal chemistry aspects, and
drug-likeness attributes.

3. Results and Discussion

A combined structure-based and ligand-based approach was used to identify ligands
that bind to the GLP-1 receptor allosteric site and enhance its activity with the aim of
discovering novel natural molecules that would assist in the management of diabetes
and obesity via GLP-1 modulation activity. The drug discovery protocol focuses on the
identification of orally active drug-like molecules to address the current limitation of
injection therapy. The results were analyzed to identify potential candidates for repurposing
and to elucidate common structure scaffolds for modulation. The results were also surveyed
for natural products with previously reported antidiabetic and anti-obesity effects to which
a GLP-1 receptor modulation would be postulated.

http://biosig.unimelb.edu.au/pkcsm/prediction
www.swissadme.ch/
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3.1. Database Preparation for Virtual Screening
3.1.1. Physicochemical Parameters and Drug-Likeness

The main goal of the current research is to identify orally active GLP-1 positive
allosteric modulators from natural sources. A filtration protocol was designed with a
focus on drug-like property calculations (Figure 1). The quantitative estimation of the
drug-likeness (QED) model developed in FAFDrugs4 combines several rules and principles
describing a target drug’s physicochemical properties, including rule of 3, rule of 5, Zinc,
CNS, and respiratory drug-likeness principles, combined together with a statistical analysis
of approved drugs [64]. The resulting chemical space was found to accommodate up to
90% of these oral drugs and thereby validated the filter thresholds. The Coconut database
is a comprehensive dataset of elucidated and predicted natural products (NPs) obtained
from public databases, combined with an intuitive web interface [65,66]. It incorporates
63 databases of NPs that include among others, ChemSpider NPs, NCI development
therapeutics, PubChem NPS, Zinc NPs, and the NPAtlas. This huge database contains
695,133 NPs on its latest release in 2024. The complete database was first downloaded from
the Coconut website and was then filtered using Schrödinger’s Canva through escaping
duplicate structures and applying a set of physicochemical descriptors that were initially
incorporated in the database, including MW 100–600, logP −3–6, number of rings < 6,
total heavy atoms count < 50, total charge −4–4, number of H-donors < 7, number of H-
acceptors < 12, number of rotatable bonds <11, and total charge −4–4. QED integrates eight
physicochemical properties: molecular weight, LogP, H-bond donors, H-bond acceptors,
charge, aromaticity, stereochemistry, and solubility in a score ranging from 0–1. The
molecule is considered more drug-like when its QED score is closer to 1 [67]. A QED
score > 0.2 with no violation of the rule of 5 permitted and a natural product-like (NPL) score
< 2 were applied for final database filtration. A confined database of 158,523 compounds
was obtained and was then subjected to further refinement using shape screening.
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3.1.2. Shape Screening

The resulting database containing 158,523 natural products was subjected to a shape
screening analysis on Schrödinger’s Canva against the experimental GLP-1 co-crystallized
allosteric modulator (Figure 2). Ligands were first minimized and then used as a query in
the 3D alignment with the filtered database entries with conformers generation. The results
of the shape screening were filtered with a cutoff shape similarity index below 0.3. This
resulted in a final database containing 26,325 compounds to be used for virtual screening
against the allosteric site of the GLP-1 receptor.
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3.2. Virtual Screening

The virtual screening of the final database involved three stages including high
throughput screening (HTVS), standard precision (SP), and extra precision (XP) dock-
ing. The protocol used a flexible docking method which incorporated post-docking energy
minimization and was set to keep 10% of the best scoring compounds in each phase while
retaining scoring hierarchy. The final output after the XP docking stage included 136 natural
products. These compounds were further subjected to a second round of XP docking using
the same criteria to produce a final hits list of 10 natural products. The binding energies
(MM-GBSA) were calculated for the best 10 hits and were correlated with their XP score
(Figure 3). The docking protocol was initially validated by calculating the RMSD of the
crystal and docked poses of the co-crystallized ligand that was found to be 1.77 Å, a figure
that establishes a good accuracy for glide to predict binding to the GLP-1 allosteric site.
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The XP scores ranged from −9.6 to −7.6, with a maximum and minimum score
difference of two units. Compared to the XP score (−3.3) of the crystal ligands, the
identified hits showed better affinity to the GLP-1 allosteric site based on their docking
scores. The calculated binding energies (MM-BBSA DG Bind) ranged from −50.8 to −32.4
and showed acceptable correlation with the XP scores especially for hits 1, 5, 6, 7, 8 that
have SP scores below −8.0 and MM-BBSA DG Bind below −40.0 (Table 1). Given the
fact that the hits are not a congeneric series, the ranking based on MM-GBSA DG Bind
are not expected to perfectly correspond with the ranking based on docking scores and
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The crystal ligand binds in a pocket formed by residues within the interface between
TM1 and TM2 and forms van der Waals (vdW) contacts with Leu 142 and π-π stacking
with Tyr 145 [46]. In a mutagenesis study by Bueno et al. [46], Leu 142 and Tyr 145 single
mutants reduced the potentiation effect of the allosteric modulator on GLP-1 binding to
its receptor in cAMP assays. The Lys 202 mutant also showed a slight reduction in the
potentiation effect. Triple mutation (Leu 142, Tyr 145, Lys 202) completely abolished the
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positive modulation activity and indicated π–π stacking is the primary interaction between
the ligand and Tyr 145 [46].

