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Abstract: Background: Assessment of skeletal maturity is a common clinical practice to investigate
adolescent growth and endocrine disorders. The distal radius and ulna (DRU) maturity classification
is a practical and easy-to-use scheme that was designed for adolescent idiopathic scoliosis clinical
management and presents high sensitivity in predicting the growth peak and cessation among
adolescents. However, time-consuming and error-prone manual assessment limits DRU in clinical
application. Methods: In this study, we propose a multi-task learning framework with an attention
mechanism for the joint segmentation and classification of the distal radius and ulna in hand X-ray
images. The proposed framework consists of two sub-networks: an encoder–decoder structure with
attention gates for segmentation and a slight convolutional network for classification. Results: With
a transfer learning strategy, the proposed framework improved DRU segmentation and classification
over the single task learning counterparts and previously reported methods, achieving an accuracy
of 94.3% and 90.8% for radius and ulna maturity grading. Findings: Our automatic DRU assessment
platform covers the whole process of growth acceleration and cessation during puberty. Upon
incorporation into advanced scoliosis progression prognostic tools, clinical decision making will be
potentially improved in the conservative and operative management of scoliosis patients.

Keywords: bone age; hand-wrist X-ray; scoliosis; deep learning; classification; segmentation

1. Introduction

Skeletal maturity is a measure of physiological development status and remaining
growth potential for immature children and adolescents during their pubertal growth
period [1,2]. It forms an important part of the diagnosis and management guidelines for
adolescent growth and endocrine disorders [3,4]. For example, significant discrepancies
between an individual’s bone age and their chronological age could suggest the presence
of a growth disorder [5]. Supplemental hormone therapy for growth abnormality relies
on skeletal maturity assessment in the decision of when to start and stop therapy [6,7]. In
particular, the estimation of growth spurt stage and remaining growth potential carries an
important implication in idiopathic scoliosis management strategy, because rapid scoliotic
curve deterioration mainly occurs around growing peaks [8].

Assessment of skeletal maturity is generally performed with a non-dominant hand and
wrist radiograph, covering the distal radius and ulna and all the fingers [9,10]. Radiographic
imaging of hand and wrist regions can capture more bones but with minimal radiation [11].
X-ray imaging of the knee, elbow, cervical vertebrae, and pelvis are also reported to be
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utilized for bone age assessment [12–15]. Morphology features of these bones, together
with degree of epiphyseal ossification and fusion, are identified and mapped into stan-
dardized reference atlases to estimate bone age. Reference atlases represent appearances of
the average skeleton for a specific age and gender as acquired from healthy children and
adolescents, such as the Tanner and Whitehouse (TW3) method [16,17] and the Greulich
and Pyle (G&P) atlas [18], both using hand-wrist radiographs. The TW3 system involves ex-
amining the maturation level of each bone separately and combining the grades to produce
a total score, which is then matched into a reference table. The G&P atlas presents a single
standardized image for a range of ages of each gender. However, racial disparity was not
properly considered, and acceleration–deceleration growth patterns failed to be presented
in these two bone age atlas methods [19]. Therefore, several simplified skeletal maturity
grading systems have been proposed specifically for adolescent idiopathic scoliosis man-
agement, such as the olecranon method [20], the Risser sign, Sander’s stage, and distal
radius and ulna (DRU) grading [21]. Among these, the DRU grading is a straightforward
and reliable method for assessing skeletal maturation, particularly in scoliosis patients [22].
There are 11 ordinal grades for the distal radial physis and 9 ordinal grades for the distal
ulnar physis, which are tackled as an image classification problem. The stages in the DRU
classification are evenly distributed throughout the pubertal age. Medial capping of the
distal radius (R7) and the early appearance of the ulna styloid, with the head of the ulna
distinctly defined and denser than the styloid (U5), signify the peak growth spurt. In
contrast, blurring of the distal radial growth plate (R11) and fusion of the ulna epiphysis
(U9) indicate the cessation of longitudinal growth (Supplementary Figure S1). However,
barriers to the outpatient clinical setting remain due to time-consuming and subjective
manual assessment. In addition, several scoliosis idiopathic scoliosis prognostic tools have
been developed for curve progression risk evaluation to assist treatment, taking manually
assessed DRU maturity as risk factors [23–25]. The lack of automatic DRU assessment
methods limited this prognostic tool’s application in clinical practice.

