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Abstract: Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking
established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs),
comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably
high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV
regions are often overlooked in genome-wide association studies because of their highly repetitive
nature, low sequence coverage, and decreased sequencing quality. Using targeted whole-genome
sequence analysis in conjunction with high sequencing depth to overcome methodological limita-
tions, we identified associations of specific HERV variants with PTC. Analyzing WGS data from
138 patients with PTC generated through The Cancer Genome Atlas project and 2015 control samples
from the 1000 Genomes Project, we examined the mutational variation in HERVs within a 20 kb
radius of known cancer predisposition genes (CPGs) differentially expressed in PTC. We discovered
15 common and 13 rare germline HERV variants near or within 20 CPGs that distinguish patients with
PTC from healthy controls. We identified intragenic–intronic HERV variants within RYR2, LRP1B,
FN1, MET, TCRVB, UNC5D, TRPM3, CNTN5, CD70, RYR1, RUNX1, CRLF2, and PCDH1X, and three
variants downstream of SERPINA1 and RUNX1T1. Sanger sequencing analyses of 20 thyroid and
5 non-thyroid cancer cell lines confirmed associations with PTC, particularly for MSTA HERV-L
variant rs200077102 within the FN1 gene and HERV-L MLT1A LTR variant rs78588384 within the
CNTN5 gene. Variant rs78588384, in particular, was shown in our analyses to be located within a POL2
binding site regulating an alternative transcript of CNTN5. In addition, we identified 16 variants that
modified the poly(A) region in Alu elements, potentially altering the potential to retrotranspose. In
conclusion, this study serves as a proof-of-concept for targeted variant analysis of HERV regions and
establishes a basis for further exploration of HERVs in thyroid cancer development.

Keywords: human endogenous retrovirus; HERV; Alu elements; retroelements; papillary thyroid
cancer; anaplastic thyroid cancer; targeted variant analysis; whole genome sequencing; GWAS;
in vitro

1. Introduction

Papillary thyroid cancer (PTC), accounting for 85% of all thyroid cancers [1], has
been among the fastest-growing cancers worldwide, largely due to increased incidental
detection, attributable to improved imaging and more sensitive diagnostic procedures [2].
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In the US alone, incidence tripled between 1990 and 2020 [3], with rates plateauing between
13.7 and 14.9 per 100,000 person-years in the years since (Figure 1) [2,4]. While conservative
diagnostics have slowed incidence, morbidity and mortality from late-stage and metastatic
disease continue to rise, with death rates having increased by over 40% since 2000 [5–9].
Furthermore, thyroid cancers remain among the seven most common cancers in women,
with 4 times higher prevalence in females under 50 compared to males [2]. In addition,
thyroid cancer incidence varies by race/ethnicity, from 8.4 per 100,000 person-years in
Non-Hispanic Black people to 15.5 in Non-Hispanic Asian populations [4].

Microorganisms 2024, 12, x FOR PEER REVIEW 2 of 27 
 

 

1. Introduction 
Papillary thyroid cancer (PTC), accounting for 85% of all thyroid cancers [1], has been 

among the fastest-growing cancers worldwide, largely due to increased incidental detec-
tion, attributable to improved imaging and more sensitive diagnostic procedures [2]. In 
the US alone, incidence tripled between 1990 and 2020 [3], with rates plateauing between 
13.7 and 14.9 per 100,000 person-years in the years since (Figure 1) [2,4]. While conserva-
tive diagnostics have slowed incidence, morbidity and mortality from late-stage and met-
astatic disease continue to rise, with death rates having increased by over 40% since 2000 
[5–9]. Furthermore, thyroid cancers remain among the seven most common cancers in 
women, with 4 times higher prevalence in females under 50 compared to males [2]. In 
addition, thyroid cancer incidence varies by race/ethnicity, from 8.4 per 100,000 person-
years in Non-Hispanic Black people to 15.5 in Non-Hispanic Asian populations [4]. 

 
Figure 1. Trends in incidence of thyroid cancer overall and for histological subtypes. The number of 
new cases and deaths were obtained from the most recent SEER data (1975–2021) [10]. Incidence 
rates are marked by black or blue lines and correspond to the left y-axis, while mortality is marked 
in red and corresponds to the right y-axis. 
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crease in morbidity (odds ratio = 2.56), and recurrent PTC, found in over 25% of patients, 
is frequently fatal, with 40–60% mortality in older (>45) adults [1,6,11]. PTC tumors can 
also unpredictably progress to anaplastic thyroid carcinoma, significantly decreasing sur-
vival [12]. To date, no established causes or early diagnostics exist for PTC, highlighting 
the need for novel risk factors and biomarker research. PTC, with its low somatic mutation 
density in exome sequences [13], serves as a suitable disorder for the initial study of the 
contributions of non-exonic sequences to cancer development. The identification of only 
seven genes with significantly different mutation frequencies in PTC [13] in the presence 
of over 400 cancer-related genes with significantly different expression levels suggests that 
variation in other elements, such as human endogenous retroviruses (HERVs), may con-
tribute to disease [14]. 

Advances in whole-genome sequencing have enabled analysis of previously unde-
tected HERVs, which comprise 8% of the genome, and their relationships to disease. Con-
sequently, HERVs have been associated with numerous health outcomes, including sev-
eral cancers [11,15–27]. While <1% of HERV loci have known functions [28,29], recent find-
ings indicate their active involvement in beneficial functions, signifying a paradigm shift 
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Often asymptomatic, PTC is frequently diagnosed late, increasing metastasis risk
(50%–75%) [1]. Despite high overall survival, treatment of PTC generates a substantial
increase in morbidity (odds ratio = 2.56), and recurrent PTC, found in over 25% of patients,
is frequently fatal, with 40–60% mortality in older (>45) adults [1,6,11]. PTC tumors
can also unpredictably progress to anaplastic thyroid carcinoma, significantly decreasing
survival [12]. To date, no established causes or early diagnostics exist for PTC, highlighting
the need for novel risk factors and biomarker research. PTC, with its low somatic mutation
density in exome sequences [13], serves as a suitable disorder for the initial study of the
contributions of non-exonic sequences to cancer development. The identification of only
seven genes with significantly different mutation frequencies in PTC [13] in the presence
of over 400 cancer-related genes with significantly different expression levels suggests
that variation in other elements, such as human endogenous retroviruses (HERVs), may
contribute to disease [14].

Advances in whole-genome sequencing have enabled analysis of previously unde-
tected HERVs, which comprise 8% of the genome, and their relationships to disease. Con-
sequently, HERVs have been associated with numerous health outcomes, including several
cancers [11,15–27]. While <1% of HERV loci have known functions [28,29], recent findings
indicate their active involvement in beneficial functions, signifying a paradigm shift in
thought about their contributions to health and disease. Some putative physiological func-
tions include immune regulation [27,30,31], cell differentiation [32,33], cell fusion [34,35],
and transcriptional regulation [36–39], all key hallmarks in cancer development. Studies of
the beneficial roles of HERVs are of major importance, as many normal tissues—contrary
to prevailing thought—express a significant number of HERV genes [40]. Uniquely, healthy
thyroids express high baseline levels of HERVs similar to some tumors, indicating possible
inactivation of beneficial HERV functions in PTC [40,41].
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Furthermore, HERV long terminal repeats (LTRs), which flank the viral genes, har-
bor over 64% of all human-specific transcription factor binding sites (TFBSs) in human
embryonic stem cells [42]. In many cancers, HERV LTRs have been observed to drive cancer-
specific or tissue-specific transcripts, including oncogenes such as ADAM metallopeptidase
with thrombospondin type 1 motif 5 (ADAMTS5), which is specifically controlled by the
LTR mammalian LTR transposon 1J2 (MLT1J2) in thyroid tissues [43]. A study by Chang
et al. (2019) linked somatic single nucleotide variants (SNVs) in HERV genes to various can-
cers, including thyroid cancer, while other analyses identified polymorphic HERV insertion
sites uniquely associated with thyroid malignancies [44,45].

