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Abstract: (1) Background: Continuous health promotion systems are increasingly important, enabling
decentralized patient care, providing comfort, and reducing congestion in healthcare facilities. These
systems allow for treatment beyond clinical settings and support preventive monitoring. Wearable sys-
tems have become essential tools for health monitoring, but they focus mainly on physiological data,
overlooking motor data evaluation. The World Health Organization reports that 1.71 billion people
globally suffer from musculoskeletal conditions, marked by pain and limited mobility. (2) Methods:
To gain a deeper understanding of wearables for the motor rehabilitation, monitoring, and prediction
of the progression and/or degradation of symptoms directly associated with upper-limb pathologies,
this study was conducted. Thus, all articles indexed in the Web of Science database containing the
terms “wearable”, “upper limb”, and (“rehabilitation” or “monitor” or “predict”) between 2019
and 2023 were flagged for analysis. (3) Results: Out of 391 papers identified, 148 were included
and analyzed, exploring pathologies, technologies, and their interrelationships. Technologies were
categorized by typology and primary purpose. (4) Conclusions: The study identified essential sensory
units and actuators in wearable systems for upper-limb physiotherapy and analyzed them based on
treatment methods and targeted pathologies.

Keywords: wearable; continuous health; telemedicine; upper limb; physiotherapy; pos-strock;
Parkinson’s

1. Introduction

The theme of telemedicine through the adoption of wearables has seen a significant
increase in recent years. Through a quick search on scientific research indexing platforms
such as Web of Science using the keywords ‘telemedicine’ and ‘wearable’, we have observed
a steady growth in published papers from 2010 to 2023.

While there was already a gradual increase in publications on this topic till 2019, largely
due to the increasing adoption of smartwatches and smart bands, from 2020 onward, we
can observe an exponential surge in publications due to the COVID-19 pandemic. This
surge is primarily attributed to the issues associated with the pandemic, such as the need
for social distancing, the isolation of high-risk patients, and the challenges in delivering
healthcare during periods of high demand, driven by centralized facilities and limitations
in both human and non-human resources. This observation is also substantiated in some of
the most recent literature review articles [1–3].

While it has been a sporadic issue in some countries that has gradually subsided over
time, we currently live in a century where one of the main challenges is aging and has been
a cause for concern in many studies. Globally, in 2019, Europe and North America had the
highest percentage of aged population, with 18 percent of the population being 65 years or
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older. The trend of an increasing aging population, in particular in Europe, is expected to
continue. The number of individuals aged 80 years or older is growing at an even faster
rate. Specifically, in 1990, there were 54 million people aged 80 years or older globally, and
by 2019, this number had nearly tripled to 143 million [4].

As widely known, aging is directly linked to the deterioration of individuals’ physical
and cognitive functioning and their propensity to rely on conventional healthcare meth-
ods [5,6]. With this issue in mind, it is imperative to take action and allocate more efforts
to the field of Remote Healthcare in order to avoid overwhelming traditional healthcare
systems as we currently know them. By further implementing Remote Healthcare, we
can not only provide closer and personalized monitoring of individuals but also use it
continuously throughout people’s lives as an excellent tool for the prevention and early
detection of health problems.

In recent years, there has been a noticeable absence of scientific publications of lit-
erature reviews in the field of the motor rehabilitation, prediction, and monitoring of
pathologies directly associated with motor limitations in the upper limbs. While there
have been comprehensive reviews of wearables used in high-performance sports for mon-
itoring physiological developments and injury prediction, showcasing the potential of
technology, this attention has not been adequately directed towards physiotherapeutic
applications [7]. The existing literature covers various areas, such as wearable-based sleep
monitoring, cardiac monitoring [8–12], materials with sensory capabilities [13–16], wearable
communication [17–20], and physical activity [21–23].

However, the exploration of tracking human movement remains limited. For instance,
Lou et al. [24], focused on flexible sensors, provides only a small section of solutions capable
of monitoring the motor activity of the upper limbs. Bortolani et al. [25] conducted an
extensive literature review aiming to identify all Test of Motor Function (TOM) assess-
ments used for evaluating motor function in patients with neuromuscular diseases. The
study focused on a descriptive summary of the technological aspects employed in these
assessments and assessing the available evidence regarding psychometric properties. The
analysis included only 100 studies due to restrictive filtering criteria, which required the
inclusion of patients with clearly identified neuromuscular diseases.

According to recent data, despite the fact that approximately 25% of commercialized
wearables and 30% of research-targeted wearables are related to physical activity [26], no
literature reviews specifically addressing this category of devices have been identified in
the past four years. The last comprehensive review addressing this situation dates to 2019
with the work of Elvira et al. [27]. Hence, there is a pressing need to develop a literature
review on the utilization of wearables in the rehabilitation, monitoring, and prediction of
the motor progression and/or degradation of the upper limb.

The proposed study aims to examine wearable systems for the purpose of motor
rehabilitation, monitoring, and prediction. During our review, we identified two primary
categories of works, fundamental technologies and associated technologies. Fundamen-
tal technologies were further divided into three interconnected subgroups, accessories,
exosuits, and exoskeletons, and one independent group, cameras. We also identified a
small percentage of studies that did not fit into these two categories, which were grouped
under a separate “others” section. Our focus will be on accessories, as they represent the
most prominent continuous health promotion systems today. Cameras, despite being less
represented, were included due to their relevance in telemonitoring.

The structure of the paper is outlined as follows. The abbreviations presented through-
out the paper are introduced in Section 2. Section 3 introduces the methodology employed
for the systematic review. In Section 4, wearable systems are categorized and described.
The discussion of the key findings is presented in Section 5. Lastly, Section 6 provides the
main conclusions and future perspectives.
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2. Acronyms

In this work, we utilize different acronyms and truncations for specialized terms and
ideas broadly recognized within the pertinent areas. To encourage perusing and reference
all through the article, we display below a list of all the acronyms utilized, at the side their
definitions (see Table 1). The purpose of this list is to help the reader in understanding the
substance more clearly, without overstating the total terms within the content. We energize
perusers to allude to this segment at whatever point fundamental amid their perusing.

Table 1. List of acronyms mentioned throughout the paper.