Computer-aided diagnosis methods have been reported for automatic skeletal ma-
turity assessment, which can be divided into conventional machine learning approaches
and deep-learning approaches, according to modeling methodology. The former is gen-
erally performed by relying on manually designed visual features from entire images or
local informative regions, such as shape, intensities, and texture information of epiphyses
regions [26]. BoneXpert is a commercial automated product for bone age assessment based
on feature engineering and machine learning methods. It was developed to automatically
reconstruct borders of 15 bones from hand X-rays, which were subsequently utilized for fea-
ture quantification with principal component analysis (PCA) [27]. Extracted image features,
such as bone morphology, intensity, and texture scores, were utilized to implement a uni-
fied bone age assessment of TW3 and G&P by mapping functions to give a relative score.
Similarly, a content-based image retrieval (CBIR) method was proposed to extract region
of interest (ROI) patches from hand X-rays, utilized for bone age assessment, with a com-
bination of cross-correlation, image distortion models, and Tamura texture features [28].
Subsequently, a combination of support vector machine (SVM) and CBIR was proposed for
semi-automatic bone age assessment of 14 epiphyseal regions from hand radiographs [29].
The outcomes of these models showed mean absolute errors (MAEs) varying from 10 to
28 months, and these were highly susceptible to the quality of hand-wrist X-ray images.
Feature engineering-based methods may not exploit sufficient discriminative information
for estimation. Additional manual annotations also limited automatic application in clinic.

Deep learning approaches have the advantage of automating the extraction of imaging
features from ROI, which makes it possible to evaluate skeletal maturity using radiographs
automatically via data-driven approaches. The majority of automated bone maturity
assessment methods use left-hand X-ray scans built upon the TW3 or G&P methods,
with big public datasets such as the digital hand atlas database [10] and RSNA bone age
dataset [30]. These automatic methods formulated bone age estimation as a regression
problem with continued output to minimize error between prediction and ground truth
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(average of a panel of pediatric radiologists). Bonet was the first study to utilize the
convolutional neural network (CNN) for automated bone age estimation based on hand
X-rays, achieving an average discrepancy between manual and automatic evaluation of
about 0.8 years [31]. An informative region localization method based on unsupervised
learning was proposed to estimate bone age without manual annotations [32]. It was
implemented on the MobileNet deep structure and achieved an MAE of 6.2 months on
the RSNA dataset. A combination of the cascaded critical bone region extraction network
and gender-assisted bone age estimation network also was reported to achieve bone age
prediction with unsupervised learning [33]. An ensemble learning approach was developed
to integrate multiple VGG encoding networks for 13 predefined ROIs of hand radiographs,
achieving an MAE of 0.46 years on the TW3 atlas [34]. A vision transformer deep structure
was implemented to incorporate whole hand X-rays and extracted ROIs for Fishman’s
skeletal maturity grading, achieving a mean absolute error and a root mean square error of
0.27 and 0.604, respectively [35]. CNN variants such as ResNet, VGG-Net, AlexNet, and
DenseNet have been reported to be applied in cervical vertebra maturation grading, which
contains six maturity stages [36].

By contrast, automatic grading of simplified skeletal maturity has often been defined
as a classification task from medical images, generally aiming to facilitate application in
a scoliosis management panel. CNN has been reported to be applied for automatic Risser
sign classification with pelvic radiographs, achieving 78% overall accuracy [37]. Efficient-
Net was implemented to assess Sauvegrain maturity stages [38] automatically on elbow
X-rays, with a reported accuracy of 74.5% [39]. Two studies reported application of deep
learning for automatic DRU stage grading, using a ResNet model and an ensemble of
DenseNet [24,40]. However, both studies were limited to a partial range of bone maturity
(R7U6 to R11U9), failing to be applied in accurate estimation of growth acceleration stages in
early adolescence. Because their datasets were both collected from scoliosis patient cohorts
that were generally accessed after scoliosis screening procedures, patients referred to clinics
were approaching maturation. Research gaps also lie in the application of efficient feature
encoding methods for accurate grading, especially in distinguishing between adjacent
stages, to satisfy clinical application.

The multi-task learning method allows multiple branches of the network to share
the detected features among data points of different categories. These task branches
represent specific feature maps for attribute categories, and multi-task training on extracted
feature maps resulted in attribute inference. Some studies have utilized multi-task learning
methods for image classification and segmentation. By introducing a shared encoder
between two task branches, joint features of tasks were extracted, which in turn improved
prediction performance. For example, a multi-task model was developed for segmentation
and classification of breast tumors in 3D ultrasound images; it demonstrated that the multi-
task method improves both segmentation and classification over the single-task learning
counterparts [41]. The multi-task method was also applied to improve the triple task for
chest CT images for segmentation, reconstruction, and pneumonia diagnosis [42].