In addition to the ligand–receptor interactions, ligand–GLP-1 contacts were also found
to be detrimental. Establishing contacts with Phe 12, Val 16, and Leu 20 of the GLP-1
peptide is of great importance. Such interaction with Phe 12 of the GLP-1 peptide stabilizes
its vdW contact with Leu 384 and Leu 388 of the receptor. The vdW interactions between
the peptide and ligand are crucial for affinity as the affinity of the mutant peptide GLP-1
Phe 12, or Val 16, or Leu 20 can only be weakly potentiated by the allosteric modulator
when compared to native GLP-1 [46].

The analysis of the binding pattern and interactions with the key residues revealed that
the hits were able to bind the key residues Leu 142, Tyr 145, and Lys 202, combined or selected
ones. The analysis also uncovered the importance of other important residues in the allosteric
pocket that would increase the binding affinity of potential ligands and revealed additional
important binding interactions with residues including Ser 206, Glu 138, and Asp 198 (Table 2).
Interestingly, the hit compounds were able to establish H bonds with the key residues, an
interaction that was absent from the resolved crystal ligand to 3.3 Å.

Table 2. Binding residues and binding interactions of top 10 hits with GLP-1 allosteric site.

Hit No. *

Key Binding Residues and Binding
Interactions with GLP-1 Receptor **

Key Binding Residues and Binding
Interactions with GLP-1 Peptide **

Additional Binding Residues and
Binding Interactions with GLP-1

Receptor **

Leu 142 Tyr 145 Lys 202 Phe 12 Val 16 Leu 20 Ser 206 Glu 138 Asp 198

1 V V S V V V H S V

2 V V S V V V H S V

3 V H H V V V V V H

4 V H S V V V V V H

5 V V S V V V H V V

6 V V V V V V V V H

7 V V S V V V V V V

8 V C V V V V V - H

9 V V V V V V V H V

10 V H S V V V V V V

* Hits are arranged according to their XP score. ** Calculated in kJ/mol.

Comparative docking of the top ten hits with the crystal ligand showed that they
became deeper in the binding site and closer to the GLP-1 peptide. This resulted in better
interactions with key residues in both the GLP-1 receptor and GLP-1 peptide and an overall
better XP score (Figure 4).

Hit 1 docking pose showed interesting, centered orientation of its fused ring that
enabled vdW interactions with the receptor key residues; Leu 142, and Tyr 145 and the
peptide key residues; Phe 12, Val 16, and to a lesser extent Leu 20. Other important noted
electrostatic interactions involved a salt bridge with the receptor key residue Lys 202 and a
H bond with Ser 206 (Figure 5).
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Figure 5. (a) Three-dimensional representation of the binding interactions between hit 1 and GLP-
1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). Ligand atoms are shown as sticks
(carbon atoms colored in magenta) and the key residues are shown as sticks (carbon atoms colored in
green). Potential electrostatic interactions are represented as yellow dotted lines and are measured
in Angstrom. (b) Two-dimensional ligand–protein binding interactions between hit 1 and GLP-1
receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). H bond is represented as a purple arrow
and salt bridge as a blue line.
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The analysis was further extended to identify any compounds from the initial XP
hits (136 compounds), SP hits (1532 compounds), that showed considerable interactions
with the key residues and possess a good XP/Glide score. This was done through the
docked poses filter tool on maestro. The filtration comprised a set of criteria that must be
all fulfilled including contact with Leu 142 within 5 Å, π-π contact with Tyr 145 within
5 Å, H bond with Lys 202 within 2.5 Å, maximum H bond distance of 2.5 Å, minimum H
bond–donor angle of 90 and H bond–acceptor angle of 60, and contact with Phe 12, Val 16,
and Leu 20. The XP/SP score cutoff was set to −5.0 to ensure that other interactions are not
negatively impacting the overall binding.

The shortlisted compounds were docked again in the GLP-1 allosteric site using extra
precision and their binding energies were calculated to further assess their binding affinity.
All compounds from the XP docking that had a score of −3.3 (crystal ligand XP score)
and below with a negative binding energy are considered as final hits. This resulted in
identifying 58 more hits that exhibited the spotted interactions together with fulfilling
the XP score threshold and were found to be in the range −7.4 to −3.7 (Table 3). The
MM-GBSA ranged from −52.77 for hit 14 to −13.02 for hit 48 which indicates favorable
interactions between those hits and the GLP-1 allosteric site in terms of binding energies
(see Supplementary Materials).

Table 3. Key binding residues and binding interactions of initial XP and SP hits with GLP-1 allosteric site.