Acronyms Meaning IMU Inertial Measurement Unit

ADLs Activities of Daily Living KWF Kirschner wire fixation

AOT Action Observation Training LDA linear discriminant analysis

ARAT Action Research Arm Test ML Machine Learning

AI Artificial Intelligence MMG Mechanomyography

AR Augmented Reality MR Mixed Reality

CP Cerebral Palsy NBPP Neonatal Brachial Plexus Palsy

CNN Convolutional Neural Network KNN K-Nearest Neighbours

DL Deep Learning OT Occupational Therapists

DNN Deep Neural Network PD Parkinson’s Disease

ECG Electrocardiography RFID Radio Frequency Identification

EEG Electroencephalographic ROM Range of Motion

EMG Electromyography SCI Spinal Cord Injury

EoG Electrooculographic SKT Skin Temperature

FMG Force myography SVR Support Vector Regressors

FSR Force Sensitive Resistive SVM Support Vector Machine

FMA Fugl-Meyer Assessment TAB Tactile Arm Brace

FAS Functional Ability Scale US Ultrasound

GSR Galvanic Skin Response VPF Volar Plate Fixation

GM Gross Movement VR Virtual Reality

HRV Heart Rate Variability YOLO You Only Look Once

3. Methods
3.1. Search Strategy

In this section, we outline the approach employed in conducting the current systematic
review, detailing the search strategy and criteria applied to include the chosen papers.

Was conducted a computer-assisted search on the Web of Science database using the
search terms: “wearable” and “upper-limb” and (“rehabilitation” or “monitor” or “predict”).
This search encompassed the timeframe from January 2019 to December 2023. All titles and
corresponding abstracts identified through the search terms were reviewed, and articles
meeting the selection criteria underwent a thorough detailed reading and examination.

3.2. Selection Criteria

From the published articles obtained through the aforementioned search strategy, a set
of criteria was defined to identify the relevant works for this review analysis. First, review
articles were automatically excluded.

Among the remaining works, all papers featuring devices aimed solely at lower-limb
health, often associated with gait, were removed due to being out of scope. Documents
categorized as “Abstracts only” and those working with amputee prostheses were also not
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considered. Some studies testing the reliability of devices for acquiring physiological data
specifically in the upper limb, but with no impact on mobility quality, were also excluded.
Devices designed for industrial purposes and works that promoted physical activity or
performance without a physiotherapeutic purpose were also removed. Studies focusing
on the sensory aspect, particularly the material aspect as well as musical cueing, and any
research addressing pathologies unrelated to the degradation of upper-limb mobility, were
not included in the analysis. Ultimately, all studies that encompass technologies of the
exoskeletons and exosuits typology were not considered.

3.3. Search Results

The search in the databases, using the strategy previously presented, resulted in
391 publications. Upon abstract evaluation, 103 papers were further rejected for not meeting
the specified selection criteria. These papers did not directly or indirectly address the use
of wearable devices in a physiotherapeutic context, focusing on monitoring and predicting
the evolution and/or degradation of upper-limb mobility. Following the exclusion of
works with restricted access, non-wearable robotic solutions, exosuits, and exoskeletons,
148 papers underwent full-text analysis, forming the basis for exploration in this review.
The included works were organized into 3 conceptual groups: fundamental technologies,
associated technologies, and others. The systematic review’s data flow is illustrated in
Figure 1.
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4. Results

The utilization of wearables in monitoring and rehabilitating the upper limb has
emerged as an innovative approach for various health conditions. Throughout the analysis
of the included studies, various health conditions were investigated. However, one condi-
tion is prevalent—post-stroke rehabilitation, which was mentioned in approximately 43%
of the studies. In second place, Parkinson’s disease (PD) emerges with 7% of mentions.

Numerous investigations focused on overall upper-limb rehabilitation, while others
explored a range of conditions, such as spinal cord injuries (SCI), arthritis, dyspraxia, ataxia,
neonatal brachial plexus palsy, sclerosis, spasticity, cerebral palsy (CP), dyskinesia, and
various joint injuries and post-operative progressions in upper-limb motor function. The
interrelated character of various health issues, especially among post-stroke individuals,
was considered.

4.1. Overview

In addressing the challenges outlined in the aforementioned analyses, several technolo-
gies were studied and developed in these works. The included articles were divided into
two main categories: fundamental technologies and associated technologies. Additionally,
a small percentage of works that did not fit into these categories were grouped under
“others” (see Figure 2). We defined fundamental technologies as devices equipped with
sensor and/or actuating units selectively applied on the patient, such as wristbands, rings,
skin-adherent sensors, among others. Within this category, they can also be viewed as active
or passive: passive when they are sensory devices and active when they include actuators
to apply stimuli to individuals. In the case of cameras, they do not relate significantly to the
technological groups presented thus far, playing a predominant role in analyzing upper-
limb object manipulation by patients and providing information to healthcare professionals.
Given the significance of these types of devices and the wide range of solutions identified
in the literature, they will be explored in more detail in Section 4.2.
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In the case of camera work, the described works mostly served as a monitoring tool
and to support healthcare professionals in diagnosing the functioning of the upper limb.
Many of the works used cameras to acquire egocentric vision or first-person vision, which
were attached to patients. In the field of egocentric videos, Zariffa et al. has contributed
with 10 works focused on the concept of egocentric cameras [28–37]. The underlying
concept involves the continuous monitoring of patients’ hand usage and their interaction
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with everyday objects (see a conceptual scheme in Figure 2). Throughout the various works
presented, many employed deep learning (DL) and machine learning (ML) methods to
achieve this monitoring, utilizing object detectors [29–36] (such as Yolo) and OpenPose [32],
for example. This approach enables the provision of feedback to healthcare professionals
about patient behavior, facilitating clinical decision-making. Although some are tailored
to different pathologies and contexts, they share a similar principle. Moreover, Battraw
et al. [38] presented a similar concept of utilizing an egocentric camera, with a particular
focus on pediatric cases, to identify grasp configurations in children.

Outside the concept of egocentric vision, Ham et al. [39] developed a mixed reality
(MR) board as an upper-extremity training tool for stroke patients, sensing hand move-
ments using a deep camera and tangible objects for upper-extremity rehabilitation within
an MR environment. In Ozgur et al. [40]’s work, the authors proposed a technological
solution to detect/correct compensatory movements during physiotherapy that can reduce
its effectiveness. For that, a Tangible Robot-Assisted system was proposed. First, a vision
system was developed to detect the presence of compensatory movements in this treat-
ment. After confirming that patients indeed developed compensatory movements during
treatment, the authors proposed incorporating an IMU into the Tangible Robot to achieve
the real-time detection of these movements.