We hypothesized that improved performance of DRU stage classification resulted
from introducing a ROI segmentation branch via a multi-task framework. This is because
boundary identification of the distal radius and ulna from hand-wrist radiographs are
an important aspect of DRU maturity grading, as assessments of radiologists were con-
ducted based on the morphology of the distal ulna and radius. The segmentations of the
ROIs are therefore incorporated in the multi-task network model for DRU stage classifica-
tion. Incorporating attention mechanisms into the U-Net deep structure represents a recent
advancement in segmentation models to suppress irrelevant regions in an input image
while highlighting salient features. To this end, this study proposes a multi-task learning
framework based upon the Attention-U-Net backbone to integrate a segmentation branch
and a classification branch for automatic DRU stage grading. A transfer learning approach
was employed to pretrain the Attention-U-Net with a DRU segmentation dataset, utilizing
the parameter initialization of shared encoders in multi-task frameworks, which were
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subsequently trained upon a dataset with paired segmentation and classification labels.
The proposed approach outperformed other baseline model settings for both distal radius
and distal ulna maturity grading on an independent testing set.

2. Materials and Methods
2.1. Dataset and Pre-Processing

The public RSNA pediatric bone age dataset contains 14,036 hand X-ray images of
subjects aged between 0 and 19 years old. As our study was aimed at an adolescent
cohort, 9429 radiographs of participants between 9 and 19 years old were identified, cov-
ering the whole stage from growth spurt to growth cessation for scoliosis progression.
Amongst these, 2059 images were excluded due to criteria such as (1) poor imaging quality
(over/underexposure) or low image resolution, (2) shrouded wrist regions, and (3) exhibi-
tion of bony deformities or non-standard imaging posture; examples of excluded images
are shown in Supplementary Figure S2. Images with rotated or contracted hand objects
were corrected into the standard front view manually. The remaining 7334 images were
randomly separated as a distal radius and ulna segmentation dataset (n = 2000), a multi-task
dataset (n = 3492), and an independent testing set (n = 1746). Then, 96 images with a DRU
grading below R5U3 were excluded. The data inclusion and exclusion processes are shown
in Figure 1.
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Figure 1. Data inclusion and exclusion flowchart.

An open-source hand X-ray processing framework based on Yolov5 was employed to
detect distal radius and ulna ROIs automatically for all images (Figure 2). As described in
our previous study [24], this ROI detection framework implemented a Yolov5m structure
that was subsequently trained and validated on 710 hand radiographs labeled by orthopedic
surgeons; it can be accessed through github.com/whongfeiHK/AIS-composite-model for
public use. Extracted ROIs were resized into 256 × 256 crops via zero-padding operations
and saved as single-channel grayscale images in JPG formatting. DRU grades of the multi-
task learning dataset and the independent testing set were labeled by two orthopedic
surgeons and two radiologists according to assessment protocols [21]. Segmentation labels
of the segmentation dataset, multi-task learning dataset, and independent testing dataset
were generated by an experienced orthopedic researcher with Roboflow. Examples of
labeled images for each maturity stage are shown in Figure 3; DRU radiologic morphology
is illustrated in Supplementary Figure S1.
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maturity stages.

2.2. Attention-U-Net as Backbone of Muti-Task Framework

The multi-task learning framework was conducted using Attention-U-Net models
that were implemented by introducing attention mechanisms into encoder–decoder deep
structures [43]. Fully convolutional image segmentation models represented by U-Net
outperformed traditional approaches by combining the benefits of speed and accuracy. This
is mainly attributed to the (1) precise localization of object boundaries by integrating low-
level and high-level sematic information via skip connections and (2) fully convolutional
operations, which allow for effective processing of sizable images and rapid segmentation
mask generation. Based on this, an attention mechanism was introduced to suppress the
irrelevant information of input images while highlighting the salient features that are
passed through the skip connections.

The encoder of the implemented model contained five sequentially connected convo-
lution layers followed by max-pooling layers that capture the context and reduce spatial
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dimensions while increasing the feature channels. This process extracted essential feature
representations from input ROI crops, such as edges, textures, and patterns. Symmetrically,
a five-layer decoder incrementally increased feature map dimensions through up-sampling
operations to combine the high-resolution features from the contracting path, enabling
precise localization and restoring the spatial information lost during the encoding process.
Additionally, the decoder employed convolutional layers to refine the feature maps and
generate a segmented mask. As shown in Figure 4, an attention gate is proposed to focus
on targeted regions of feature maps while suppressing feature activations in irrelevant
regions. Input features Xl are adjusted using attention coefficients αl

i with element-wise
multiplication, which can be formulated as

xl
att = αl

i ·xl
i (1)
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The selection of spatial regions involves analyzing both the activations and the con-
textual information provided by the gating signal gl , obtained from a coarser scale. The
overall process of attention coefficient αl

i calculation can be formulated as

ql
att = ψT

(
σ1

(
WT

x xl
i + WT

g gi + b
))

+ bψ (2)

αl
i = σ2

(
ql

att

(
xl

i ; gi; θatt

))
(3)

where σ2 is the sigmoid activation function, and attention gating is described as a parameter
set θatt that contains linear transformations with WX and Wg, computed with channel-wise
1 × 1 × 1 convolutions for the input tensor.