Hit No. * Coconut ID

Key Binding Residues and Binding
Interactions with GLP-1 Receptor **

Key Binding Residues and Binding
Interactions with GLP-1 Peptide ** Binding Calculations

Leu 142 Tyr 145 Lys 202 Phe 12 Val 16 Leu 20 XP Score
MM-

GBSA DG
Bind ***

11 CNP0106755.1 V H H V V V −7.361 −37.91

12 CNP0374155.0 V P S V V V −7.314 −42.18

13 CNP0589516.7 V H H V V V −7.285 −39.36

14 CNP0397387.1 V V H V V V −7.224 −52.77

15 CNP0459806.1 V V H V V V −7.177 −40.16

16 CNP0189210.0 V H H, S V V V −7.128 −33.88

17 CNP0128412.1 V V H, S V V V −7.01 −36.1

18 CNP0322671.0 V P H, S V V V −6.974 −39.96

19 CNP0568544.1 V H H V V V −6.928 −30.82

20 CNP0601342.1 V V H, S V V V −6.896 −36.72

21 CNP0550130.1 V P H V V V −6.745 −50

22 CNP0373056.1 V P H V V V −6.673 −38.72

23 CNP0199757.0 V V H, S V V V −6.661 −43.63

24 CNP0147599.0 V P H, S V V V −6.582 −38.88

25 CNP0500018.1 V H H, S V V V −6.548 −37.05

26 CNP0398016.0 V P V V V V −6.444 −40.23

27 CNP0406443.1 V C S V V V −6.417 −35.03

28 CNP0479169.0 V C H, S V V V −6.387 −48.67

29 CNP0397485.1 V V H V V V −6.383 −28.54

30 CNP0503600.0 V C S V V V −6.353 −46.59

31 CNP0509516.1 V P H V V V −6.294 −43.08

32 CNP0396587.1 V V S V V V −6.29 −33.45

33 CNP0356955.1 V V H, S V V V −6.288 −30.24

34 CNP0267548.6 V P H, S V V V −6.279 −42.9
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Table 3. Cont.

Hit No. * Coconut ID

Key Binding Residues and Binding
Interactions with GLP-1 Receptor **

Key Binding Residues and Binding
Interactions with GLP-1 Peptide ** Binding Calculations

Leu 142 Tyr 145 Lys 202 Phe 12 Val 16 Leu 20 XP Score
MM-

GBSA DG
Bind ***

35 CNP0333128.1 V H H V V V −6.21 −40.1

36 CNP0291690.0 V V V V V V −6.2 −35.25

37 CNP0215663.1 V V S V V V −6.111 −30.42

38 CNP0356563.1 V P S V V V −6.09 −43.02

39 CNP0497470.1 V V H, S V V V −6.09 −33.34

40 CNP0222232.2 V V S V V V −6.075 −37.67

41 CNP0010878.1 V P S V V V −6.069 −44.52

42 CNP0576443.0 V P S V V V −5.952 −29.69

43 CNP0228837.0 V V S V V V −5.911 −34.97

44 CNP0336583.6 V H S V V V −5.839 −31.27

45 CNP0545924.1 V V C V V V −5.815 −38.99

46 CNP0534848.0 V P H, S V V V −5.804 −45.32

47 CNP0322292.3 V V H, S V V V −5.742 −44.64

48 CNP0429573.0 V V S V V V −5.644 −13.02

49 CNP0137202.1 V V H, S V V V −5.617 −26.19

50 CNP0447500.2 V V S V V V −5.548 −30.9

51 CNP0082143.1 V V S V V V −5.521 −23.5

52 CNP0494492.1 V V H V V V −5.438 −34.27

53 CNP0072475.0 V H H, S V V V −5.437 −24.42

54 CNP0230498.0 V V C V V V −5.423 −31.45

55 CNP0593935.1 V V S V V V −5.401 −41.93

56 CNP0584646.1 V V V V V V −5.306 −26.65

57 CNP0426972.1 V V S V V V −5.271 −28.24

58 CNP0527671.1 V P S V V V −5.231 −29.94

59 CNP0409130.2 V H H V V V −5.205 −47.38

60 CNP0132892.1 V V V V V V −5.107 −35.67

61 CNP0342805.1 V V S V V V −5.047 −21.43

62 CNP0402166.0 V P H, C V V V −4.929 −45.77

63 CNP0026895.0 V H S V V V −4.734 −33.7

64 CNP0495360.0 V P S V V V −4.643 −26.87

65 CNP0369082.2 V V H V V V −4.49 −30.31

66 CNP0028540.0 V V V V V V −4.4 −27.38

67 CNP0496673.2 V P S V V V −3.917 −25.68

68 CNP0390445.1 V P H, S V V V −3.685 −33.48

* Hits are arranged according to their XP score. ** H: Hydrogen bond, S: Salt bridge, P: π-π stacking, C: π-Cation,
V: van der Waals. *** Calculated in kJ/mol.

Hit 12 exhibited similar interactions to hit 1 including salt bridge with Lys 202 and H bond
with Ser 206. However, unlike hit 1, hit 12 established the sought π-π stacking with Tyr 145. The
hit also maintained the vdW interactions with Leu 142, Phe 12, Val 16, and Leu 20 (Figure 6).
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Figure 6. (a) Three-dimensional representation of the binding interactions between hit 12 and GLP-1
receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). Ligand atoms are shown as sticks (carbon
atoms colored in magenta) and the key residues are shown as sticks (carbon atoms colored in green).
Potential electrostatic interactions are represented as yellow dotted lines and are measured in
Angstrom. (b) Two-dimensional ligand–protein binding interactions between hit 12 and GLP-1
receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). H bond is represented as a purple arrow,
salt bridge as a blue line, and π-π stacking as a green line.