Even though HERVs have been observed to be polymorphic, HERV retrotransposition
is controversial since sequences such as Alu elements in humans have higher abundance
and mobility [46–49]. Alu elements belong to the class of short interspersed elements
(SINEs). Alu elements are considered the most widespread transposable elements in the
genome, with more than 1 million copies in the human genome [50]. Generally, Alu
elements have a dimeric structure of around 300 bp length with two separate monomers
that are connected by an A-rich linker region and are terminated by a 3′ poly(A)-tail [51].
For retrotransposition, the Alu sequence is amplified and reverse transcribed using an
RNA polymerase III-derived transcript and the open reading frame 2 (ORF2) product
from long interspersed element 1, which possesses endonuclease and reverse transcriptase
activities [52–55]. Although the poly(A)-tail does not confer functions in the same sense
as polyadenylated mRNAs, the A-rich region is believed to play important roles in the
priming of reverse transcription and allows interactions with poly(A)-binding proteins [56].

Therefore, we set out to investigate the effects of variations in HERV and Alu elements
on the development of PTC. To enrich the potential transcriptional effects of HERVs, we
filtered whole-genome sequencing data of blood and tumor samples from 138 American
patients with PTC for regions near or within differentially expressed cancer predisposition
genes (CPGs) and performed targeted variant calling. We compared the resulting HERV
genotype profiles with variant call data from 2015 controls [57,58] attributing to gender and
ancestral population profiles. Variants that distinguished patients with PTC from healthy
controls and suggested functional associations through in silico analyses were evaluated
for representation in 20 thyroid and 7 non-thyroid cancer cell lines by Sanger sequencing.

2. Materials and Methods
2.1. The Cancer Genome Atlas and 1000 Genomes Project Data

We obtained paired-end DNA sequencing data from patients with PTC with corre-
sponding metadata on patient gender, self-reported race and ethnicity, age, tumor stage, and
vital status from The Cancer Genome Atlas (TCGA) database [59] using the Genomic Data
Commons Data Portal, dbGaP study accession: phs000178.v11.p8 [60]. The whole-genome
sequencing (WGS) data available included thyroid tumors and matched normal blood
samples for a total of 138 patients with PTC. We acquired the WGS files in binary alignment
map (BAM) file format and then converted them into a compressed reference-oriented
alignment map (CRAM) file format for storage using cramtools (version 3.0) [61], selecting
options for ignoring tags OQ:CQ:BQ, capturing all other tags, implementing 8-binning of
the Illumina quality scores, and preserving read names. We indexed the CRAM files with
SAMtools (version 1.6) [62]. Tumor tissues and blood samples from 12 individuals were
sequenced with a high average coverage of 40× in addition to a low average coverage of
4× sequencing run. In our analyses, we excluded the low-coverage WGS data with both
available low- and high-coverage data. Whole-genome sequencing files without high-
coverage reruns and only low-coverage data were not excluded. For all TCGA data
analyses, we utilized the b37 human reference FASTA file (Homo_sapiens_assembly19.fa,
MD5sum: 886ba1559393f75872c1cf459eb57f2d, accessed on 25 April 2019). The average
coverage of the available WGS files was assessed with SAMtools coverage and depth
commands [62].
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We retrieved the 1000 Genomes Project (1KGP) variant call files (VCFs) directly from
the University of California Santa Cruz data resource (https://hgdownload.cse.ucsc.edu/
gbdb/hg19/1000Genomes/, accessed on 26 November 2019) [57,58]. To allow the merging
of TCGA and 1KGP variant call data, we applied Genome Analysis Tool Kit’s (GATK)
UpdateVCFSequenceDictionary with the b37 human reference FASTA file to the 1KGP
variant call files [63] and indexed the resulting variant files with BCFtools (version 1.9) [62].

Both the PTC patient cohort and the 1KGP control cohort were divided into a training
(60%) and validation (40%) set through multi-trial randomization comparisons, ensuring
equivalent ratios between different sequencing coverages (where available), genders, age
(where available), ancestral population (self-reported), and superpopulation.

2.2. Identification of HERVs Near or Within Differentially Expressed Cancer Predisposition Genes

Cancer predisposition genes (CPGs) were defined as any gene conferring moderately
or highly increased risk of cancer in children or adults. We assembled a list of unique
CPGs from four different sources: a review by Rahman (2014) [63], a primary research
article by Zhang et al. (2015) [64], the Network of Cancer Genes [65], and the Catalogue
Of Somatic Mutations In Cancer (COSMIC) Cancer Gene Consensus [66]. We used TCGA-
derived mRNA sequencing data available through the BioXpress database (version 2.0)
for differential expression in cancer to identify CPGs of interest that were significantly
differentially up- or downregulated (|log2 fold change| > 1, adjusted p-value < 0.05) in
patients with PTC [67,68].

2.3. Targeted Variant Discovery in TCGA Data

We used the GATK version 4.1.2.0 according to recommended workflows to identify
germline SNVs and indels in the WGS data obtained from TCGA (see Supplemental
Figure S1) [69]. In short, we applied GATK’s pipeline in Genomic VCF (GVCF) and
BP_RESOLUTION mode to the HERV regions near or within differentially expressed CPGs
for each CRAM file in the training sets, resulting in a GVCF file for each sample. We
applied the quality scores from the recalibration with a truth sensitivity of 99.0%. We added
corresponding rsIDs to the detected variants, utilizing both the dbSNP genotypes from
the resource bundle [70] and the Kaviar genomic variant database [71]. In the final step,
variants with a variant quality score (VQS) below 90.0 were separated. TCGA tumor and
blood, as well as high- and low-coverage samples, were analyzed separately.

When we tried to apply the GATK pipeline to WGS data from the 1KGP, we en-
countered problems with reference genome compatibilities between the TCGA and 1KGP
samples, not allowing us to joint call the samples. Therefore, we decided to rely on the
separate joint calling of TCGA and 1KGP sample cohorts by comparing our variant call
data from the TCGA samples with the variant call file provided by the 1KGP. It should
be mentioned at this point that by choosing this approach, we were no longer able to
differentiate the absence of a HERV locus from a genotype that matches the reference in the
1KGP dataset. Therefore, we initially chose variants with MAF > 0 in the 1KGP dataset,
circumventing this issue of indeterminable HERV locus presence. In particular, we filtered
the 1KGP VCF file for variants in HERV regions near or within differentially expressed
CPGs using the same pipeline described above for the TCGA WGS data and then combined
them with the TCGA variant call data using BCFtools (version 1.9) merge function with
the missing_to_ref option, which sets any unseen genotype to ref (0/0) after normalizing
both VCF files to the same hg19 human reference genome, splitting multiallelic sites into
biallelic records [62].

2.4. Determination of Ancestral Populations

We determined genetic ancestry for all cases and controls using Structure software
(version 2.3.4) [72,73] on the basis of germline (DNA from blood samples) genotypes
at 85/179 ancestral informative markers (AIMs) [74] available through HapMap samples
(CEU, YRI, CHB/JPT, MEX), which served as our reference ancestral populations. European

https://hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/
https://hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/
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(EUR), African (AFR), and East Asian (EAS) individuals were defined as having >90%
EUR genetic ancestry, ≥70% AFR ancestry, and ≥70% EAS ancestry, respectively. Hispanic
Americans (HIS) were defined as individuals for whom the percentage of AmerIndian
(Native American) genetic ancestry was ≥10% and greater than the percentage of African
or East Asian ancestry [75]. Individuals whose ancestral distribution did not fit these
thresholds were classified as Admixed American (AMR). Since the PTC samples were
obtained from an American patient cohort without evident representation of South Asian
(SAS) ancestry, we excluded individuals from the 1KGP control cohort assigned to the SAS
superpopulation. This was further supported by the observation that 485/489 (99%) of all
SAS individuals were classified as HIS when using AIMs.

2.5. Statistical Analysis

We conducted statistical genotype comparisons using a logistic regression model
computed with Plink (version 1.90 beta-5.3) [76,77]. Unadjusted statistical models were
generated without the addition of covariates, minor allele count (MAC), or minor allele
frequency (MAF) filters. Multivariable logistic regression analyses were performed with
the addition of gender and ancestry as covariates. For the incorporation of ancestry profiles,
we used the continuous principal component assignments to EUR, AFR, EAS, and HIS
ancestry generated by the Structure software [72,73]. To assess the effect size, we calculated
the odds ratios (ORs) from the beta coefficients of the additive multivariate models. Then,
we calculated the OR differences for each variant by acquiring the absolute difference
between the multivariate model OR and the unadjusted model OR and then dividing it by
the OR from the unadjusted model. Results from the multivariate regression analyses were
visualized using a Manhattan graph plotting the negative logarithmic p-value against the
chromosome location of each variant. We evaluated the linkage between variants using
vcftools’ geno-r2 function (version 0.1.16) [78]. Statistical analyses of Sanger sequencing
results were conducted in R using a fitted logistic regression model generated with the
glm() function and family = ‘binomial’ parameter [79].