2.3. Multi-Task Learning Framework for DRU Grading

The proposed multi-task framework contains an object segmentation module and
a classification module, taking Attention-U-Net as backbone network (Figure 5). Two mod-
ules shared the same encoder network, with initial parameters transferred from the pre-
trained Attention-U-Net. Thus, common features for both classification and segmentation
were extracted. The segmentation branch was implemented as the decoder section of
Attention-U-Net described above. For the maturity stage grading branch, feature maps
from the last block of encoder, the bridge, and the first block of decoder were extracted and
concatenated for classification. To solve the problem of concatenation between multi-scale
feature maps, a global average pooling (GAP) layer was added to the end of each block to
resize the feature maps. Subsequently, a recombinant feature map block was connected,
with three fully connected layers with dropouts for classification. The first two fully connect
layers contained 256 and 128 units and were activated with ReLU function. A final dense
layer contained 7 units and was activated with the softmax function to predict 7 stages of
the radius (R5–R11) and 7 stages of the ulna (U3–U9) in two separate models.
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The dice coefficient loss was utilized for the loss function of the segmentation branch,
which was formulated as

Lseg = Dloss = 1 − 2 × |X ∩ Y|+ θ

|X|+ |Y|+ θ
(4)

where X and Y denote mask matrixes of prediction and ground truth, and θ is a smoothing
factor to avoid division by zero.

We employed cross-entropy loss to optimize the classification branch, which is
described as

Lcla = − 1
n

n

∑
i=1

7

∑
j=1

(
yi,j·log

(
pi,j

))
(5)

where n is the number of cases, yi,j are the ground truth for class j of an instance i, and
pi,j is the predicted probability for class j for instance i. Thus, for the proposed multi-task
framework, the combined loss function for union training is

Lm = λLseg + (1 − λ)Lcla (6)

where Lm is the multi-task loss, and λ ∈ [0, 1] is a hyperparameter to determine the
weight of tasks. Experiments indicated that the model with λ = 0.4 achieved the best
classification performance.

2.4. Model Training and Evaluation

A transfer learning strategy was proposed for multi-task model training. Firstly, the
Attention-U-Net backbone was pretrained, tuned and tested on the DRU segmentation
dataset with a 7:1:2 ratio division. The pretrained parameter set of the Attention-U-Net
encoder was transferred into the shared encoder of the multi-task model as parameter
initialization. Subsequently, the multi-task learning model was trained on the multi-task
dataset containing both classification and segmentation labels as described above. A five-
fold cross-validation method was utilized for model training and optimal hyperparameter
set searching. We conducted data augmentation for each training fold of cross-validation
with the flip horizontal method. All models were implemented using Pytorch frameworks
based on Python 3.8. The Adam optimizer algorithm was employed with a batch size
of 16 and a decaying learning rate initialized at 0.005 for gradient updates. The training



Tomography 2024, 10 1922

process was conducted on a computer server equipped with two NVIDIA Tesla T4 GPUs
and 128 GB RAM.

Performance evaluation was conducted on the independent testing set. Quantitative
evaluation of the distal radius and ulna segmentation was evaluated by IoU (Intersection
Over Union) and the Dice similarity coefficient (DSC) in comparison to manually generated
ground truths. The matrixes were formulated as follows:

IoU =
|X ∩ Y|
|X ∪ Y| (7)

DSC =
2 × |X ∩ Y|
|X|+ |Y| (8)

where X and Y denote mask matrixes of prediction and ground truth. The classification
branch of multi-task learning for skeletal maturity grading was evaluated via measures of
average accuracy, precision, recall, and F1-score for each DRU stage. Five-times repeated
model training processes with an optimal hyper-parameter set followed by bootstrap
sampling (n = 5000) on an independent testing dataset were employed to generate 95% con-
fidence intervals.

2.5. Baseline Model Setting for Performance Comparison

Several baseline deep learning models and multi-task framework settings were imple-
mented, trained, and tested on our dataset for comparison with our proposed approach.

(1) An ensemble-based DenseNet framework that integrated five independent DenseNet
models with different model configure settings [40]. This was the first report utilizing a deep
learning method for automatic DRU maturity grading but was only limited to four stages
of the distal radius and three stages of the distal ulna. We implemented their framework
and fine-tuned it on our dataset for performance evaluation.

(2) ResNet models based on regression problem definition with continuous output.
The DRU grading estimates were attained as numerical outputs rounded to the nearest
integer [24]. This model took radius and ulna ROI crops as input without segmentation.
We conducted experiments on both ROI crops and segmented images.