Interestingly, Ampicillin (hit 44) was identified as a hit molecule, being able to establish
the key interactions. Ampicillin bound the key residue Tyr 145 with its β-lactam oxygen
through the H bond. Although this type of interaction with Tyr 145 was not mentioned in
the binding requirements of the crystal structure, more investigations need to be performed
to establish its feasibility and impact. Again, the salt bridge with Ser 202 and the H bond
with Ser 206 were maintained for Ampicillin. Additional H bond with Asp 198, as well as the
previously discussed interactions with Leu 142, Phe 12, and Val 16 were also noted (Figure 7).
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Figure 7. (a) Three-dimensional representation of the binding interactions between hit 44 (Ampicillin)
and GLP-1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). Ligand atoms are shown as sticks
(carbon atoms colored in magenta) and the key residues are shown as sticks (carbon atoms colored in
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in green). Potential electrostatic interactions are represented as yellow dotted lines and are measured
in Angstrom. (b) Two-dimensional ligand–protein binding interactions between hit 44 (Ampicillin)
and GLP-1 receptor allosteric site and GLP-1 peptide (PDB ID: 6VCB). H bond is represented as a
purple arrow, and salt bridge as a blue line.

In conclusion, the current docking studies not only identified new hits for GLP-1
positive allosteric modulation, but also shed the light about the importance of Ser 206 as a
crucial residue with Lys 202 and to a lesser extent Glu 138, and Asp 198 that would enhance
the affinity and selectivity of potential ligands.

3.3. Molecular Dynamics

The top hit molecules were selected based on a detailed visual analysis of the ligand–
protein interaction profile. Hit compounds which had a favorable binding score and
binding interactions with key residues in the binding pocket were selected for molecular
dynamic simulation studies which were essential to validate the stability and strength of
the binding interaction over a period of 100 nanoseconds. Of the 10 ligands used in MD
simulation studies, 3 exhibited a robust and stable binding pattern within the allosteric
binding pocket of the GLP-1 protein. Root mean square deviation (RMSD) plot analysis was
used to measure the average displacement of atoms for a particular frame with respect to a
reference frame. The analysis revealed a stable binding profile, as indicated by an average
RMSD fluctuation range within 4 Å of the ligand with reference to the protein backbone
throughout the simulation period. Figure 8 shows the RMSD plots for the top selected
three compounds expressing the favorable binding profile with key residues in the binding
pocket and also suited for drug repurposing: compound 3 (CNP0086660.2), compound 5
(CNP0039190.2), and compound 2 (CNP0549010.1). While a certain degree of fluctuation
is anticipated within the simulation period of an allosteric binding pocket comprised the
GLP-1 protein and its interacting peptide, the hit compounds appeared to maintain key
interactions highlighted in Table 3 throughout a significant period of the 100 ns simulation
period as depicted in Figures 9–11. Of significance, the protein backbone in Figure 8
appears to express an expected degree of fluctuation but this too becomes stabilized within
a tight range overtime. For further verification, the energy calculations were repeated
for the hit compounds after molecular dynamic simulation runs using the final frame of
the simulation trajectories. For the hit compounds, compound 3 and compound 2 and
compound 5, the MM-GBSA calculations were found to be −39.22, −38.18, and −48.15,
respectively; these results were found to be comparable to initial energy calculations using
the optimal docking orientations.

Hit 3 of the macrolide class exhibits one of the most favorable binding profiles, in-
teracting with a number of residues of the GLP-1 allosteric binding pocket as shown in
Figure 9. Notably, GLP-1 receptor binding residues Lys 197 and Ser 206 form a stable
hydrogen bond with the ligand for over 70% and 50% of the simulation period, respectively,
in addition to a stable hydrogen bond formed with the GLP-1 peptide residue Tyr 19 which
was stable for over 60% of the simulation period. All significant interactions are represented
in Figure 9A,B which highlight the residues with the strongest ligand interactions stable
throughout the entire simulation period. Figure 9C depicts all significant interactions
displayed by the ligand and interacting residues occurring for over 10% of the simulation
period. Macrolides are a class of broad-spectrum antibiotics which are granted FDA ap-
proval for the management of a wide range of infectious disease conditions. The approval
status and safety profile of this class of medications renders it particularly amenable to
subsequent repurposing studies.
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Figure 8. Root mean square deviation (RMSD) graphs for the hit compounds (A): compound 3
(CNP0086660.2), (B): compound 5 (CNP0039190.2), (C): compound 2 (CNP0549010.1). The green graph
graph shows fluctuations in the protein backbone from the initial reference point while the red shows
the ligand fluctuations. The RMSD profile of the ligand with respect to its initial fit to the protein
binding pocket indicates that all ligands did not fluctuate beyond a 2–7 Å range.