2.6. Functional in Silico Predictions

We evaluated and visualized specific gene expression across various healthy tissues
using the Genotype-Tissue Expression Portal (GTExPortal) facilitated by the Broad Institute
Consortium [14]. The GTExPortal includes samples from 54 non-diseased tissue sites across
nearly 1000 individuals, primarily collected for molecular assays, including WGS, whole ex-
ome sequencing (WES), and RNA-Seq [14]. The data used for the analyses described in this
study were obtained from GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2)
on 17 May 2023. Transcription factor and protein binding predictions were evaluated using
the HaploReg (version 4.1) [80,81] and RegulomeDB databases [82]. Protein binding was
based on Encyclopedia of DNA Elements (ENCODE) data, while histone marks were on
Epigenome Roadmap data as described in Ward and Kellis (2016) [81]. Predicted chromatin
states were derived from ChromHMM analyses based on ENCODE ChIP-seq data, includ-
ing eight histone modifications [82,83]. Chromatin accessibility, splice site detection, and
genomic context of variants were further assessed with the University of California Santa
Cruz (UCSC) genome browser [58]. Gene ontology analyses were conducted using the
GOnet interactive gene ontology tool (http://tools.dice-database.org/GOnet/, accessed
on 30 May 2023) [84]. Based on the functional predictions, variants from each of the fol-
lowing three categories were selected: (1) associated CPG with high expression in healthy
thyroid tissue and significantly lower expression in PTC; (2) variation affects predicted
polymerase or enhancer protein binding; and (3) location within the Alu element. p-values
for differential expression of CPGs were obtained using the OncoMX portal [85]. Isoform
expression profiles for TCGA RNA datasets were obtained from the GEPIA2 web server
(http://gepia2.cancer-pku.cn/, accessed on 31 May 2023) [86]. The RNA-Seq datasets
for GEPIA2 are based on the University of California, Santa Cruz (UCSC) Xena project
(http://xena.ucsc.edu, accessed on 31 May 2023) [87].

http://tools.dice-database.org/GOnet/
http://gepia2.cancer-pku.cn/
http://xena.ucsc.edu
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2.7. Chemicals and Reagents

Cell culture reagents were purchased from either Gibco, Thermo Fisher Scientific, Inc.
(Waltham, MA, USA), Sigma-Aldrich (St. Louis, MO, USA), or Corning (Corning, NY, USA)
(see Supplemental Table S1). Enzymes, reagents, chemicals, and kits for DNA processing, as
well as all primers in the form of standard tube oligos, were purchased from Thermo Fisher
Scientific, Inc. (Waltham, MA, USA) or New England Biolabs, Inc. (Ipswich, MA, USA).

2.8. Cell Culture

Thyroid cancer cell lines were provided by Dr. Stephen Lai at The University of Texas
MD Anderson Cancer Center, Houston, TX; head and neck cancer cell lines by Dr. Vlad San-
dulache, Baylor College of Medicine (BCM), Houston, TX; melanoma cell lines by Dr. Albert
Ribes-Zamora at the University of St. Thomas, Houston, TX; and liver cancer cell lines by
Dr. Betty Slagle at BCM, Houston, TX (see Supplemental Table S2). We cultured the cells in
either RPMI 1640, supplemented with 10% FBS, 2 mM L-glutamine, 1 mM sodium pyru-
vate, 50 µg/mL streptomycin, and 50 U/mL penicillin, supplemented with 10% FBS, 1×
Nonessential Amino Acids (NEAA), 2 mM L-glutamine, 50 µg/mL streptomycin, and
50 U/mL penicillin, or DMEM, supplemented with 10% FBS, 4.5 g/L D-Glucose, L-
Glutamine, 50 µg/mL streptomycin, and 50 U/mL penicillin at 37 ◦C in a humidified
incubator with 5% CO2. We subcultured the cells every 3–5 days using Dulbecco’s Phos-
phate Buffered Saline (DPBS) for an initial wash and 0.25% Trypsin 2.21 mM EDTA to
detach the cells from the culture dish. We confirmed cell authenticity through short tandem
repeat (STR) profiling by the Cytogenetic and Cell Authentication Core of the MD Anderson
Cancer Center, Houston, TX (for results, see Supplemental Table S3).

2.9. Genomic DNA Extraction

Cells were grown in a 10 cm dish to a confluence of 80–90% at 37 ◦C in a humidi-
fied incubator with 5% CO2 and lysed by the addition of QIAamp lysis buffer (catalog
# 19075, QIAGEN, LLC, Germantown, MD, USA) after two washes with DPBS solution.
Subsequently, cell lysates were harvested with a cell scraper and transferred into a tube
prepared with proteinase K. Genomic DNA (gDNA) was extracted using the QIAamp
DNA mini kit (catalog # 51304, QIAGEN, LLC, Germantown, MD, USA) according to the
manufacturer’s protocol.

2.10. Targeted Genotyping by Sanger Sequencing

We obtained genomic sequences in the context (±2000 bp) of each evaluated variant
or variant pair from the UCSC genome browser with its “Get DNA in Window” function
(https://genome.ucsc.edu/cgi-bin/hgc?o=37130799&g=getDna, accessed on 30 August
2022) [58]. We designed specific primers using Primer3 (v4.1.0) (https://primer3.ut.ee/,
accessed on 30 August 2022) [88] and checked for the presence of potential SNVs us-
ing Genetools SNPCheck V3 (https://genetools.org/SNPCheck/docs.htm, accessed on
30 August 2022) (see Supplemental Table S4). We excluded off-target binding using
PrimerBlast (accessed on 30 August 2022) [59,89]. We amplified regions of 422–2032 bp
surrounding variants rs10179937 and rs200077102 within the Fibronectin 1 (FN1) gene,
rs10925366 and rs10802602 within the Ryanodine Receptor 2 (RYR2) gene, rs10166768
within the LDL Receptor Related Protein 1B (LRP1B) gene, rs78588384 within the Contactin
5 (CNTN5) gene, rs13246949 upstream of the Rap Associating With DIL Domain (RADIL)
gene/downstream of Monocyte To Macrophage Differentiation Associated 2 (MMD2),
rs1987574 and rs78393784 downstream of the Serpin Family A Member 1 (SERPINA1) gene
using conventional end-point polymerase chain reaction (PCR). We performed the PCR
in 3–4 times 20 µL reaction volume using 50 ng of gDNA, 2 µL of Phusion Plus Buffer,
0.4 µL 10 mM dNTPs, 1 µL forward and reverse primers each, and 0.7 µL of Phusion Plus
polymerase according to the manufacturer’s instructions. Annealing temperatures and
extension time of the PCR protocols were adjusted for each amplicon (see Supplemental
Table S5), while 30 s of 98 ◦C initial denaturation, 10 s of 98 ◦C denaturation, 10 min of 98 ◦C

https://genome.ucsc.edu/cgi-bin/hgc?o=37130799&g=getDna
https://primer3.ut.ee/
https://genetools.org/SNPCheck/docs.htm


Microorganisms 2024, 12, 2435 7 of 25

final extension, and 34 cycles were used for all PCR reactions. We confirmed amplicon sizes
with either 1% SYBR Safe E-gels, 1.2% ethidium bromide (EtBr) Precast Agarose E-gels,
2% EtBr Precast Agarose E-gels, or manually cast 1.5% EtBr gels. We purified the result-
ing PCR products with the GeneJet PCR purification kit. We analyzed the purified PCR
fragments through Sanger di-deoxy nucleotide sequencing by the GeneWiz sequencing
center (GeneWiz, Azenta Life Sciences, Burlington, MA, USA). To determine the genotype
for each cell line, we evaluated the Sanger sequencing chromatograms for the presence
of single (homozygosity) or double (heterozygosity) peaks using the APE plasmid editor
(version 3.1.1) [90].

2.11. Visualization and Data Processing

We visualized the tabularized data using the ggplot2 (version 3.3.6) R package [80]
in conjunction with the Cairo R package (version 1.5–15) [81]. We used the dplyr (version
1.0.9) [82], stringr (version 1.4.0) [83], tidyverse (version 2.0.0) [84], and vcfR (version
1.14.0) [85] packages to aid in data processing and analysis. We generated Manhatten plots
with CMplot (version 4.3.1) [86]. All scripts were executed on R version 4.2.0 [79].