(3) We also implemented a two-stage assessment framework consisting of segmen-
tation and subsequent classification. The distal radius and ulna segmentations were
performed with Attention-U-Net as described above. The Attention-U-Nets were trained
upon the segmentation dataset and then applied to generate segmented images of the
classification dataset and independent testing set. Efficient-Net B0 to B7 structures [44]
were implemented as classifiers for performance comparison.

(4) To investigate the advantages of the attention mechanism in the proposed multi-task
framework, we replaced the Attention-U-Net backbone as conventional U-Net configured
with the same layers and hyperparameters.

(5) To investigate the effectiveness of the proposed encoder pretraining and parameter
transferring method, we neglected the process of Attention-U-Net pretraining upon the
separate segmentation dataset. The multi-task framework was directly trained based on
paired segmentation and grading labels with random parameter initialization.

(6) As suggested in [24], we also formulated the proposed framework as a regression
problem with continuous output. The last layer of the classification branch was replaced
with a single unit with a ReLU activation function. The prediction outputs were then
attained as a numerical value rounded to the nearest integer.
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3. Results

The independent testing set containing 1746 hand X-rays was utilized for the proposed
method and baseline model evaluation. ROI crops of the ulna and radius were generated
with the pretrained Yolov5 tool. The radius set for testing contained 245 images as grade
R5, 251 images as grade R6, 237 images as grade R7, 219 images as grade R8, 272 images as
grade R9, 246 images as grade R10, and 276 images as graded R11. The ulna set consisted
of 237 images as grade U3, 222 images as grade U4, 261 images as grade U5, 255 images as
grade U6, 273 images as grade U7, 246 images as grade U8, and 252 images as grade U9.
DRU maturity grading performance was evaluated on the proposed multi-task framework
in comparison to the other six baseline models, as described above. The mean values
for model performance following five repeated experiments and bootstrap sampling are
summarized in Tables 1 and 2 for distal radius and ulna grading, respectively.

Table 1. Performance comparison of proposed method and baseline models for distal radius
maturity grading.

Models Accuracy (95%CI) Precision (95%CI) Recall (95%CI) F1 score (95%CI)

Ensemble DenseNet [40] 86.2% (85.4–88.7%) 87.2% (85.9–87.7%) 85.3% (84.4–86.2%) 86.2% (85.1–86.9%)
ResNet [24] 83.3% (81.8–84.6%) 84.2% (83.0–85.4%) 82.6% (81.1–83.0%) 83.4% (82.0–84.2%)

Efficient-Net B4 84.5% (82.2–85.6%) 83.9% (82.8–84.5%) 85.2% (84.1–86.3%) 84.5% (83.4–85.4%)
Two-stage framework 87.3% (86.0–88.4%) 86.8% (86.3–88.2%) 88.5% (83.3–88.9%) 87.6% (84.3–88.5%)

U-Net with multitask model 89.4% (88.2–91.2%) 90.3% (88.1–92.0%) 88.0% (87.4–90.8%) 89.1% (87.7–91.4%)
Multi-task without pretrain 92.5% (90.3–93.1%) 91.4% (89.9–93.0%) 93.3% (91.9–94.0%) 92.3% (90.9–93.5%)
Multi-task with regression 92.2% (90.7–93.6%) 91.8% (89.3–92.8%) 92.9% (90.0–93.5%) 92.3% (89.6–93.1%)

Proposed method 94.3% (91.4–95.0%) 93.8% (90.7–94.3%) 94.6% (92.1–95.2%) 94.2% (91.4–94.7%)

Table 2. Performance comparison of proposed method and baseline models for distal ulna
maturity grading.

Models Accuracy (95%CI) Precision (95%CI) Recall (95%CI) F1 score (95%CI)

Ensemble DenseNet [40] 83.4% (80.9–84.1%) 81.3% (79.6–83.0%) 83.9% (82.1–84.4%) 83.2% (81.5–84.0%)
ResNet [24] 81.0% (79.5–83.0%) 78.6% (77.9–80.4%) 81.5% (80.1–82.4%) 80.8% (79.5–81.9%)

Efficient-Net B4 82.8% (81.7–83.6%) 83.9% (82.0–84.7%) 82.1% (81.5–83.9%) 82.5% (81.6–84.1%)
Two-stage framework 85.6% (84.1–85.9%) 86.0% (84.4–86.7%) 83.2% (83.0–84.5%) 83.9% (83.3–85.0%)