Moreover, using cameras, Kim et al. [41] presented a work about video augmented
mirror therapy. This work involved capturing images of each participant’s unaffected upper
extremity and then left–right reversing them using the Video Rotate and Flip application
(Wander Bit LLC) to create images of the participant’s affected upper extremity during
reach-to-grasp treatments. The results showed improvements in the motor control of
reach-to-grasp kinematics and upper-extremity function compared to traditional mirror
therapy and conventional rehabilitation. A different perspective was presented by Song
et al. [42], which developed a work focused on the use of augmented reality (AR) through
the functionality of a smartphone camera. Specifically, they created an AR game involving
placing virtual objects in the patient’s surrounding environment, where the patient can
interact with them by moving the smartphone with the affected limbs toward the virtual
object (see Figure 3).

Regarding associated technologies, we consider them to be an extension of funda-
mental technologies. Although certain associated technologies may independently hold
relevance for physiotherapeutic purposes, our review focuses primarily on studies that
leverage the potential of fundamental technologies through their integration with associ-
ated technologies. In these cases, fundamental technologies are viewed largely as tools that
enhance the capabilities of associated technologies. Within this category, we find virtual
reality (VR), AR, and MR often associated with gamifying physiotherapeutic processes,
in which wearables are frequently used as game controllers. Additionally, we frequently
identify the implementation of artificial intelligence (AI) methods in data processing to
monitor and predict patients’ motor evolution. Within this concept, there are some studies
that explore these ideas in relation to wearables. In the concept of VR, we have observed
initial usability studies of the Oculus Quest 2 and games for physiotherapy in patients with
Parkinson’s [43]. Additionally, effective applications in treatment through tracking upper-
limb extremities during exercises in a game format were also described [44]. Furthermore,
a work focused on the symbiosis between VR and a non-wearable haptic feedback system
(Omega.7, Force Dimension) was also presented. This work consisted of a maze-like game
where the user used a haptic feedback device to guide the ball out of it, involving virtual
guiding tasks with haptic feedback to assess wrist motor functions, including basic motor
flexibility, motion stability, and the range of active motion (see Figure 4) [45].
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Finally, in the “other” group, we encounter studies that do not focus on any specific
technology but are nonetheless relevant to the wearable theme in terms of motor rehabili-
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tation, monitoring, and prediction. These studies focus on wearable design preferences,
feedback from patients/physicians regarding implementation, and the identification of
physiotherapy-relevant exercises, among others, such as Simpson et al.‘s work [46]. This
team conducted a qualitative study carried out by healthcare professionals on the potential
of wearable devices for capturing upper-limb activity post-stroke. The conclusion was
unanimous, showing interest in using wearable devices to capture upper-limb activity
outside of therapy sessions for individuals with some reach and grasp ability. Also, from
a qualitative perspective, both by healthcare professionals and individuals’ post-stroke,
researchers also conducted studies to determine essential considerations for designing and
developing an interactive wearable system for upper-extremity rehabilitation [47]. On the
other hand, in Lang et al. [48]’s work, the direct effects of physiotherapy on patients’ daily
lives were studied. Through the longitudinal monitoring of capacity and performance via
wearable sensor measurements of use in ratio/steps/day, it was found that the capacity
acquired by patients with clinic treatments did not directly translate into better perfor-
mance in daily life. It was observed that performance does not improve proportionally
to capacity. Furthermore, looking at the potential of wearable motion sensors, Langerak
et al.‘s study [49] raised the types of exercises to be performed at home, subdivided into
functional requirements, required exercises, and exercise measures. The requirements are
prioritized as must-haves, should-haves, and could-haves. They can be used to develop
home-based UE rehabilitation interventions based on wearable motion sensors. Still in the
“other” group, we must mention Lin et al.‘s work [50]. This study started from the premise
that non-contact measurement devices can also digitize handwritten patterns as well as
wearables commonly associated with direct contact tremor measurements. In their work,
they presented a non-contact measurement with an array X-band microwave (10 GHz)
Doppler-based linear quantizer designed to continuously measure upper-limb movements
for tremor class scaling. They extracted the physical changes in the oscillation frequencies,
amplitudes, and directions of tremor signals for scaling upper-limb tremor (ULT) levels.
In experiments involving 10 subjects, the proposed non-contact bioradar sensor could
quantify asymmetrical and irregular oscillations (see Figure 5).
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4.2. Accessories

Numerous devices have been covered in this review, ranging from various sensor
units to actuators, presenting a diverse array of applications. In exploring sensor units,
a wide range of typologies have been investigated, including inertial measurement units
(IMUs), electromyography (EMG), force myography (FMG), mechanomyography (MMG),
barometric pressure sensors, A-mode ultra sound sensors, force-sensitive resistive (FSR)
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sensors, bend and pressure sensors, proximity-based sensors, electroencephalographic
(EEG) and electrooculographic (EoG) sensors, and physiological data sensors, such as heart
rate variability (HRV) and skin conductance level (SCL) sensors. Additionally, sensors like
LED/phototransistors, strain sensors, electrocardiography (ECG), galvanic skin responses
(GSR), skin temperature (SKT) sensors, and radio frequency identification (RFID) are
explored. Notably, IMUs are prominently featured in approximately 66% of wearable-
related studies, followed by EMG at around 25%. While other sensors receive fewer
mentions, their significance is not diminished, and quantifying their presence proves less
relevant in comparison.

Regarding actuators, only two types emerged: vibration or electrical stimulation. Out
of the 17 studies addressing accessory-type wearables, only 5 utilize electrical stimulation
as an active mechanism.

4.2.1. IMUs

IMUs emerge as the most widely used sensor, highlighting their versatility for mul-
tiple purposes. This sensor was used in a high number of different applications, largely
associated with users’ reach capabilities. As will be presented further, the potentialities
of these technologies are vast, with numerous works exploring applications in real-world
problems. Additionally, studies have emerged addressing specific technical issues, such
as the requirements of devices incorporating these technologies for certain pathologies
or scenarios as well as the establishment of physiotherapy. Brown et al. [51] conducted
a study about how a wristband should be made to encourage movement of the affected
upper limb in unilateral cerebral palsy. Turk et al. [52] developed a comprehensive col-
lection of upper-limb tasks tailored for the M-MARK wearable system aimed at offering
real-time feedback during daily tasks for individuals recovering from strokes. Through
consultations with rehabilitation experts and interviews with stroke survivors, data were
gathered to inform the selection process. Subsequently, employing a categorization matrix,
they methodically pinpointed 11 training tasks considered appropriate for evaluation with
the M-MARK system.