3. Results
3.1. Cancer Predisposition Genes (CPGs) in PTC Include a Total of 3725 HERV Sequences Within
or in Close Proximity

To identify genomic regions of oncogenic significance, we extracted 2884 different
CPGs from Rahman (2014) [63], a primary research article by Zhang et al. (2015) [64], the
Network of Cancer Genes [65], and the COSMIC Cancer Gene Consensus [66] (Supplemental
Figure S2, Supplemental Table S6). Through evaluation of TCGA mRNA data for thyroid
cancer patients from BioXpress, we identified 117 CPGs that were differentially expressed
in PTC (log2FC > 1 or log2FC < −1). Our list of CPGs included proto-oncogenes (e.g., FOS,
JUN, and SOX11), tumor suppressor genes (e.g., ADAMTS9), and DNA repair genes (e.g.,
E2F1). Since HERVs are known to be enriched in transcriptional regulatory elements [87]
and therefore carry higher potential to be the cause for CPG dysregulation, we extracted
3725 unique HERVs within a 20-Kbp radius of 107 CPGs (10 CPGs had no reported HERV
sequences near or within) using the EnHERV database [88]. For further analyses, the HERV
loci were summarized into 2866 non-overlapping genomic regions (see Supplemental
Table S7). Genes Runt-Related Transcription Factor 1 (RUNX1), LRP1B, CNTN5, EPH
Receptor A6 (EPHA6), Sidekick Cell Adhesion Molecule 1 (SDK1), Protocadherin 11 X-
Linked (PCDH11X), RYR2, ALK Receptor Tyrosine Kinase (ALK), Receptor Potential Cation
Channel Subfamily M Member 3 (TRPM3), and P21 (RAC1) Activated Kinase 7 (PAK7) were
the ten CPGs most enriched for HERV sequences. The total size of the HERV sequences was
3,321,253 bp with a median size of 882 bp (25% quartile = 707 bp, 75% quartile = 1022 bp)
(see Supplemental Figure S3). While 2812 HERVs were located intronic to CPGs, only
8 sequences were located in an exon, namely HERV-L MLT1E2 in C6orf118, LTR37 in
EPH Receptor A3 (EPHA3), HERV-L MLT1J in Beta-1,4-Mannosyl-Glycoprotein 4-Beta-N-
Acetylglucosaminyltransferase (MGAT3), HERV-L MSTA in PCDH11X, HERV-L MLT1H2
in RADIL, LTR41B in Ras Association Domain Family Member 6 (RASSF6), and two HERV-
L MLT2A1 in ACSM2A. Of the extragenic HERV sequences, 494 were located upstream
of CPGs and 411 downstream. Additionally, 72 complete HERVs and 3380/3725 (97%)
soloLTRs were located within 20 kbp of CPGs.

3.2. Targeted Variant Calling Revealed 612,603 High-Quality Variants Within CPG-Associated
HERV Regions

We obtained paired-end WGS data for a total of 125 blood samples and 138 matched
tumor samples from patients diagnosed with PTC from The Genome Cancer Atlas (TCGA)
(Table 1). To generate two distinct datasets and avoid overfitting, we divided the files into
a training set containing sequencing data from 83 (60%) individuals and a validation set
comprising 55 (40%) with samples from 64 (77.1%) females and 19 (22.9%) males for data
training and 42 (76.4%) females and 13 (23.6%) males for validation. Using the 3725 HERV
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sequences located within 20 Kbp of CPG regions, we performed initially targeted variant
calling with the Genome Analysis Tool Kit (GATK) [69] on the training blood and tumor
samples, resulting in information for 3,693,035 genome locations. We attained a total of
612,603 high-quality variants after Variant Quality Score Recalibration, which uses machine
learning to model the technical profile of true variants in the HapMap 3.3, OMNI 2.5,
and 1000 G phase 2.5 training resource to filter out probable artifacts from the callset. To
conserve variants for later fine-mapping efforts [89] as well as HERV regions with repeats
and low coverage [90], we decided against the application of read depth or minor allele
frequency (MAF) filters for variant calling.

Table 1. Demographic characteristics and sample properties of individuals diagnosed with PTC.

Training Set (n = 83; 60%) 1 Validation Set (n = 55; 40%) 1

Blood samples
Low coverage only 50 (64.1%) 32 (68.1%)

High coverage only 20 (25.6%) 11 (23.4%)
High and low coverage 8 (10.3%) 4 (8.5%)

Tumor samples
Low coverage only 52 (62.7%) 36 (65.5%)

High coverage only 23 (27.7%) 15 (27.3%)
High and low coverage 8 (9.6%) 4 (7.3%)

Gender
Female 64 (77.1%) 42 (76.4%)

Male 19 (22.9%) 13 (23.6%)
Age at diagnosis

Average age 48.68 48.06
Race/Ethnicity
(self-reported)

Non-Hispanic White 51 (61.4%) 32 (58.2%)
Hispanic White 2 (2.4%) 3 (5.5%)

Black or African American 3 (3.6%) 2 (3.6%)
Asian 5 (6%) 4 (7.3%)

Not reported 22 (26.5%) 14 (25.5%)
Ancestral population
(calculated)

EUR 44 (53%) 31 (56.4%)
HIS 24 (28.9%) 14 (25.5%)

AFR 2 (2.4%) 1 (1.8%)
EAS 3 (3.6%) 3 (5.5%)

AMR 10 (12%) 6 (10.9%)
Vital status

alive 81 (97.6%) 54 (98.2%)
dead 2 (2.4%) 1 (1.8%)

Tumor stage
I 43 (51.8%) 31 (56.4%)

II 9 (10.8%) 11 (20%)
III 19 (22.9%) 7 (12.7%)
IV 11 (13.3%) 6 (10.9%)

Not reported 1 (1.2%) 0 (0%)
1 TGCA samples were distributed in a 3:2 ratio into a training and validation set. AFR, African; AMR, Ad Mixed
American; EAS, East Asian; EUR, European; HIS, Hispanic.

3.3. Multivariate Analyses Revealed Strong Confounding Effects of Gender and Ancestral Profile
on HERV Variants

To account for ancestral population- and gender-driven heterogenicity particularly
present in HERV loci [91], we compared TCGA genotype data for tumor and blood samples
separately with variant call data from the 1KGP [57] using a multivariate logistic regression
model with population ancestry and sex as covariates (independent variables). Although
we did not expect gender to affect autosomal HERV variation, we included gender as a
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covariate to account for differences in the number of X chromosomes. Overall, the 1KGP
dataset contained SNVs and indels from 2015 healthy adults, who were divided into a
testing set of 1224 (60%) individuals and a validation set of 791 (40%), similar to the TCGA
data preserving equal gender and ancestral superpopulation ratios (see Table 2). As a result,
the training set included 300 individuals assigned to the European (EUR) superpopulation,
216 individuals to the Admixed American (AMR) superpopulation, 408 to the African
(AFR) superpopulation, and 300 to the East Asian (EAS) superpopulation. While ancestry
information was present for all 1KGP controls, self-reported information on race and eth-
nicity in the TCGA dataset was 25% incomplete or inconclusive. Therefore, we employed
85 ancestry-informing markers (AIMs) and performed principal component analyses with
HapMap samples (CEU, YRI, CHB/JPT, MEX) as reference [74]. We assigned either Eu-
ropean (EUR), African (AFR), East Asian (EAS), Hispanic American (HIS), or Admixed
American (AMR) ancestry to each sample based on their genetic ancestry predominance
and ratios (see Supplemental Table S8). This resolved all but four of the 36 individuals in
the PTC cohort with “no reported” race/ethnicity by assigning them to an ancestral popu-
lation other than AMR. However, 22/83 (26%) patients with PTC had less than 80%, and
15/83 (18%) patients had less than 70% assignment to an ancestral population, indicating
significant admixture that could interfere with the genomic evaluation of HERVs. Therefore,
we used continuous assignments to EUR, HIS, AFR, EAS, and AMR in our multivariate
analyses (Supplemental Table S8, Supplemental Table S9). To access comparable covariates
for healthy controls, we assigned ancestral profiles to the 1KGP cohort using the same
85 AIMs and principal components.