U-Net with multitask model 85.9% (84.3–86.7%) 85.0% (83.9–86.2%) 86.7% (84.9–87.0%) 86.3% (84.6–86.8%)
Multi-task without pretrain 87.2% (86.4–88.6%) 85.0% (83.8–86.2%) 87.9% (86.1–88.5%) 87.2% (85.5–87.9%)
Multi-task with regression 89.1% (87.0–91.1%) 90.3% (88.7–90.9%) 88.0% (87.6–89.8%) 88.6% (87.9–90.1%)

Proposed method 90.8% (88.6–93.3%) 90.3% (89.0–92.6%) 92.4% (90.1–94.2%) 91.9% (89.8–93.8%)

Regarding the two previously published models, the ensemble of DenseNet [14]
demonstrated an accuracy of 86.2% (85.4–88.7%), precision of 87.2% (85.9–87.7%), recall of
85.3% (84.4–86.2%), and F1-score of 86.2% (85.1–86.9%) for radius maturity stage classifica-
tion, as well as an accuracy of 83.4% (80.9–84.1%), precision of 81.3% (79.6–83.0%), recall
of 83.9% (82.1–84.4%), and F1-score of 83.2% (81.5–84.0%) for ulna classification. ResNet
applied on the regression formulation [15] achieved an accuracy of 83.3% (81.8–84.6%), pre-
cision of 84.2% (83.0–85.4%), recall of 82.6% (81.1–83.0%), and F1-score of 83.4% (82.0–84.2%)
for radius assessment, while it reported an accuracy of 81.0% (79.5–83.0%), precision of
78.6% (77.9–80.4%), recall of 81.5% (80.1–82.4%), and F1-score of 80.8% (79.5–81.9%) for
ulna assessment.

The Efficient-Net B4 model outperformed other Efficient structures of B0 to B7, achiev-
ing an accuracy of 84.5% (82.2–85.6%), precision of 83.9% (82.8–84.5%), recall of 85.2%
(84.1–86.3%), and F1-score of 84.5%(83.4–85.4%) for the radius stage, as well as an accuracy
of 82.8% (81.7–83.6%), precision of 83.9% (82.0–84.7%), recall of 82.1% (81.5–83.9%), and
F1-score of 82.5% (81.6–84.1%) for ulna classification. Incorporating an additional segmen-
tation module with a deep classifier improved prediction performance. Efficient-Net B4
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for segmented ROI objects achieved an accuracy of 87.3% (86.0–88.4%), precision of 86.8%
(86.3–88.2%), recall of 88.5% (83.3–88.9%), and F1-score of 87.6% (84.3–88.5%) for radius
classification, as well as an accuracy of 85.6% (84.1–85.9%), precision of 86.0% (84.4–86.7%),
recall of 83.2% (83.0–84.5%) and F1-score of 83.9% (83.3–85.0%) for ulna classification. This
indicated that boundary information extraction was efficient for DRU maturity assessments.

The multi-task learning with U-Net as the backbone presented more limited perfor-
mance than the proposed method, achieving an accuracy of 89.4% (88.2–91.2%), precision of
90.3% (88.1–92.0%), recall of 88.0% (87.4–90.8%), and F1-score of 89.1% (87.7–91.4%) for radius
classification, as well as an accuracy of 85.9% (84.3–86.7%), precision of 85.0% (83.9–86.2%),
recall of 86.7% (84.9–87.0%), and F1-score of 86.3% (84.6–86.8%) for ulna classification. The
findings demonstrated that the attention mechanism improved feature encoding efficiency
by focusing on targeted regions of feature maps while suppressing feature activations in ir-
relevant regions. The multi-task framework without a pretraining process also showed
relatively low performance, with an accuracy of 92.5% (90.3–93.1%), precision of 91.4%
(89.9–93.0%), recall of 93.3% (91.9–94.0%), and F1-score of 92.3% (90.9–93.5%) for radius
classification, as well as an accuracy of 87.2% (86.4–88.6%), precision of 85.0% (83.8–86.2%),
recall of 87.9% (86.1–88.5%), and F1-score of 87.2% (85.5–87.9%) for ulna classification. The
proposed transfer learning strategy for hard shared encoder parameters improved recog-
nition performance. The setting of regression outputs did not result in much improve-
ment compared to the proposed classification scheme, and only achieved an accuracy
of 92.2% (90.7–93.6%), precision of 91.8% (89.3–92.8%), recall of 92.9% (90.0–93.5%), and
F1-score of 92.3% (89.6–93.1%) for radius classification, as well as an accuracy of 89.1%
(87.0–91.1%), precision of 90.3% (88.7–90.9%), recall of 88.0% (87.6–89.8%), and F1-score of
88.6% (87.9–90.1%) for ulna classification.