MD simulation results for hit 5 (CNP0039190.2) in Figure 10 show significant interac-
tions with the key binding residues of the allosteric pocket. Key binding residues Tyr 145
forms hydrophobic interactions in the form of π-π stacking with the compound whereas a
complex interaction is observed with Lys 202 and the terminal COO– group of hit 5. The
interactions with the GLP-1 receptor are observed for over 30% of the simulation period.
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Figure 9. Interaction diagram of hit compound 3 (CNP0086660.2) with the GLP-1 allosteric binding
pocket. (A) Interaction of compound 3 with residues in each trajectory frame. The depth of color
indicating the higher the interaction with contact residues; (B) the protein–ligand contacts showing
the bonding interactions fraction and the nature of the interactions; (C) graphical 2D illustration of
compound 3 interacting with the protein residues during MD simulation.
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Figure 10. Interaction diagram of hit compound 5 (CNP0039190.2) with the GLP-1 allosteric binding
pocket. (A) Interaction of compound 5 with residues in each trajectory frame. The depth of color
indicating the higher the interaction with contact residues; (B) the protein–ligand contacts showing
the bonding interactions fraction and the nature of the interactions; (C) graphical 2D illustration of
compound 5 interacting with the protein residues during MD simulation.
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Figure 11 shows the binding profile of hit 2 (CNP0549010.1) with residues in the
allosteric GLP-1 receptor binding pocket. Hit 2 forms moderate interactions with the key
binding residues Tyr 145 and Lys 202 of the receptor binding pocket: hydrophobic and water
bridge interaction with Tyr 145 and a complex hydrogen and water bridge interaction with
Lys 202. Additionally, a complex hydrogen bond and water bridge interaction is observed
between hit 2 and the GLP peptide residue Gln 23 for over 20% of the simulation period.
While the strength of the interaction is relatively weaker compared to other hit compounds,
this hit remains significant owing to its classification as a beta lactam compound. Beta
lactam skeletons form the essential component of the most potent class of antibiotics
clinically available. They are widely used and have an excellent safety profile making this
compound a desirable target for further drug repositioning studies.
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Figure 11. Interaction diagram of hit compound 2 (CNP0549010.1) with the GLP-1 allosteric binding
pocket. (A) Interaction of compound 2 with residues in each trajectory frame. The depth of color
indicating the higher the interaction with contact residues; (B) the protein–ligand contacts showing
the bonding interactions fraction and the nature of the interactions; (C) graphical 2D illustration of
compound 2 interacting with the protein residues during MD simulation.

3.4. Literature Analysis

The hit compounds were grouped according to their natural product classification and
were surveyed in the literature for their biological function to identify potential correlations
with postulated GLP-1 modulation activity. The following classes have been identified and
shortlisted from the literature given their favorable pharmacodynamic profile:

1. Sesquiterpenoids (Hit Numbers: 6, 9, 17, 63), particularly drimane-type sesquiterpenoids
from Zygogynum pancheri (PMID: 32603660), have demonstrated significant antidiabetic
and lipid-lowering effects, including α-amylase and lipase inhibition, while sesquiter-
penoids from Hieracium and Pilosella species (PMID: 34358652) and Cichorium species
(PMID: 38900250) exhibit broad pharmacological activities such as anti-inflammatory,
antioxidant, anti-obesity, and hepatoprotective properties, emphasizing their potential
as therapeutic agents in managing metabolic and chronic diseases.

2. Steroidal hormones (Hit Numbers: 7, 24) like dehydroepiandrosterone (DHEA) (PMID:
31586606), phytochemicals from Broussonetia species (PMID: 36014582), Brassica oler-
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acea var. capitata (white cabbage) (PMID: 33430729), Morus alba (PMID: 36877269),
Cichorium species (PMID: 38900250), and endocrine therapies (PMID: 20210723)
demonstrate significant antidiabetic, anti-obesity, antioxidant, and anti-inflammatory
properties, with applications ranging from traditional medicine to modern pharmaco-
logical interventions, while highlighting safety considerations such as QTc prolonga-
tion in metabolic disease management.

3. Coumarins (Hit Numbers: 11, 12, 35, 66) found in Sophora species (PMID: 34907492),
Ponciri Fructus (PMID: 36615447), Hieracium and Pilosella species (PMID: 34358652),
and Cichorium species (PMID: 38900250) exhibit significant pharmacological activities,
including antidiabetic, anti-inflammatory, anti-obesity, antioxidant, hepatoprotective,
and anticancer effects, highlighting their potential as bioactive agents in traditional
medicine and modern therapeutic applications.

4. Phenylpropanoids (Hit Numbers: 16, 35, 41, 50, 60) from the Broussonetia genus
(PMID: 36014582), particularly isolated from Broussonetia papyrifera, Broussone-
tia kazinoki, and Broussonetia luzonica, exhibit diverse pharmacological activities,
including antitumor, antioxidant, anti-inflammatory, antidiabetic, and anti-obesity
effects, highlighting their significant therapeutic potential and the need for further
research into their mechanisms of action and clinical applications.

5. Xanthones (Hit Number: 36) particularly from Garcinia mangostana and Garcinia
cambogia (PMIDs: 28656594, 25732350), exhibit promising pharmacological activi-
ties, including anti-obesity, antidiabetic, anti-inflammatory, and antioxidant effects,
while their isoprenylated derivatives target multiple signaling pathways involved
in metabolic and degenerative diseases (α-mangostin, PMID: 35904170; Anthocleista
species, PMID: 26432351), positioning them as valuable bioactive compounds for
developing therapies against chronic conditions.