Table 2. Demographic characteristics and ancestral profiles of individuals in the control cohort.

Training Set (n = 1224; 60%) 1 Validation Set (n = 791; 40%) 1

Gender
Female 765 (50.8%) 506 (50.9%)

Male 740 (49.2%) 489 (49.1%)
Superpopulation

EUR 300 (19.9%) 203 (20.4%)
AMR 216 (14.4%) 131 (13.2%)
AFR 408 (27.1%) 253 (25.4%)
EAS 300 (19.9%) 204 (20.5%)

Ancestral population
(calculated)

EUR 206 (13.7%) 147 (14.8%)
AMR 126 (8.4%) 75 (7.5%)
AFR 397 (26.4%) 242 (24.3%)
EAS 301 (20%) 204 (20.5%)
HIS 194 (12.9%) 123 (12.4%)

1 TGCA samples were distributed in a 3:2 ratio into a training and validation set. AFR, African; AMR, Ad Mixed
American; EAS, East Asian; EUR, European; HIS, Hispanic.

We observed strong confounding effects (evaluated as a >10% change in the odds ratio
(OR) between unadjusted and multivariate models) for gender and ancestral population
profiles for 97.9% of the variants. When comparing results from our unadjusted and
multivariate logistic regression models of the training set, we saw equally strong effects
on statistically significant variants (see Supplemental Figure S4). Of all blood variants
with significant p-values in either the unadjusted, multivariate logistic regression model
or both, 210/240 (87.5%) were strongly affected by adjustment for gender and ancestry,
while 30/240 (12.5%) variants displayed minor differences in ORs, indicating no gender- or
genetic ancestry-driven variance. Statistical comparison of PTC tumor sample variants with
healthy controls yielded similar results of 252/267 (94.3%) variants displaying confounding
and 15/267 (5.6%) exhibiting only small changes in ORs.
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3.4. Evaluation of Common Variants Exposed 15 HERV Variants Significantly Different in
Frequency Between PTC and Healthy Controls

The training set comparisons of the 1KGP variant call data with variant call data
obtained from TCGA PTC blood and tumor samples using the GATK pipeline in GVCF
mode resulted in 38 significantly different HERV variants, intronic to 13 and close to
4 distinct CPGs (see Figure 2). We confirmed 26/38 HERV variants in the validation set
(Supplemental Table S10). All 26 variants have been identified as common variants, defined
as exceeding an MAF of 5% in the general population. A total of 21/26 variants were
located in CPG introns, while variants near MMD2/RADIL, RUNX1T1, SERPINA1, and
CD70 were located between 507 bp and 17,531 bp from the nearest CPG. When comparing
our results from the unadjusted logistic regression model and our multivariate logistic
regression model, 20/26 variants were unaffected by gender and ancestral profile in the
training and validation set, while rs2618671 and rs2779420 within RYR2, rs200093832
within Transient TRPM3, rs370565365 within Acyl-CoA Synthetase Medium-Chain Family
Member 2A (ACSM2A), rs112385920 downstream of CD70, and rs13046555 within RUNX1
displayed significance only after adjustment. When assessing minor allele frequencies in
PTC samples comparing training and validation sets, we noticed inconsistent distributions
for rs7682763 within EPH Receptor A5 (EPHA5), variants rs370565365 within ACSM2A,
and rs13046555 within RUNX1, excluding them from further analyses. Furthermore, we
omitted variant rs10956571 within Adenylate Cyclase 8 (ADCY8) from further evaluations
because the variant displayed significance only in the PTC tumor training set and PTC
blood validation set. Although variants rs10166768 (C>G) with LRP1B and rs200093832
within TRPM3 reached a p-value below the significance threshold only in the PTC tumor
samples and not the PTC blood samples compared to the 1KGP controls, MAFs did not
suggest somatic mutations.
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Figure 2. Germline variants within HERV elements near or within CPGs. The x-axis represents
chromosomes, while the y-axis shows the transformed (−log10(p)) p-value obtained from our multi-
variate logistic regression models. The significance threshold is 7.09 (−log10(8.07 × 10−8)) according
to the number of variants analyzed. Solid large red circles indicate variants significant in PTC blood
and tumor samples in the training and validation set, while smaller grey circles above the threshold
line could not be confirmed with the same statistical significance in at least one of the sample sets.
Arrows designate variants chosen for in vitro analyses based on functional in silico analyses. Red
arrows and highlighting indicate variants affecting predicted protein binding sites. Green arrows
and highlighting signify associated CPGs with high expression levels in healthy tissues and reduced
transcription in PTC. The blue arrow and highlighting denote variants within the poly(A)-tail of an
Alu element.

While we did not have access to variant calls and metadata of other healthy control
sets, we compared overall minor allele frequencies (MAFs) from our studies with the
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data from the Genome Aggregation Database (GnomAD) (Table 3) [92]. Interestingly, we
observed large variations in reported frequencies between the 1KGP and the GnomAD
for eight variants (including the already excluded variant rs370565365 within ACSM2A),
leaving a total of 15 variants for further assessments. Variant rs10166768 within LRP1B was
not rejected on the basis of 1KGP and GnomAD discrepancies since its tri-allelic nature left
results inconclusive.

Table 3. Minor allele frequencies of common variants. The table outlines the HERV variants detected
significantly different between PTC tumor or PTC blood samples and 1KGP healthy controls in train-
ing and validation sets with the addition of data from the Genome Aggregation Database (GnomAD).

Name CPG MAF PTC
Blood

MAF PTC
Tumor

MAF
1KGP

MAF
GnomAD

rs10802602 RYR2 3.8% 3.3% 39.6% 22.3%
rs2618671 RYR2 32.5% 30.9% 57.1% 56.7%
rs2779420 RYR2 30.1% 29.3% 53.6% 48.3%

rs13030271 ♢ LRP1B 8.2% 11.5% 37.8% 0.0%
rs10166768 (C>T) LRP1B 17.9% 23.0% 67.7% 17.9%
rs10166768 (C>G) LRP1B 50.0% 32.1% 0% 49.3%

rs10179937 FN1 8.8% 7.8% 74.9% NA
rs200077102 FN1 7.6% 6.5% 74.9% 41.5%
rs7682763 † EPHA5 25.8% 25.0% 71.6% NA

rs13311049 ♢ SDK1 9.9% 10.9% 38.9% 16.4%
rs13311637 ♢ SDK1 6.7% 6.3% 50.8% 2.4%

rs611655 ♢ MMD2 (RADIL) 0.5% 2.5% 43.8% 0.0%
rs12543616 RUNX1T1 18.9% 22.4% 76.0% 48.7%

rs10956571 ‡ ADCY8 25.3% 24.0% 62.9% 55.3%
rs200093832 TRPM3 26.7% 18.9% 53.5% 71.8%
rs61909780 ♢ CNTN5 2.7% 2.5% 38.8% 14.1%
rs78588384 CNTN5 4.5% 5.5% 36.9% 29.8%
rs1987574 SERPINA1 20.0% 26.8% 73.1% NA

rs78393784 SERPINA1 38.6% 31.2% 29.4% NA
rs370565365 †,♢ ACSM2A 5.3% NA 25.2% 2.0%

rs112385920 CD70 50.7% 51.3% 79.2% 81.6%
rs2076859 RUNX1 8.1% 11.7% 82.7% NA

rs3989120 ♢ RUNX1 22.0% 21.4% 82.7% 0.0%
rs13046555 † RUNX1 15.0% 22.2% 32.1% 46.2%
rs778825437 PCDH11X 3.8% 3.3% 39.6% NA

rs2754876 PCDH11X 18.7% 20.7% 65.0% 36.9%
rs2750652 ♢ PCDH11X 39.2% 40.0% 73.0% 35.7%

Minor allele frequencies (MAFs) are color-coded, with red indicating common, blue, and rare variants and
saturation lowest and highest values. †: variants excluded from further analyses based on inconsistent distribution
in PTC tumor, PTC blood, training, and validation datasets; ‡: variant excluded from further analyses since
significant results from the PTC tumor training set could not be confirmed in PTC tumor validation set, and
results from PTC blood validation set could not be confirmed in PTC blood testing set; ♢: variants excluded from
further analyses based on 1KGP and GnomAD MAF discrepancies; NA: variant was not detected in our cases
or GnomAD.