In line with Lang et al. [48], addressing the issue of the lack of direct impact of clinic-
based physiotherapy on specific daily movements, David et al.‘s work [53] highlighted this
same target in their work. In this work, the issue of the lack of direct impact of clinic-based
physiotherapy on specific daily movements, such as opening a bag, was highlighted. They
proposed a framework based on wearable IMUs to characterize daily movements and
adjust physiotherapy accordingly. In particular, this study is an example of home-based
physiotherapy by post-stroke patients [54].

There was still a study that proposed non-IMU sensors but with similar objectives.
Zhang et al. [55] proposed a wristband with an airflow sensor to track arm movements
by varying the airflow, aiming to quantitatively evaluate energy expenditure during post-
stroke rehabilitation.

Within IMU sensory typology, it was possible to categorize the works into 6 conceptual
groups: (i) monitor, diagnostic, and motor dysfunction assessment; (ii) comparison with
other methods; (iii) machine learning; (iv) gamified rehabilitation; and (v) post-operative
rehabilitation.

i. Monitor, Diagnostic, and Motor Dysfunction Assessment:

IMUs were used to assess asymmetry and activity differences between affected and
non-dominant hands in post-stroke patients with right hemiparesis [56]. In Beani et al.’s
study [57], using the ActiGraph GT3X+ (ActiGraph, Pensacola, FL, USA), asymmetry in
the use of the two upper limbs in children with unilateral cerebral palsy was measured.

Inspired by the same concept, Hughes et al. used a low-cost single IMU sensor-based
wearable system (outREACH) to determine upper-limb impairment [58]. In this study,
participants performed an object manipulation task with the affected and unaffected limb,
and the sensor was sensitive to differences in performance-based upper-limb impairment.
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In post-stroke patients, Datta et al. demonstrated that wrist devices also proved
effective in analyzing upper-limb movements and identifying hemiparesis in acute stroke
patients. Moreover, these wrist devices distinguished between controls and moderate-to-
severe hemiparesis [59] (see Figure 6). In another of his works, Datta et al. [60] demonstrated
the feasibility of identifying the severity of hemiparesis in acute stroke cases using IMUs
based on a bivariate Poincaré plot during bilateral hand activity. Additionally, it was
demonstrated that four classes of hemiparesis severity in acute stroke can be identified
from short-length wearable accelerometry using only one sensor worn on each wrist [61,62].
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An assessment of upper-limb functionality involves the use of wearable wrist sensors,
such as accelerometers, to track and measure upper-limb gross movement (GM) in children
diagnosed with CP [63]. This technology also served to assign a gross movement score to
quantify arm use in patients with hemiparesis [64].

A comparative study of the number of reach and grasp in post-stroke patients and
healthy individuals was conducted, using a wristband (TENZR). By detecting movements
of the upper limbs (IMU) combined with volumetric changes in the fingers and wrist
(Force Myography—FMG), it was possible to count the repetitions of the reach and grasp
activity [65]. Also, to consistently capture functional reach-to-grasp repetitions, Simpson
et al. [66] combined IMU, FMG, and a proximity sensor for mild-to-moderate upper-limb
stroke impairment. Schwarz et al. [67] analyzed reach-to-grasp tasks in chronic stroke
patients using wearable sensors to examine trunk compensation and joint movement
correlations with clinical impairment.

From the perspective of monitoring physiotherapeutic activities, Palani et al. [68]
developed a portable and economical platform that integrates IMU and vision data to
accurately estimate joint angles in real time during rehabilitation tasks. Data fusion is
enhanced by a Kalman filter, providing efficiency and accuracy according to the authors.
Although for a different purpose, Humadi et al. [69] applied inertial measurement units
for joint angle measurement in the field during manual handling tasks for ergonomic risk
assessment. Still in the field of joint angle measurements, Rahman et al. [70] implemented
a Madgwick filter-based joint angle measurement algorithm to build a wireless wearable
sensor system for simplified joint angle measurements. Rajkumar et al. [71] developed a
sensor network to calculate joint angles of the shoulder and elbow using 5 IMUs.

Using IMUs, an upper-limb range of motion (ROM) assessment was also conducted
through a two-layer model, enabling the simultaneous estimation of joint angles and
positions. This model addresses precision challenges by implementing a dynamic sensor-
to-segment calibration method [72] (see Figure 7). Concerning ROM, Toh et al. [73] also
conducted a study on the applicability of wristbands in arm ROM measurements, but in
his case, they integrated them with an ecosystem with a telerehabilitation app, allowing for
interactive therapy.
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There were also studies that described simple algorithm approaches for the categoriza-
tion of 14 Manual Activities of Daily Living (ADLs). Using gyroscope data from six IMUs
located on the thumb, index finger, and wrist of both hands, it was possible to classify
manual ADLs into five categories [74]. Sebastjan Šlajpah et al. [75], with a wearable sen-
sory system combining IMU and EMG sensors, monitored upper-limb movements during
ADLs through time-based and path-based segmentation for trajectory and muscle activity
analysis, being able to distinguish between affected and unaffected limbs.

Franchi de Cavalieri et al. [76] explored the potential of wearable sensors to predict
clinical assessment scores of infants’ motor activity through data acquired by accelerome-
ters placed on infants’ wrists and trunk during playtime. They exploited the method of
functional data analysis to implement new models combining quantitative data and clinical
scales. With more specificity, Gatword et al. [77], utilizing the same technology, leveraged
it for the quantification of the duration and magnitude of patient-initiated arm movements
outside the clinical setting in cases of neonatal brachial plexus palsy.