The proposed multi-task learning framework combining an attention mechanism and
transfer learning-based parameter initialization achieved the best performance figures for
both distal radius and ulna maturity grading. Model accuracy was 94.3% (91.4–95.0%),
precision was 93.8% (90.7–94.3%), recall was 94.6% (92.1–95.2%), and F1-score was 94.2%
(91.4–94.7%) for radius maturity classification. The framework achieved an average accuracy
of 90.8% (88.6–93.3%), an average precision of 90.3% (89.0–92.6%), an average recall of 92.4%
(90.1–94.2%), and an average F1-score of 91.9% (89.8–93.8%) for ulna maturity classification.
The corresponding confusion matrixes for the proposed method are shown in Figure 6.
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Figure 6. (A) Confusion matrix for radius stage grading for proposed method. (B) Confusion matrix
for ulna stage grading for proposed method.

Although DRU object segmentation was a secondary outcome of this study, perfor-
mance evaluation was also conducted amongst the proposed methods and three baseline
methods for the independent testing set (Table 3). The conventional U-Net achieved an IoU
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of 0.912 (0.906–0.926, 95% CI) and a DSC of 0.930 (0.915–0.939) for distal radius segmen-
tation and an IoU of 0.918 (0.897–0.922) and a DSC of 0.920 (0.908–0.934) for distal ulna
segmentation. By comparison, the multi-task learning framework improved segmentation
performance, with 0.937 (0.912–0.944) IoU and 0.943 (0.921–0.949) DSC for the radius, as
well as 0.918 (0.897–0.922) IoU and 0.937 (0.919–0.945) DSC for ulna segmentation. Similarly,
introducing attention gating into the U-Net structure achieved an improved segmentation
and demonstrated an IoU of 0.945 (0.932–0.953) and a DSC of 0.950 (0.939–0.958) for radius
segmentation, as well as an IoU of 0.948 (0.933–0.961) and a DSC of 0.950 (0.937–0.962)
for ulna segmentation. The proposed framework incorporating both the attention mech-
anism and multi-task learning achieved the best performance and reported an IoU of
0.960 (0.951–0.973) and a DSC of 0.973 (0.962–0.979) for radius segmentation, as well as
an IoU of 0.966 (0.948–0.977) and a DSC of 0.969 (0.962–0.978) for ulna segmentation. The
results demonstrated that introducing classification information improved segmentation
performance, although segmentation is not a primary objective in adolescent skeletal
maturity assessments.

Table 3. Segmentation performance comparison of proposed methods and baseline settings.

Models
Distal Radius Distal Ulna

IoU (95% CI) DSC (95% CI) IoU (95% CI) DSC (95% CI)

U-Net 0.912 (0.906–0.926) 0.930 (0.915–0.939) 0.918 (0.897–0.922) 0.920 (0.908–0.934)
Multi-task with U-Net 0.937 (0.912–0.944) 0.943 (0.921–0.949) 0.931 (0.906–0.937) 0.937 (0.919–0.945)

Attention-U-Net 0.945 (0.932–0.953) 0.950 (0.939–0.958) 0.948 (0.933–0.961) 0.950 (0.937–0.962)
Proposed methods 0.960 (0.951–0.973) 0.973 (0.962–0.979) 0.966 (0.948–0.977) 0.969 (0.962–0.978)

4. Discussion

Skeletal maturity assessment in children and adolescents plays an important role in
the management of growth-related diseases such as scoliosis and hormonal disorders [9].
In particular, numerous investigations on adolescent idiopathic scoliosis emphasize the
significance of growth and the swift advancement of the spinal curve during the peak
of the growth spurt [45,46]. Understanding the patient’s growth potential and reaching
the near end-stage of growth is crucial for prognosis. It guides the treating physician in
determining the appropriate treatment approach, including the observation interval, timing
for starting bracing therapy, when to stop bracing, and the timing of instrumentation and
surgery fusion.

The Risser sign and menarche age had been reported to show weak correlation with
peak height velocity and no ability to predict growth cessation, as these appear after the
peak of the adolescent growth spurt [4,47]. The TW3 and G&P provide comprehensive
methods of quantifying bone age via observing the degree of epiphyseal ossification and
fusion in hand radiographs, which allows more accurate prediction of bone maturation.
However, assessments of all finger digits and DRU epiphysis features make these schemes
time-consuming and challenging to implement in an outpatient clinical setting. Progression
stages of the DRU physes can be a simplified index, as it encompasses the entire period of
skeletal growth and is the last to close [21]. Nonetheless, Sanders et al. [47] reported DRU
epiphysis in the TW3 method shows very limited correlations with growing peaks. Because
the DRU in the TW3 methods were initially designed to be used alongside the epiphysis
of the finger phalanges and possess a wide interval between each stage, which are not
accurate for predicting growth spurts. By contrast, the DRU grading scheme identified
additional stages for the DRU that are more evenly distributed throughout the pubertal
phase, with each stage having a bone age gap interval of one year. Growth spurt peak
was observed at radiologic stages R7 and U5, characterized by the medial capping of
the distal radius epiphysis and the appearance of the ulna styloid in the ulna epiphysis,
whereas blurring of the distal radial growth plate (R11) and fusion of the ulna epiphysis
(U9) indicate the cessation of longitudinal growth [48,49]. This grading scheme has been
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validated to closely correlate with the adolescent growth spurt and the cessation of growth in
scoliosis patients [50]; thus, it may provide valuable insights in clinical management options.