6. Phenolic compounds (Hit Number: 50) from diverse natural sources, including Piper
species (PMID: 39277979), Vaccinium myrtillus leaves (PMID: 30052516), Hippophae
rhamnoides fruit and seeds (PMID: 38358042), Prunus armeniaca leaves (PMID: 34942972),
persimmon leaves (PMID: 36840285), elderberries (Sambucus nigra) (PMID: 38998923),
Platycodon grandiflorum (PMID: 39072195), fermented soy products (PMID: 36014024),
peanut seeds (PMID: 38000103), potatoes (Solanum tuberosum) (PMID: 35453288), fenu-
greek seeds (PMID: 31286789), and Origanum species (PMID: 32789910), exhibit signif-
icant antidiabetic, anti-obesity, anti-inflammatory, antioxidant, hepatoprotective, and
cardioprotective effects, supporting their potential as bioactive agents in metabolic and
chronic disease management through mechanisms such as enzyme inhibition, oxidative
damage prevention, and modulation of inflammatory pathways.

7. Lignans (Hit Number: 60), particularly secoisolariciresinol diglucoside (SDG) from
Linum usitatissimum (flaxseed) (PMID: 33535948), exhibit diverse pharmacological
activities, including antioxidant, antidiabetic, anti-obesity, anti-inflammatory, anti-
cancer, antimicrobial, hepatoprotective, and renoprotective effects, positioning them
as potent therapeutic agents for managing chronic diseases, while further research is
needed to fully understand their mechanisms of action and therapeutic potential.

8. The results also identified compounds for potential repurposing with β-lactam an-
tibiotics being the most prominent. Valclavam (hit 2), Cyclothiocurvularin B (hit 3),
Azidocillin (hit 25), Ampicillin (hit 44), Metampicillin (hit 46), Timocillin (hit 67) were
found to be, and according to this study, GLP-1 positive allosteric ligands. This finding
would represent a base for future research on this class of antibiotics to prove their
preclinical and clinical effectiveness in this context as well as identifying a molecular
basis for their GIT-related side effects and loss of appetite.

3.5. Scaffolds Identification for GLP-1 Allosteric Modulation

Novel scaffolds for potential GLP-1 positive allosteric modulation were identified
from the final XP hits as well as from the original SP and XP docking shortlists after docked
poses filtration and XP redocking and MM-GBSA calculations (Figure 12). Those final hits
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were structurally analyzed to identify common structural scaffolds. These scaffolds would
serve as lead compounds to design and develop new GLP-1 allosteric modulators. The list
encompassed a variety of compounds from different natural products classes including
β-lactams, alkaloids, steroids, sesquiterpenoids, macrolides, and polyketides that possess
diverse chemical scaffolds. Peptidomimetic scaffolds were the most frequent scaffolds
among the identified hits (36 compounds out of 68 compounds). In these compounds, the
peptide moiety was attached to various chemical entities including indole derivatives (hits;
1, 13, 14, 19, 20, 22, 27, 29, 32, 33, 40, 47, 49, 52, 54, 55, 62), coumarin derivatives (hits; 11,
12, 35, 39, 42), azines and benzazines derivatives (hits; 8, 10, 14, 38, 53, 59, 65, 68), and
azoles derivatives (hits; 23, 45, 56). The peptide moiety was also found to be incorporated
in a cyclic structure including hits; 14, 21, 22, 27, 52, 53, 55, 59 as well as a chain structure
including hits; 1, 2, 5, 10, 11, 12, 13, 19, 20, 25, 29, 32, 33, 35, 37, 38, 40, 43, 44, 45, 46, 47, 49, 62,
64, 65, 67, 68. β-lactams which could also be considered as cyclic peptidomimetic structure
were among the most frequently identified hits (hits; 2, 25, 44, 46, 67). A significant number
of coumarin derivatives were also identified including hits; 36, 39, 41, 42, 66. Sulfonamide
derivatives were represented by five hits including hits; 31, 34, 37, 56, 59. In conclusion,
the structure analysis of the identified hits revealed common structural scaffolds including
peptidomimetics, β-lactams, coumarins and sulfonamides, among which peptidomimetics
possessed the most significant frequency especially in indole and coumarin cores.
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Figure 12. Chemical structures of identified novel scaffolds for GLP-1 positive allosteric modula-
tion with their hit no (hits are arranged according to their XP/Docking score), Coconut ID, and
XP/Docking score.

3.6. ADMET and Drug-Likeness Profiling

Some interesting features were shown for the top ten hits from the ADMET predicted
calculations that influence pharmacokinetic and pharmacodynamic properties (Table 4).
Water solubility was highly variable among the hits, with the lowest for hit compound
9 at −4.41 log mol/L, which may indicate potential formulation challenges. Intestinal
absorption is notably higher for compounds 5 to 9, exceeding 90%, which suggests that these
molecules have a favorable bioavailability profile. On the other hand, poor absorption was
observed with compounds 2 and 4, probably due to their low solubility and permeability.
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In the Caco-2 permeability test, compound 9 was identified as the most permeable, with a
log Papp of 1.376, further supporting its potential for effective gastrointestinal absorption.