Furthermore, metrics were developed to assess upper-limb compensation in tetraplegic
SCI patients using wearable sensors [78]. These metric-graded redefined assessments of
strength, sensibility, and prehension can be applied in clinical intervention studies to
examine the presence of upper-limb compensation. In the realm of wearable technology
development, Gao et al. [79] focused on the development of a new armband geared towards
data transmissibility, gateway nodes, and wireless communication networks, mainly due
to concerns regarding mobile medicine. Despite the potential of this technology, the human
acceptance must be evaluated, whether by patients or healthcare professionals. Addressing
this concern, Jung et al. [80] realized further studies. Accelerometers were utilized on the
fingers as a wearable for testing. According to the questionnaires, acceptance was observed
among post-stroke individuals and occupational therapists (OTs). The OTs could easily
customize treatments based on the sensory data. Formstone et al. [81] combined inertial
measurement and mechanomyography (MMG) in a system to quantify hand and wrist
motor function.

For the diagnosis and monitoring of ataxia progression, Tran et al. [82] conducted a
design, implementation, and feasibility study of a new multimodal system using Microsoft
Kinect (Microsoft, Seattle, USA) and wearable sensors for the assessment of ballistic tracking
in individuals. Concerning PD, numerous studies have been developed to address this
concern. Yousef et al. [83] implemented accelerometer-based wearable device technology
in monitoring upper-limb tremor detection in essential tremor patients. During the study,
patterns regarding the amplitude and frequency of voluntary and involuntary vibrations
were observed. Furthermore, efforts were made to not only monitor PD progression but
also define the onset of manifestation on other works [84].

The reliability of wearable technologies for physiotherapeutic purposes, monitoring,
and predicting the motor evolution of individuals was further validated by Lang et al. [85].
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They followed 67 participants after their first stroke, measuring upper-limb performance
with wearable sensors. The obtained results, based on inertial data, showed rapid initial
improvement, stabilizing within 3–6 weeks post-stroke, suggesting early adaptation to
daily activities before functional capacity stabilization. Von Gunten et al. [86], in their
study, evaluated the feasibility of Action Observation Training (AOT) combined with
sensor-based measurements in infants at high risk of Unilateral Spastic CP. Sensor data
correlated significantly with hand function, suggesting wearable sensors’ potential to
monitor upper-limb function during AOT for infants at high risk of Unilateral CP. Finally,
Vanmechelen et al. [87] concluded that it is possible to detect pathological movements
in individuals with Dyskinetic CP using a network of inertial sensors. In this study, jerk
and acceleration/angular velocity was found to be significantly higher in the group with
Dyskinetic CP (see Table 2).

Table 2. Study characteristics for studies for monitoring, diagnosis, and motor dysfunction assessment.

Ref. Year Pathology Technology Study Goals

[56] 2020 Stroke
(Hemiparesis)

Mi Band 3 (Xiaomi Inc., Beijing,
China)

Assess asymmetry
between affected and
unaffected limb

[57] 2019 Stroke
(Hemiparesis)

ActiGraphs GT3X+ (ActiGraph,
Pensacola, FL, USA)

Assess asymmetry
between affected and
unaffected limb

[58] 2019 Stroke outREACH (Custom made
wrist-worn)

Impairment
determination of the
upper limb based on
asymmetry

[59] 2020
Stroke

(Hemiparesis)

Wrist-worn Identification and
quantification of the
level of hemiparesis

[60] 2020
[61] 2020 Not specified
[62] 2021

[63] 2023 CP ActiGraphs GT3X+ (ActiGraph,
Pensacola, FL, USA)

Track and measure
gross upper-limb
movement

[64] 2021 Stroke
(Hemiparesis)

Custom wrist-worn composed by
SEN-14001 board (Spark Fun Inc.,

Niwot, CO, USA) and IMU
MPU9250, (InvenSense-TDK Co.,

San Jose, CA, USA)

Quantify arm use

[65] 2021
Stroke

TENZRTM Neuro Tracker V4 X.
(BioInteractive Technologies Inc.,

Vancouver, BC, Canada)

Assessment of reach
and grasp activity

[66] 2019

[67] 2020 Stroke

IMU network (ST LSM330DLC
manufactured by

STMicroelectronics, Geneva,
Switzerland)

Assessment of reach
and grasp activity

[68] 2022 Not specified

Bicep and forearm band (model no
specified) and Logitech C270

(Logitech International S.A, Riviera,
Switzerland)

Joint angles estimation
in real-time during
rehabilitation

[69] 2021 Musculoskeletal
disorders

17 IMUs MTws (Xsens
Technologies, Enschede, The

Netherlands)

Joint angles estimation
for ergonomic risk
assessment

[70] 2023 Not specified
WT901BLECL5.0

(Wit-MotionCompany, ShenZhen,
China)

Madgwick filter-based
Joint angles
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Table 2. Cont.

Ref. Year Pathology Technology Study Goals

[71] 2020 Not specified
IMU network of BNO055 sensor

(Bosch Sensortec GmbH, Stuttgart,
Germany)

Joint angles of the
shoulder and elbow

[72] 2023 Not specified Shimmer3 (Shimmer, Dublin,
Ireland)

ROM assessment
enabling the
simultaneous estimation
of joint angles and
positions

[73] 2023 Stroke
Wristwatch SCW-V2 (The Hong

Kong Polytechnic University, Hung
Hom, Hong Kong)

Arm ROM
measurement

[74] 2021

Hand surgery,
stroke,

rheumatoid and
arthritis

InSense (Arsalis,
Louvain-la-Neuve, Belgium)

Upper-limb assessment
during Manual
Activities of Daily
Living

[75] 2023 Stroke

MYO armbands (Thalmic labs,
Kitchener, ON, Canada), IMU
network and EMG bracelets

(models not specified)

Upper-limb assessment
during Manual
Activities of Daily
Living

[76] 2023
Perinatal brain

injury (Not
specified)

Axivity AX3 (Axivity Ltd.,
Newcastle, UK)

Assessment scores of
infants’ motor activity

[77] 2023
Neonatal

brachial plexus
palsy

Actigraph GT9X Link (ActiGraph,
Pensacola, FL, USA)

Quantification of the
duration and magnitude
of patient-initiated arm
movements

[78] 2019 SCI ReSense [88] Assess upper-limb
compensation

[79] 2020 Not specified

Custom armband composed by
MPU6050 (TDK InvenSense, Tokyo,

Japan) and nRF24L01 (Nordic
Semiconductor, Trondheim,

Norway)

Armband geared
towards data
transmissibility in the
context of mobile
medicine

[80] 2022 Stroke Finger-worn not specified
Reliability of inertial
finger registration for
treatment customization

[81] 2021 Stroke
Custom upper-limb band (IMU
sensor from STMicroelectronics,

Geneva, Switzerland))

Quantify hand and
wrist motor function

[82] 2020 Ataxia

Wrist-worn composed by MPU9250
(TDK InvenSense, Tokyo, Japan),
LPC1768 Microcontroller (NXP

Semiconductors, Eindhoven, The
Netherlands) and GS2011MIZ (GSI
Technology, Sunnyvale, CA, USA);
and a Kinect v2 (Microsoft, Seattle,

WA, USA)

Diagnosis and
monitoring of ataxia
progression

[83] 2022 PD

Custom wrist-worn composed by
Arduino (Arduino Srl, Turin, Italy)
and MPU6050 (TDK InvenSense,

Tokyo, Japan)

Monitoring upper-limb
tremor detection
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Table 2. Cont.