Besides the DRU grading scheme analyzed in this paper, some other studies have also
investigated correlations between DRU maturity and hand-wrist radiographs.
Sallam et al. [51] analyzed the geometric development of the wrist in relation to the changes
in its ossification pattern via a retrospective multicenter study of 896 children. This study
determined that radiologic parameters of the ulna and radius exhibited consistent anatomic
changes before the 12-year-old time-point. Huang et al. [52] proposed a modified wrist
skeletal maturity system incorporating an epiphyseal and metaphyseal ratio of five physes:
the distal radius, distal ulna, and 1, 3, and 5 metacarpals, together with ulnar styloid height
and radial styloid height. When combined with chronological age and sex parameters, the
system achieved an improved skeletal maturity estimation compared with the G&P method.
Recently, a modified Fels wrist skeletal maturity system containing eight anteroposterior
wrist radiographic parameters was developed to quantify adolescent skeletal maturity [53].
The modified Fels was reported to provide more accurate, reliable, and rapid skeletal
maturity estimation than G&P and Sander’s stage systems. These three simplified wrist
maturity systems were implemented by quantifying radiographic parameters, whereas
the DRU grading scheme analyzed in this paper used maturity stage classification via
observation of the radius and ulna morphology. The prognostic value of these three latest
wrist maturity systems in scoliosis clinical management have not been investigated, and
computer-aided assessment methods have not been developed.

Computer-aided skeletal maturity prediction tools aim at fast and accurate assessments
via machine learning methods to promote clinical practice. The majority of studies focus on
automated TW3 or G&P bone age predictions for hand X-rays. An essential advance of bone
age assessment study is the application of a CNN-based computer vision model to learn key
features from radiographs automatically, without the need for complex feature engineering
and ROI extraction, such as Bonet for a TW3 bone age prediction [31] and a CNN model
for G&P bone age prediction [54]. Concerning distal radius and ulna maturity assessment,
both were previously reported using ensemble densely connected CNN [40] and residual
regression network [24] convolutional operations for DRU ROI crops for maturity feature
identification and expression. Specifically, the ensemble dense CNN integrated multiple
classifiers with different hyperparameter settings via a voting mechanism to improve
the prediction performance of single classifiers [40]. The residual neural network with
continued DRU grading output reported higher accuracy than classification problem
definition [24].

Skeletal maturities were discriminated by morphology discrepancy at individual grow-
ing stages of characteristic bones, such as the distal radius and ulna [55]. Identification
of the maturity stages improved accurate boundary recognition of characteristic bones,
which highlighted morphological differences and in turn facilitated maturity classification.
This formed the basis for multi-task learning approaches combining segmentation and
classification modules with a hard shared encoder. An attention mechanism was introduced
to suppress irrelevant regions of inputs while highlighting salient features [56,57]. Pretrain-
ing and parameter transferring reduced the requisite computational costs for multi-task
framework initialization. A limitation to this study is that prediction error may occur when
morphological features were between two adjacent stages, since X-ray changes were grad-
uated. Thus, a previous study [24] suggested a regression method to generate continued
output, but this approach did not perform well on our dataset. Establishing a sequential
dataset of X-rays at different growing stages may improve prediction performance, which
can integrate dynamic morphology changes into a spatial-temporal prediction model. Our
platform promises accurate DRU stage grading automatically, with an average accuracy
over 90%, outperforming previously reported models [24,40]. Additionally, our model
can assess seven stages of both radius and ulna maturity, covering the integral puberty
skeletal growing period. The proposed framework promises to be integrated with ad-
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vanced scoliosis prognostic tools [23,24,48] to facilitate progression risk evaluation and
personalized management.

5. Conclusions

We demonstrated that a multi-task learning framework could achieve accurate as-
sessment of DRU skeletal maturity. This framework utilized an Attention-U-Net as the
backbone, connecting a dense network as a classifier via a shared encoder. The proposed
model was trained and tested on an RSNA dataset. Our model has the potential to be
integrated into scoliosis prognostics tools directly to facilitate personalized diagnostics and
management, representing a substantial advancement in child and adolescent healthcare.
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