Table 4. ADMET profiling of the best 10 hits.

ADMET Parameters 1 2 3 4 5 6 7 8 9 10

Absorption

Water solubility (log mol/L) −1.88 −2.24 −3.1 −2.01 −4.12 −3.561 −2.929 −3.808 −4.441 −2.97

Caco2 permeability (log Papp
in 10−6 cm/s) 0.14 −0.31 −0.17 −0.49 0.67 1.337 1.027 1.21 1.376 0.108

Intestinal absorption (human)
(% Absorbed) 42.81 32.3 45 25.50 93.15 95.325 96.606 96.34 91.364 61.309

P-glycoprotein substrate
(Yes/No) NO Yes Yes Yes Yes No No Yes No No

Distribution

BBB permeability (log BB) −0.71 −1.007 −1.38 −1.09 −0.04 −0.007 −0.313 0.142 0.098 −0.953

CNS permeability (log PS) −3.18 −4.15 −3.80 −3.92 −2.132 −2.176 −2.333 −2.135 −3.22 −3.414

Metabolism

CYP2D6 substrate (Yes/No) No No No No No No No Yes No No

CYP3A4 substrate (Yes/No) No No No No Yes Yes Yes Yes No No

CYP1A2 inhibitor (Yes/No) No No No No Yes No No No No No

CYP2C19 inhibitor (Yes/No) No No No No No No No No Yes No

CYP2C9 inhibitor (Yes/No) No No No No No No No No No No

CYP2D6 inhibitor (Yes/No) No No No No No No No No No No

CYP3A4 inhibitor (Yes/No) No No No No No No No No No No

Excretion

Total Clearance
(log mL/min/kg) 0.93 1.04 0.225 0.524 0.196 1.101 0.506 0.762 −0.374 1.05

Renal OCT2 substrate
(Yes/No) No No No No No Yes No Yes No No

Toxicity

AMES toxicity (Yes/No) No No No No No No No No No No

Max. tolerated dose (human)
(log mg/kg/day) 0.89 1.50 0.847 −0.224 0.039 −0.465 0.2 −0.741 0.171 0.906

hERG I inhibitor (Yes/No) No No No No No No No No No No

Hepatotoxicity (Yes/No) Yes Yes Yes No Yes No No No No Yes

Compounds 8 and 9 may cross the blood–brain barrier considering log BB > 0 given the
data for BBB permeability distribution, thus standing out as candidates for CNS-targeting
therapies. However, the value for CNS permeability logs PS for all compounds remained
low, reflecting restricted access to the tissues of the central nervous system. Compound 5
showed the most favorable CNS permeability characteristics, recorded at −2.132 log PS.
These results emphasize the importance of refining the distribution parameters during the
lead optimization phase, depending on the target of the intended therapy.

Metabolic interactions with the cytochrome P450 enzymes are variable amongst the
compounds. Notably, compound 8 was a substrate of CYP2D6 and CYP3A4, possibly
suggesting potential for metabolic interactions. The remaining compounds interacted
considerably less with the enzymes, and in most instances, one would not predict clinically
significant drug–drug interactions. Compound 9 also inhibited CYP2C19 and may affect its
metabolism; in vivo investigation is required.

The excretion analysis, judged from total clearance parameters, identified six exhibit-
ing a high clearance value of 1.101 log mL/min/kg; this outcome indicates a possibly
short half-life. However, compound 9 revealed negative clearance values, suggesting a
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possible accumulation and a long systemic exposure. Renal excretion studies revealed that
compounds 6 and 8 are substrates for renal OCT2, indicating that active transport plays a
primary role in their elimination processes.

Toxicity analyses revealed that all the hit compounds expressed no significant toxicity
since none were AMES toxic nor inhibited the hERG channels. However, compounds 1,
2, 3, 5, and 10 were hepatotoxic, which should be well considered in further stages of
development. The maximum tolerated dose was predicted; the highest tolerance was for
compound 2, calculated as 1.50 log mg/kg/day, while the lowest was for 8.

The selected molecules in this study were diverse in their physicochemical, drug-
likeness profiles, and medicinal chemistry attributes (Table 5). The MW of the compounds
ranged between 264.36 and 410.44 g/mol, hence within the acceptable threshold for small
molecules that would enhance permeability and good bioavailability. Lipophilicity was
represented by log P values ranging from −1.40 to 3.37. This indicated an appropriate range
of hydrophilic–lipophilic properties, supporting the solubility and membrane permeability
of most compounds. The number of hydrogen bond acceptors and donors corresponded
to Lipinski’s Rule of Five, showing that the structures would be in compliance with the
criteria for drug-likeness. At the same time, rotatable bonds and molar refractivity values
support these molecules for conformational flexibility and molecular interaction.

From a drug-likeness perspective, all the compounds passed Lipinski’s rule without
violation and would thus be orally bioavailable. Veber and Egan showed some alerts due
to high topological polar surface area (TPSA), above the threshold in some cases. This
minor deviation does not disturb the overall good bioavailability score in the dataset, as
the majority of the molecules showed bioavailability scores above 0.55. Although the
Ghose and Muegge filters also occasionally violated other parameters, such as XLOGP3
and weight, these were molecule-specific and hence too weak to overpower their overall
potential to be good candidates.