Ref. Year Pathology Technology Study Goals

[84] 2021 PD
Kinesia One (Great Lakes

Neurotechnologies Inc,
Independence, OH, USA)

Monitor progression
and define the onset of
manifestation

[85] 2021 Stroke Actigraph GT9X (ActiGraph,
Pensacola, FL, USA)

Monitoring, and
predicting the motor
evolution of patients
after their first stroke

[86] 2023 Unilateral
Spastic CP

Axivity AX3 (Axivity Ltd.,
Newcastle, UK)

Monitor upper-limb
function during AOT

[87] 2023 Dyskinetic CP
XSens MTw Awinda (XSens
Technologies, Enschede, The

Netherlands)

Detect pathological
movements in
individuals with
Dyskinetic CP.

ii. Comparison with Other Methods:

Some studies compared IMU technologies against conventional methods. Henschke
et al. [89] compared a portable inertial sensor system with an optical motion analysis
(Mocap) to measure shoulder kinematic parameters. The authors found that the overall
agreement with the gold standard was low. Chan et al. [90] conducted a comparative study
between an IMU and conventional clinical methods (optical motion capture) in measuring
ROM, indicating acceptable accuracy for the IMU compared to the conventional method.

Tran et al. [91] redesigned an IMU sensor system known as the T’ena sensor and
evaluated its ability to measure movement kinematics accurately during common post-
stroke motor tasks against a gold-standard motion capture system. High agreement and
correlation values were observed between both systems. Later, Hughes et al. [92], based on
the same platform, validated the wearable for assessing movement quality and efficiency.

This technology was also tested against Microsoft Kinect for motion tracking, demon-
strating similar performance in human motion tracking [93,94] (see Table 3).

Table 3. Study characteristics for studies that compare other methods.

Ref. Year Pathology Technology Study Goals

[89] 2022 Not specified

Wave Track inertial system
(Cometa Systems, Milan, Italy)

and Vicon MX T10S (Vicon
Motion Systems, Oxford, UK)

Comparison of a portable
inertial sensor system with
optical motion analysis to
measure shoulder kinematic

[90] 2022 Not specified

XCLR8 IMU (XCLR8
Technologies Private Limited,
Singapore) and Eagle digital
cameras (Motion Analysis

Corp., Rohnert Park, CA, USA)

Alternative to conventional
ROM measurement
methods

[91] 2022

Stroke

Modified version of the original
T’ena sensor [58] and VICON

Bonita 10 (Vicon Motion
Systems, Oxford, UK)

Accurately measuring
movement kinematics
during post-stroke motor
tasks compared to a
gold-standard motion
capture system.[92] 2022

[93] 2020 Not specified
EXLs3 (Exel srl, Bologna, Italy)

and Kinect v2 (Microsoft,
Seattle, WA, USA)

Human motion tracking.

[94] 2021 Not specified IMU network and Kinect v2
(Microsoft, Seattle, WA, USA) Human motion tracking.
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iii. Machine Learning:

Oubre et al. [95] used wrist-worn IMU to objectively assess ataxia severity and differ-
entiate between ataxia, Parkinson’s, and controls with high accuracy. In this specific case,
data processing was performed using ML techniques. Additionally, Oubre et al. developed
two more works. In the first [96], they estimated upper-limb impairment in stroke survivors
using data from two wearable inertial sensors processed by an unsupervised clustering
algorithm and a supervised regression model, which were used to estimate Fugl–Meyer
Assessment (FMA) scores. In the second [97], stroke impairment severity from the per-
formance of ADLs was studied using only the data obtained from a single wrist-worn
inertial sensor.

Regarding PD, Mirelman et al. [98] evaluated the best inertial data (IMUs) to diagnose
PD and determine the stage of the disease (upper vs lower limb) also through machine
learning methods (the upper limb was better). We also see the complementarity of IMUs
with ML in PD through quantifying stages of the pathology [99] or as a diagnostic aid [100].
In the study [99], three unsupervised learning algorithms were compared: k-means, self-
organizing maps, and hierarchical clustering. Self-organizing maps achieved the best
results. In the study [100], a genetically optimized random forest classifier was used for
three different upper-limb movements, obtaining the highest accuracy in the alternating
hand movement task. In addition to diagnosis, there was also an attempt to differen-
tiate Parkinson’s patients from essential tremor patients using support vector machine
classifiers [101].

Although not directly related to any motor pathology, Wiebe H.K. de Vries et al. [102]
focused on load applied on the shoulders, which can serve to predict future problems.
This work involved the classification (through the identification of the type of activity
performed) of the load exerted on the shoulders associated with wheelchair use through
machine learning methods. Four EMGs and five IMUs (three in person + two in wheelchairs)
were used. It was concluded that the use of EMGs was unnecessary and, regarding IMUs,
accuracy increased as the number of IMUs used in the classification increased.

Similarly, upper-limb pain does not directly reflect motor dysfunction; however, it can
be an indicator. In this segment, there was an innovative study in the application of ML
models to predict pain based on IMUs, in which the results showed that characteristics
related to the smoothness of measurements presented a stronger correlation with pain [103].

As previously mentioned, devices classified as accessories complement exoskeletons
often associated with motion intention prediction. Although IMUs are not the most fre-
quent sensory units for this purpose, studies have been developed on the application of
neural networks for joint prediction based on IMU sensors [104,105]. In the case of Little
et al. [106], IMU data were crossed with EMG and stretch sensors to be equally processed
through machine learning techniques for detecting elbow movement intention. In this
study, it was concluded that decision-making with only IMU data was faster but less
accurate. In a similar sensory combination to [106], Yang et al. [107], through a multimodal
sensing system, incorporating IMUs, EMG, and MMG sensors, captured kinematic and
physiological signals during reaching and placing tasks by five subjects. These data served
as input for traditional regression models and deep learning models for training and test-
ing. As a result, it was concluded that IMU sensors alone, with the proposed model, are
sufficient for motion intention detection.