3.5. Rare Variants Affect the Poly(A)-Tail Length of Several Alu Elements

In addition to the evaluation of common variants, we assessed HERV variants absent
in the 1KGP VCFs, i.e., with an assigned MAF of 0%. A limitation of a logistic regression
model is that dependent variable probabilities have to fall between 0 and 1. Hence, no out-
put can be generated for variants with an overall MAF of exactly 0. Overall, genotype calls
were available for all variants from at least 80/138 PTC tumor samples and 74/125 PTC
blood samples, with an average of ten individuals with undetermined genotype (./.). Since
a sample size of 74 allowed the detection of a 10% difference with a statistical power of 81%,
we decided to extract all variants with MAF ≥ 10% in the PTC samples and compared them
to 1KGP 30× coverage and GnomAD control cohorts (Figure 3, Supplemental Table S11).
We detected a total of 71 rare variants (defined as MAF ≤ 1% in controls), of which
28 variants had at least a 10 times higher MAF frequency in PTC blood samples compared
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to the GnomAD-reported MAF. In our list of rare variants, 38 loci had variant frequencies
reported neither for the 1KGP nor the GnomAD samples. We detected eight variants
with slightly higher MAF in PTC tumor samples relative to PTC blood samples, suggest-
ing potential somatic mutations. Interestingly, putative somatic variants rs1166234155
(MAFblood = 0.05; MAFtumor = 0.09) and rs1272563337 (MAFblood = 0.03; MAFtumor = 0.09)
3124 bp downstream of ADAM Metallopeptidase With Thrombospondin Type 1 Motif
9 (ADAMTS9) were in linkage disequilibrium (R2 = 0.85), as were variants rs373561192,
rs1303831387, rs1353282464, and rs1406672069 (MAFblood = 0.02–0.09; MAFtumor = 0.12)
within the HERV9 LTR12C located in exon 3 of P21 (RAC1) Activated Kinase 5 (PAK5)
(R2 = 0.89–1).
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PTC samples and 0% or not reported in 1KGP data. GnomAD MAFs (black); MAFs of PTC samples
for variants in HERVs (blue), Alu element poly(A)-tails (dark blue), Alu element linkers (light blue),
and all others (violet). Variants with matching PTC samples and GnomAD MAFs are connected
by black lines. Note that allele frequencies are plotted on a semi-logarithmic scale (linear: 0–10%;
logarithmic: 10–100%).

While most variants were located in HERV sequences within CPG introns, 21/71 variants
could be found in Alu elements (see Supplemental Table S12). Variants within Leucine Rich
Repeat Containing 7 (LRRC7), Tumor Suppressor Candidate 3 (TUSC3), and TRPM3 were
detected to be in the poly(A)-tail of the respective Alu elements with their G>A or C>A
mutations extending the poly(A)-tail from 29 to 37 by the LRRC7 variants, from 20 to 26 by
the TUSC3 variants, and 25 to 36 by the TRPM3 variants.

For our additional in silico functional analyses, we concentrated on the common
alleles designated significant in the logistic regression analyses. In this way, we ensured
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adjustment of ancestry and gender in the statistical assessment of the frequency differences
and excluded erroneous non-detection rather than low incidence numbers for variants as a
cause for false positives. Read depth for all common variants was, on average, 40× for high-
and 4× for low-coverage WGS data, which matched the overall read depth and therefore
confirmed technical accuracy. Although HERVs in intronic regions have been reported
to carry the capacity to alter gene splicing and express viral genes or long-noncoding
RNAs (lncRNAs), we focused our functional evaluations on transcriptional effects. For this
reason, we also enriched regulatory units beforehand by selecting regions near differentially
expressed CPGs.

Protein binding and transcription factor binding motifs potentially affected by the
variants were assessed using the HaploReg (v4.1) [93,94] and RegulomeDB databases (see
Table 4) [95]. For all variants 2–9, transcription factor binding motifs were present in their
corresponding regions with the exception of variants within the PCDH11X gene on chro-
mosome X. Sequence regions affected by variants rs1987574 and rs78393784 downstream
of SERPINA1 and rs112385920 downstream of CD70 displayed a particular enrichment
with 7–9 predicted TFBSs, while variants rs10802602 within the RYR2 gene, rs10179937,
and rs200077102 within the FN1 gene were located within YY1 and POL2 binding sites,
respectively, supported by ChIP-Seq experiments. Furthermore, ENCODE chromatin
state data showed strong transcription in parathyroid adenomas and quiescent chromatin
in the non-malignant thyroid gland at the FN1 variant sites. Overall, enhancer histone
marks (H3K4me1, H3K27ac) and promoter histone modifications (H3K4me3, H3K9ac)
were detected in various blood, brain, breast, epithelial, heart, lung, mesenchymal, muscle,
and stem cell lines for the majority of the variant regions, yet thyroid cell line data were
not available.

To assess the degree of transcriptional changes in the variant-associated CPGs, we com-
pared TCGA PTC RNA-Seq data accessed through the BioXpress database browser [67,68]
with RNA levels in healthy tissues obtained from the Genotype-Tissue Expression (GTEx)
portal [14]. Overall, FN1, SERPINA1, CD70, and RUNX1 mRNA levels were upregulated
in 81.4–93.2% of the 59 evaluated patients with PTC, whereas RYR2, LRP1B, RUNX1T1,
TRPM3, CNTN5, and PCDH11X mRNA expression was found to be significantly downreg-
ulated (see Supplemental Table S13). While most CPGs are expressed to similar degrees in
several healthy tissues (see Supplemental Figure S5), normal LRP1B and CNTN5 expression
in thyroid tissues stood out, as only healthy brain tissues displayed similarly high mRNA
levels (see Figure 4). Combined with the significant reduction in LRP1B and CNTN5 tran-
scripts in PTC samples, central roles in thyroid homeostasis conferred by these two genes
are suggested. Comparing overall CPG transcript levels in healthy thyroid tissues, FN1
(TPM = 86) mRNA levels were shown to be the highest, followed by SERPINA1 (TPM = 21)
and LRP1B (TPM = 16).

We conducted gene ontology studies of the CPGs potentially affected by common
and rare variants using the GOnet interactive gene ontology tool. In our evaluation of
molecular functions, we discovered an enrichment in ion-binding proteins associated with
13/36 submitted genes (see Figure 5a). Other moderately enriched functions included
kinase activity (5/36 genes) and DNA binding (4/36 genes). Our assessment of cellular
locations revealed a significant enrichment of intrinsic components of the plasma mem-
brane (11/36 genes, p-value (False discovery rate (FDR) adjusted) = 0.0029) and receptor
complexes (7/36, p-value (FDR adjusted) = 0.0029) (see Figure 5b), which also matched our
observed enrichment in cell adhesion molecules (10/36, p-value (FDR adjusted) = 0.036) (see
Figure 5c). Genes potentially associated with cell migration and cancer metastasis included
CNTN5, FN1, Integrin Subunit Beta 6 (ITGB6), EPHB1, Unc-5 Netrin Receptor D (UNC5D),
SDK1, RADIL, LRRC7, PCDH11X, and ADAMTS9. Furthermore, gene set enrichment
analysis revealed associations of LRP1B and RYR2 with thyrotoxic periodic paralysis.
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Table 4. Results of in silico functional predictions obtained using the HaploReg v4.2 and Regu-
lomeDB databases.