Medicinal chemistry analysis showed that none of the compounds had any PAINS
alerts; hence, none of these compounds was likely to show false-positive activity upon
high-throughput screening. Brenk alerts were seen for some of the molecules; these had
structural features like phthalimide which may need further optimization. It was noticed
that more than half of these molecules congregate under lead-likeness criteria, while a few
exceptions took values above the threshold in rotatable bonds and/or molecular weight.
Synthetic accessibility scores spanned a medium range from 3.92 to 5.58, reflecting the fact
that it would not result in considerable problems.

Table 5. Physicochemical properties, drug-likeness, and medicinal chemistry prediction of the best 10 hits.

Property 1 2 3 4 5 6 7 8 9 10

Physicochemical properties

Molecular
Weight
(g/mol)

310.35 329.353 410.44 388.37 383.46 264.36 337.41 308.37 279.44 347.41

LogP 1.76 −1.40 1.25 0.16 3.37 2.94 2.78 2.18 3.15 1.38

#Acceptors 6 6 8 8 4 3 3 3 1 4

#Donors 2 4 4 5 1 1 3 2 2 2

#Heavy atoms 22 23 28 28 27 19 25 23 19 25

#Arom. heavy
atoms 0 0 6 10 12 0 5 6 0 6

Fraction Csp3 0.80 0.79 0.53 0.35 0.33 0.81 0.57 0.42 0.73 0.61

#Rotatable
bonds 5 7 1 3 5 2 1 1 3 6

Molar
refractivity 80.13 81.92 101.34 97.02 109.12 74.14 93.61 95.75 86.24 97.55

TPSA (Å2) 109.93 142.19 166.66 136.68 92.14 46.53 73.32 52.57 82.50 91.64
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Table 5. Cont.

Property 1 2 3 4 5 6 7 8 9 10

Drug-likeness

Lipinski alert
Yes;

0
violation

Yes;
0 violation

Yes;
0 violation

Yes;
0 violation

Yes;
0

violation
Yes Yes Yes Yes Yes

Ghose Yes

No; 1
violation:

WLOGP <
−0.4

Yes Yes Yes Yes Yes Yes Yes Yes

Veber Yes
No;

1 violation:
TPSA > 140

No;
1 violation:
TPSA > 140

Yes Yes Yes Yes Yes Yes Yes

Egan Yes
No; 1

violation:
TPSA > 131.6

No; 1
violation:

TPSA > 131.6

No; 1
violation:

TPSA > 131.6
Yes Yes Yes Yes Yes Yes

Muegge

No; 1
violation:
XLOGP3

< −2

No; 1
violation:

XLOGP3 < −2

No; 1
violation:

TPSA > 150
Yes Yes Yes Yes Yes Yes Yes

Bioavailability
Score 0.55 0.55 0.11 0.56 0.56 0.55 0.85 0.55 0.55 0.56

Medicinal chemistry

PAINS 0 0 0 0 0 0 0 0 0 0

Brenk
1 alert:

phthali-
mide

0 0 0 0 0 1 1 3 0

Leadlikeness Yes
No; 1

violation:
Rotors > 7

No; 1
violation: MW

> 350

No; 1
violation: MW

> 350

No; 2
violations:

MW >
350,

XLOGP3
> 3.5

Yes Yes Yes Yes Yes

Synthetic
accessibility 3.92 4.48 5.15 5.09 4.23 5.00 5.58 4.74 4.74

4. Conclusions

We performed a virtual screening of 695,133 natural products for GLP-1 positive
allosteric modulation. The initial database was filtered to ensure oral bioavailability and
drug-likeness as well as shape similarity to the crystal ligand. The final database was then
screened against the GLP-1 allosteric binding site using three different docking protocols
including HTVS, SP, and XP. The results identified the 10 best hits from the initial round,
and an additional 58 hits from a second XP round after filtering the conformational poses
of the initial XP and SP shortlists based on identified experimental binding criteria. The
MM-GBSA were calculated for the 68 hits and demonstrated favorable binding interactions
as evident from the exclusively negative binding energies. Molecular dynamics further
substantiated the favorable binding profile of the selected hits. The results also highlighted
the importance of other residues in the active site that might be crucial for the allosteric
binding including Ser 206, Glu 138, and Asp 198. The results identified several hits
with previously reported antidiabetic and anti-obesity effects including Sesquiterpenoids,
Coumarins, and Phenylpropanoids, NP classes. We were also able to shortlist some suitable
compounds for repurposing including Valclavam, Cyclothiocurvularin B, Azidocillin,
Ampicillin, Metampicillin, and Timocillin.

The current study also suggests, after thorough structural analysis, that peptidomimet-
ics are preferential scaffolds for GLP-1 positive allosteric modulation. The most common
structural features included di- or tri-peptide structure within indole or coumarin cores.
These findings, with the proper design of the peptide portion and the proper selection
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of the non-peptide moiety, may represent attractive lead compounds for preclinical and
clinical development.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics16121607/s1, MM-GBSA Data for the hit compounds.
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