In the field of monitoring physiotherapeutic evolution over time, Panwar et al. [108]
reformulated a convolutional neural network (CNN) to classify three movements (extension,
flexion, and rotation) using data from a wristband.

The combination of these two (IMU and ML) was also used to estimate clinical scores,
more specifically the Movement Disorder Society-Sponsored Revision of the Unified Parkin-
son’s Disease Rating Scale, Part III. Adans Dester et al. [109] demonstrated that wearable
sensor data can accurately estimate clinical scores used to assess motor impairments and
upper-limb movement quality. The Upper-limb FMA scale was employed to assess mo-
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tor impairment severity, while the Functional Ability Scale (FAS) was used to evaluate
movement quality.

Regarding telerehabilitation, a system capable of identifying and logging the variety
and frequency of rehabilitation exercises performed by the individual was created [110].
The system utilizes a smartwatch and a smartphone application integrated with a machine
learning algorithm. Additionally, the effectiveness of this home-based rehabilitation system
was assessed through a prospective comparative study involving chronic stroke survivors.

Through the processing of acceleration data provided by double wristbands through a
k-mean cluster, Barth et al. [111] discovered that the best characterization of movement per-
formance should be categorized into five distinct levels illustrating the performance score.

Liu et al. [112] showed that accelerometer recordings obtained from the proposed
body-networked sensor system composed of a finger-worn and a wrist-worn sensor can
be used to estimate the amount of hand use during ADLs. On the other hand, Subash
et al. [113], with the aim of measuring not only hand use but rather the entire upper
limb, conducted a comparative study of different measures for assessing upper-limb use
using wrist-worn inertial sensors, categorizing them into threshold activity counting,
gross movement score, and machine learning. The research found that machine learning,
specifically the intra-subject random forest model, performed best in detecting upper-limb
use. Among traditional methods, a hybrid approach combining activity counting and gross
movement score showed promise.

Ernesto et al. [114] also studied the use of machine learning algorithms to estimate
clinical scores according to the FAS, reflecting upper-limb movement quality based on wear-
able sensor data. A random forest-based algorithm demonstrated a high correlation (R2 =
0.91) with clinicians’ assessments, offering potential for precise rehabilitation interventions
in individuals with upper-limb motor impairments.

ML was also used to estimate task scores from the Action Research Arm Test (ARAT,
conceptual blocks in Figure 8), one of the most widely used clinical tests of upper-limb
motor functioning [115]. The data processed by the algorithm were from two wrist-worn
inertial sensors, and an accuracy of 80% was achieved.
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ML not only adds value to wearable devices with inertial units but also reinforced the
benefits of their clinical applicability and complementarity with clinical data to predict and
monitor the recovery process and assess the responsiveness to treatment on an individual
basis. Lee et al. [116] concluded in their study that a clinical algorithm had a correlation of
0.79 with rehabilitation outcomes but failed to model variability in individual response. In
contrast, the sensor algorithm had a correlation of 0.91 and modeled individual responses
more accurately. By combining clinical and sensor data, a correlation of 0.94 was achieved.

Within ML, comparative studies of the accuracy of multiple classifiers in a motion
recognition method [117] and for the motion recognition of upper-limb exercises and im-
provement of recognition performance [118] were also conducted, always using data from
IMUs. Regarding motion recognition, the optimal size of the time window for classifying
real-time motions was also investigated [119]. This was achieved by utilizing CNN-based
human activity recognition (HAR) with inertial data collected from a smartwatch (see
Table 4).
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Table 4. Study characteristics for studies that apply ML techniques.

Ref. Year Pathology Technology Study Goals

[95] 2021 Ataxia Opal (APDM Wearable Technologies,
Portland, OR, USA)

ataxia severity
assessment

[96] 2020 Stroke
XSens MTw Awinda (XSens

Technologies, Enschede,
The Netherlands)

upper-limb
impairment
estimation

[97] 2022 Stroke
(hemiparesis)

XSens MTw Awinda (XSens
Technologies, Enschede,

The Netherlands)

impairment severity
estimation

[98] 2021 PD Opal (APDM Wearable Technologies,
Portland, OR, USA)

comparison between
upper- and
lower-limb inertial
data to diagnose PD
and determine the
stage of the disease

[99] 2019 PD

Custom fingers/wrist-worn composed
by Cortex-M3 CPU

(STMicroelectronics, Geneva,
Switzerland) and LSM9DS

(STMicroelectronics, Geneva,
Switzerland)

PD stage
quantification

[100] 2022 PD
BWT901CL (Wit-MotionCompany
(Wit-MotionCompany, ShenZhen,

China)
PD diagnosis

[101] 2023 PD

Custom fingers/wrist-worn composed
by MPU9250 (TDK InvenSense, Tokyo,

Japan) and nRF52832 (Nordic
Semiconductor, Trondheim, Norway)

Distinguish
Parkinson’s patients

[102] 2022 Not specified Shimmer3 (Shimmer, Dublin, Ireland)
Classification of the
load exerted on the
shoulders

[103] 2023 Not specified APDM Wearable model not specified
(APDM Inc., Portland, OR, USA) Predict pain

[104] 2023 Not specified STEVAL-STLKT01V1 (ST
Microelectronics, Geneva, Switzerland)

Joint prediction
[105] 2022

[106] 2021 Not specified STEVAL-STLKT01V1 (ST
Microelectronics, Geneva, Switzerland)

Detect elbow
movement intention

[107] 2023 Stroke STEVAL-STLKT01V1 (ST
Microelectronics, Geneva, Switzerland)

Motion intention
detection

[108] 2019 Stroke Shimmer model not specified
(Shimmer, Dublin, Ireland)

Monitor
physiotherapeutic
evolution

[109] 2020 Stroke Shimmer2 (Shimmer Sensing, Dublin,
Ireland)

Clinical scores
estimation

[110] 2020 Stroke Smartwatch W270 (LG, Seoul,
South Korea)

Identify and log the
variety and
frequency of
rehabilitation
exercises performed
by the individual
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Table 4. Cont.