Name CPG REF>ALT Protein Bound a Motifs b Chromatin State Histone Mark c

rs10802602 RYR2 C>G YY1 CEBPA,
CEBPB, CEBPG PAX-8, THAP1, YY1 - Enhancer

rs2618671 RYR2 C>G - AHR, KLF9 Hetero-
chromatin

Promoter,
Enhancer

rs2779420 RYR2 C>T - EGR1, FOXP1, RREB1 - -
rs10166768 LRP1B C>T,G - SOX4, SOX15 - Enhancer

rs10179937 FN1 T>A POL2 FOXP1, KLF9, RREB1 Strong
transcription

Promoter,
Enhancer

rs200077102 FN1 T>A POL2 FOXP1, RREB1, SOX3, SOX15 Strong
transcription

Promoter,
Enhancer

rs12543616 RUNX1T1 G>A - EWSR1, IRF1, STAT1, STAT2 - Enhancer

rs200093832 TRPM3 A>G - EP300, EWSR1-FLI1, IRF1, HDAC2,
PRDM1, SPI1 - Enhancer

rs78588384 CNTN5 G>C - ATF7, FOXP1, IRF1, RREB1, SPI1 - Promoter

rs1987574 SERPINA1 T>A -
CUX1, EP300, EVI1, FOXP1, HDAC2,
HMGA1, HOMEZ, IRF1–4, ZNF35,

ZNF384
monocyte eQTL Enhancer

rs78393784 SERPINA1 T>A -
EP300, EVI1, FOXP1, HDAC2,

HOMEZ, IRF1, POU6F1, ZNF35,
ZNF384

- Enhancer

rs112385920 CD70 C>T - EWSR1-FLI1, HDAC2, SP1, SPZ1,
STATTCF12, ZNF143, ZNF263

Weak Repressed
polyComb

Promoter,
Enhancer

rs2076859 RUNX1 T>C - SMAD2, SMAD3 - Promoter
rs2754876 PCDH11X G>C - BCL6B - -
rs2750652 PCDH11X A>G - - - Enhancer

a: Proteins bound in ChIP-Seq experiments [97], b: For affected protein binding motifs, a set of positional weight
matrix was collected from TRANSFAC, JASPAR, protein-binding microarray (PBM), and ENCODE ChIP-seq
experiments [98–101], c: chromatin state segmentations (15-state and 25-state) from the Roadmap Epigenomics Project.
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(c) molecular functions separately based on the Gene Ontology (GO, http://geneontology.org/,
accessed on 30 May 2023) database [102]. Solid lines represent an “is_a” relationship, while dashed
lines indicate a “part_of” relationship read in the direction of the arrow. All indicated p-values were
computed using a Fisher exact test and FDR adjusted, i.e., represent q-values.

Cancer stage comparison yielded no clear association with specific variants (Supplemental
Figure S6). At the time of evaluation, 98% of the PTC patients were alive. Accordingly, no
survival analyses were possible.

3.6. In Vitro Analyses of Thyroid Cancer Cell Lines Mirrored Low Variant Frequencies for
rs200077102 Within FN1 and rs78588384 Within CNTN5 Detected in PTC Samples

To confirm the in vitro relevance and establish model systems for the study of the
variants detected, we evaluated the presence of six variants in thyroid and non-thyroid
cancer cell lines. Therefore, we obtained genomic DNA from seven PTC cell lines (MDA-
T22, MDA-T32, MDA-T41, MDA-T68, MDA-T85, MDA-T120, and TPC-1), three poorly
differentiated thyroid carcinoma (PDTC) cell lines (MDA-T171, MDA-T189, and MDA-
T192), ten ATC cell lines (MDA-T178, MDA-T187, MDA-T220, MDA-T245, MDA-T248,
MDA-T269, MDA-T273, U-HTH7, U-HTH83, and U-HTH104), and seven non-thyroid
cancer cell lines (CaSki, SiHa, C33A, HN30, UM-SCC47, A375, HepG2). We selected
variants to be evaluated each based on one of the following in silico functional predictions:
(1) rs10166768 within LRP1B and rs78588384 within CNTN5 because of the high expression
of the associated CPG in healthy thyroid tissue compared to other tissues and significantly
lower expression in PTC; (2) variants rs10802602 within RYR2, rs10179937, and rs200077102
within FN1 because they affect predicted polymerase or enhancer protein binding; and
(3) rs1987574 downstream of SERPINA1 because of its location within an Alu element.
While MAFs of each variant observed in 1KGP samples were confirmed to be similar in the
GnomAD database, rs10166768 within LRP1B was included in the analyses despite 1KGP
and GnomAD discrepancies since its tri-allelic nature resulted in inconclusive observations.
We amplified regions of 422–2032 bp surrounding the selected variants and assessed the
genotypes for each cell line based on chromatograms obtained through Sanger sequencing.
We calculated minor allele frequencies for each variant and assessed statistical differences
using a logistic regression model (see Figure 6). For both variants, rs78588384 within
CNTN5 and rs200077102 within FN1, low MAFs, similar to the MAFs detected in PTC
blood and tumor samples, were observed (p ≤ 0.001). No statistical differences were
found between control cancer cell lines and thyroid cancer cell lines for rs78588384 and
rs200077102. Variant rs10166768 within LRP1B displayed an MAF in thyroid cancer cells
similar to the 1KGP samples and in the control cancer cell lines equivalent to the GnomAD
reported genotypes, suggesting substantial population heterogeneity.

3.7. The Genomic Context of rs200077102 and rs78588384 Indicates Transcriptional Dysregulation
Caused by the Variants

Variant rs200077102 is located in a MIR3 short interspersed nuclear element (SINE)
retrotransposon, which is inserted into the HERV-L MSTA LTR within the long arm of
chromosome 2 (Figure 7). Both the SINE and FN1 genes are on the negative strand. The
elements are situated 411 bp upstream of exon 34 from the longest FN1 isoform. All
FN1 isoforms are expressed in the brain, spleen, and heart but not expressed in healthy
thyroid tissue. Variant rs200077102 is 411 bp away from the FN1 exon 34 (exon 1 for
some isoforms). Interestingly, variant rs200077102 is positioned in the promoter region
of the non-protein-coding ENST00000460217.1 and protein-coding 241 amino acid long
ENST00000438981.1 FN1 isoforms. Isoform expression profiles for TCGA cancers revealed
significantly higher expression of ENST00000460217.1 in PTC (TPM = 4.08) compared to
normal thyroid (TPM = 0.25), while ENST00000438981.1 expression was only reported in
HCCs (TPMtumor = 0.39; TPMnormal = 1.4) and not evaluated in PTCs (see Supplemental
Figure S7). Furthermore, high levels of ENST00000460217.1 could be detected in sarcomas
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(TPMtumor = 3.1; TPMnormal = 1), healthy bile ducts (TPM = 3.2), and healthy lung tissues
(TPMnormal = 3.43; TPMLUAD = 1.03; TPMLUSC = 0.72).

The CNTN5 variant rs78588384 was located in a HERV-L MLT1A LTR inserted into the
long interspersed nuclear element 2a (LINE-2a) within the long arm of chromosome 11. Both
the LINE and HERV LTR are on the negative strand, while the CNTN5 is transcribed from
the plus strand. The variant rs78588384 is 3808 bp away from the nearest CNTN5 exon and
just upstream of a CA-repeat region. CTNT5 generates multiple isoforms with four major
transcripts. Isoform ENST00000619298.1 is predominantly expressed in healthy brain and
thyroid tissues, while ENST00000525047.1, ENST00000524871.5, and ENST00000528727.5
are primarily expressed in the healthy thyroid. Interestingly, ENST00000619298.1 was
significantly reduced in PTC patients (TPMnormal = 0.29; TPMtumor = 0.05), in addition
to patients with glioblastoma (TPMnormal = 1.15; TPMtumor = 0.23) and low-grade glioma
(TPMnormal = 1.15; TPMtumor = 0.13) (see Supplemental Figure S8). Furthermore, isoforms
ENST00000525047.1 (TPMnormal = 0.43; TPMtumor = 0), ENST00000524871.5 (TPMnormal = 0.29;
TPMtumor = 0), and ENST00000528727.5 (TPMnormal = 0.06; TPMtumor = 0) decreased
in levels.
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4. Discussion

In our targeted whole genome sequencing analyses approaches, we focused on regions
with putative functions, i.e., HERV sequences, that are enriched in transcriptional elements
and viral gene products, therefore decreasing noise-to-signal ratios [87]. As a result, sta-
tistical comparison between PTC cases and controls revealed 15 common germline HERV
variants significantly different in frequency between the two cohorts. For our discovery
and selection of PTC-specific variants, we performed functional in silico analyses. Based on
predicted protein binding sites, transcriptional levels of the respective CPGs, and cellular
context, we selected six variants for evaluation in thyroid cancer cell lines. Using 20 thyroid
cancer and 7 control cancer cell lines, we discovered that variants rs200077102 within FN1
and rs78588384 within CNTN5 displayed comparable low MAF in vitro as observed in
the PTC blood and tumor samples. Both FN1 and CNTN5 are cell adhesion molecules at
the plasma membrane, as shown in our gene ontology studies, which indicated general
enrichment of variants in plasma membrane-bound cell adhesion molecules with receptor
and ion-binding functions [103,104].

FN1 has been demonstrated to affect matrix remodeling indirectly through membrane-
bound signaling molecules such as Transforming Growth Factor Beta (TGFβ) via SMADs,
RET, and ERK [105] or directly through Phosphoinositide 3-Kinase (PI3K)/AKT [102].
Furthermore, FN1 has been shown to control cell survival, proliferation, and epithelial–
mesenchymal transition (EMT) in cancers [102]. In thyroid cancer cells, silencing of FN1
significantly reduced proliferation, adhesion, migration, and invasion [106]. HERV LTRs
have the ability to function as cryptic promoters, promoting the expression of alternative
isoforms. For instance, in tissues from patients with diffuse large B-cell lymphoma (DL-
BCL), LTR2 activity drives the formation of a chimeric isoform of the Fatty Acid-Binding
Protein 7 (FABP7) gene [107]. Accordingly, our data suggest that the alternative isoform
ENST00000438981.1 of FN1 is potentially expressed by the upstream MIR3 SINE or HERV-L
MSTA LTR. Although there was no thyroid cancer data available, ENST00000438981.1
expression was reported in hepatocellular carcinomas. Additionally, POL2 binding to the
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region affected by the rs200077102 variant was shown by chromatin immunoprecipitation
in the human hepatocellular carcinoma cell line HepG2 [108], providing a link between the
transcript and the presented functional region. Promoter onco-exaptation, as suggested for
the variant MIR3 SINE or HERV-L MSTA LTR, has been observed for many cancers, e.g.,
IRF5 driven by the demethylated LOR1a LTR in HL [109,110]. It should be noted that other
FN1 transcripts (Supplementary Figure S7) were also upregulated in PTC patients, which
potentially indicates enhancer functions of the variable region.

In contrast to FN1, downregulation of CNTN5 was shown to be associated with tumor
metastasis [111]. Interestingly, while significantly decreased in PTC, CNTN5 has been
observed even further downregulated in the more aggressive follicular variant of PTC [111].
Generally, Contactins are GPI-anchored proteins involved in neuronal development, while
CNTN5 contributes to axonal targeting, synaptic formation, and plasticity [104]. Even
though associations between CNTN5 mutations and neurological disorders have been
shown, molecular functions of the molecule are still poorly understood [104]. Our studies
revealed that variant rs78588384 within CNTN5 could enhance the expression of a compet-
ing transcript, a lncRNA, or miRNA, since HERV LTRs have the ability to act as cryptic
promoters and confer tissue-specific activation [112], e.g., ADAMTS5, which is specifically
controlled by the LTR MLT1J2 in thyroid tissues [43]. Alternatively, rs78588384 could
prevent the binding of an enhancer or induce a transcriptional repressor protein. Therefore,
transcriptional activity changes conferred by mutational variants require confirmation
through reporter luciferase assays, and transcription factor binding could be evaluated
with an electrophoretic mobility shift assay. HERV LTRs have also been shown to contain
splice donors, which leads to the induction of alternative splicing [109]. The presence of
splice variants could be best assessed by RT-qPCR in future analyses [113].

The assessment of variants without reported MAF in 1KGP samples revealed a total
of 28 rare variants with at least 10 times higher MAF in PTC samples compared to the
GnomAD-reported MAF. Notably, several of the rare variants (MAF < 5%) were in linkage
disequilibrium and affected Alu element poly(A)-tail length. Roy-Engel et al. (2002)
demonstrated that the average length of Alu element poly(A)-tails in the human genome is
between 21 and 26 bp, while the poly(A)-tails of very recent disease-causing Alu insertions
were observed to be between 40 and 97 bp in length [56]. In our analyses of rare variants,
we identified several variants in linkage disequilibrium, which extended the Alu element
poly(A)-tails by 6–11 bps. We postulate that this could potentially lead to the reactivation
of Alu elements with retrotransposition capabilities. Such retrotransposition, especially
when integrated within oncogenes, could further drive tumor oncogenesis in general and
thyroid cancer development specifically. Furthermore, repeat elements in the genome
introduced by retrotransposition have been shown to contribute to changes in the three-
dimensional structure of the DNA and genomic instability, a hallmark of cancer [114].
However, single nucleotide polymorphisms, as observed in the ERVs, are less likely to
induce instability unless they are associated with the binding sites of architectural proteins,
such as CTCF [115].

While our study provides valuable insights into genomic associations of HERVs and
PTC, several limitations should be considered when interpreting the results. Due to the lim-
ited metadata available for our whole genome sequencing samples, we cannot exclude the
potential influence of environmental, demographic, or behavioral factors on the outcomes.
Future studies could benefit from large databases, such as the recently published by the
All of Us Research Program [116], which provides whole genome sequencing data linked
with medical and survey data, enabling the investigation of additional cofactors. For our
functional analyses, we lacked thyroid-specific ENCODE chromatin and protein binding
data [94], in addition to thyroid-specific expression quantitative trait loci (eQTLs) data.
Therefore, functional predictions from non-thyroid cells were used as proxies. However,
we were able to incorporate a substantial number of thyroid cancer cell lines for in vitro
studies, which will also be available for future functional assays.
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Our analyses underscored the importance of adjusting for covariates since confound-
ing for gender and ancestry was evident. Our approach of continuous ancestral assign-
ments, first described by Halder et al. (2008) [74], allowed us to measure admixture within
individuals contributed by all of their ancestors rather than one parental line [56], the infer-
ence of admixture dynamics [117–119], and the separation of genetic and environmental
effects and, therefore, the study of underlying biologic effects [56]. We recognize that this
methodology also has its limitations. Ancestral influences on variation can be local to a
region of the genome, and our approach assigns (even though more granular) ancestral pro-
files for the whole individual and not specific chromosome sections. This can lead to faulty
adjustments, particularly for individuals with strong admixture or ancestry-dependent
local variation in disease-related regions. While currently restricted by computational
limitations, future investigations of genomic variants should consider local ancestry infer-
ence (LAI) methods such as Tractor [120] to disentangle disease-associated variants from
ancestral variability.

For our SNV/indel detection, the GATK pipelines demonstrated high accuracy (F-
scores > 0.99) across numerous benchmark datasets [121,122]. Additionally, it provided
short processing times enabled by initial separate variant calling, joint variant calling results,
and simple integration of adjustments for reruns. Our targeted variant calling enabled rapid
multiple comparisons and the identification of common and rare variants [122]. We detected
71 rare variants; for example, variant rs986066503 within RUNX1 was undeterminable
(genotype: ./.) in 48/125 (38.4%) blood and 54/138 (39.1%) tumor samples, and variant
rs78999285 within the Alu element in TUSC3 was undefined in 60/125 (48.0%) blood and
62/138 (44.9%) tumor samples. These variants would have been generally excluded from
GWAS analyses, emphasizing the higher sensitivity of our targeted approach.

5. Conclusions

In this study, we describe the first attempt to identify HERV-related genetic risk mark-
ers for PTC. We identified several SNVs within HERVs within or near cancer predisposition
genes (CPGs) with elevated PTC risk scores. In addition, we were able to validate two
variants in thyroid cancer cell lines and predict transcriptional regulatory consequences
to their presence. Overall, this study provides a proof-of-concept for targeted variant
assessment of HERV regions and lays a foundation for further investigations of HERVs in
thyroid oncogenesis.
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www.mdpi.com/article/10.3390/microorganisms12122435/s1, Table S1. Chemicals and Reagents;
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predisposition genes with papillary thyroid cancer expression data. Table S7. HERVs near cancer
predisposition genes differentially expression in papillary thyroid cancer. Table S8. TGCA THCA
patient metadata, including demographic and clinical data. Table S9. 1KGP gender and ancestry
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BioXpress and OncoMX. Table S13. Minor allele frequencies of rare variants within Alu elements
are significantly different between PTC tumor or PTC blood samples and the Genome Aggregation
Database (GnomAD); Figure S1. Variant calling pipeline scheme; Figure S2. Extraction of HERVs
within 20 Kbp radius of differentially expressed CPGs in PTC; Figure S3. Size distribution of
HERVs near or within CPGs; Figure S4. Distribution of odds ratio (OR) changes for variants with
significant p-values from the training set; Figure S5. RYR2, FN1, RUNX1T1, SERPINA1, CD70,
RUNX1, and PCDH11X mRNA expression in patients with PTC and normal tissues; Figure S6.
Minor allele frequencies of different variants in TGCA PTC tumor samples according to stage;
Figure S7. Expression profiles of different FN1 isoforms; Figure S8. Expression profiles of different
CNTN5 isoforms.
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