Ref. Year Pathology Technology Study Goals

[111] 2021 Stroke Actigraph GT3X-BT or GT9X-Link
(ActiGraph, Pensacola, FL, USA)

Categorization of
upper-limb
performance

[112] 2019 Stroke Finger and wrist-worn (Arcus,
ArcSecond Inc., San Diego, CA USA)

Hand use during
ADLs estimation

[113] 2022 Not specified Wrist-worn [64]

Comparison of
different measures
for assessing upper
limb

[114] 2022

Stroke
(hemiparesis)
and Traumatic

brain injury

Shimmer2r (Shimmer Sensing, Dublin,
Ireland)

Estimation of
clinical scores
reflecting
upper-limb
movement quality

[115] 2022 Stroke ZurichMOVE (ZurichMOVE, Zurich,
Switzerland)

Estimation task
scores

[116] 2021

Stroke
(hemiparesis)
and traumatic
brain injury

Shimmer2 (Shimmer Sensing, Dublin,
Ireland)

Predict and monitor
the recovery process
and assess the
responsiveness to
treatment on an
individual basis

[117] 2019 Stroke
(hemiplegia) wrist-worn (not specified) Motion recognition

[118] 2021 Stroke

Custom Arm band composed by
MPU9250 (TDK InvenSense, Tokyo,

Japan), Arduino Nano V3 (Arduino Srl,
Turin, Italy) and Wireless Transmitter

HC-06

Motion recognition
of upper-limb
exercises and
improvement of
recognition
performance

[119] 2019 Not specified Smartwatch W270 (LG, Seoul,
South Korea)

Optimal size
estimation of the
time window for
classifying real-time
motions

iv. Gamified Rehabilitation:

The application of an accessory such as a gamepad for physiotherapeutic purposes
was explored Segal et al. [120]. In this work, they employed IMU placed on the patient’s
hand, aiming to control a cart within a maze based on the Yaw, Pitch, and Roll (YPR)
coordinates. This approach aimed to enhance rehabilitation adherence by quantifying
performance through game scores (see Figure 9). From a proprioceptive rehabilitation
perspective, Lapresa et al. [121] explored a system employing knee angle measurement,
with IMUs placed on the thigh and calf, to manipulate a serious game resembling Flappy
Bird. This system can be adapted to the upper limb.

Building upon their previous work presented at the prior congress, Franzo et al. [122]
compared a Microsoft Kinect device and Arduino board setup with accelerometer/gyroscope
sensors to a reproduction of the same exergame in a mixed reality environment using the
HoloLensTM 2. The exergame involved pointing and reaching exercises to enhance upper-
limb control during daily activities. According to the authors, the Kinect-based prototype
reliably tracks subjects’ movements and kinematic quantities, offering a larger work area
compared to the HoloLens. However, the Kinect has lower acquisition frequency and
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accuracy. The HoloLens 2, with a more restricted work area, allows for more realistic
movement training.
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Figure 9. A wristband functions as a joystick for controlling a remote-controlled car within a
maze; wrist flexion-extension controls the car’s forward and backward movement, while pronation–
supination enables on-the-spot turning.

The implementation of wristbands as controls for serious games in VR has been
investigated to enhance upper-limb function in children with brain injuries [123,124].
Similarly, Jurioli et al. [125] adopted a comparable approach by combining VR with IMU-
based wearables as gamepads composed of two IMUs to determine arm orientation (see
Table 5).

Table 5. Study characteristics for gamified rehabilitation studies.

Ref. Year Pathology Technology Study Goals

[120] 2020 Not specified

GC-Rebot (custom hand band
composed by IMU, radio

transceiver, and MCU) and XSens
MTw Awinda (XSens Technologies,

Enschede, The Netherlands)

Physiotherapeutic
gamepad to control via
gestures a car within a
maze

[121] 2020

Neuromuscular
and

musculoskeletal
diseases

XSens MTw Awinda (XSens
Technologies, Enschede,

The Netherlands)

Physiotherapeutic
gamepad to manipulate
a serious game

[122] 2022 Ataxia

Microsoft Kinect One (Microsoft,
Seattle, WA, USA), Microsoft

HoloLens 2 (Microsoft, Seattle, WA,
USA), and a custom hand sensor

Pointing and reaching
serious game

[123] 2021
CP

RAPAEL Smart Kids (Neofect Co.,
Ltd., Gyeonggi-do,
Republic of Korea)

Physiotherapeutic
gamepad for serious
games in Virtual Reality[124] 2023

[125] 2020

Stroke,
Cognitive deficit

and
musculoskeletal

diseases

Custom arm band composed by
Arduino Nano (Arduino Srl, Turin,
Italy), MPU6050 (TDK InvenSense,
Tokyo, Japan) and HC-05 Bluetooth

Module

Physiotherapeutic
gamepad for serious
games in Virtual Reality
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v. Post-Operative Rehabilitation:

Given the wide applicability of IMUs, IMU utility in post-operative scenarios was
also investigated. This is evidenced by the pilot study of Muhlestein et al. [126], demon-
strating the capability of activity trackers, such as accelerometers, to measure natural arm
movements in children undergoing nerve reconstruction for neonatal brachial plexus palsy
(NBPP) over extended follow-up periods. Differently, Zucchi et al. [127] studied wrist ROM
recovery post-surgical treatment for distal radius fractures, employing an IMU, and com-
pared outcomes between Kirschner wire fixation (KWF) and volar plate fixation (VPF) with
screws. Volar locking plate fixation was found to be comparable to percutaneous fixation
for distal radius fracture treatment. In another instance, Yanquez et al. [128] explored the
association between vascular surgery results and an upper-extremity function method,
utilizing IMU-based wearables on the bicep and forearm.

Also in a post-operative experiment, IMUs have proven effective in objectively moni-
toring limb recovery following breast and axillary surgery, a task previously reliant on sub-
jective questionnaires, thereby enhancing comparability [129]. Also in the post-operative
breast cancer treatment, Vets et al. [130] developed a study integrating IMU-based acces-
sories, cameras, and ML to investigate upper-limb function with post-operative mobility
impairment. Two wristbands and video footage served as ground truth data, with a com-
parative analysis conducted between a machine learning model and a count threshold
method (see Table 6).

Table 6. Study characteristics for post-operative rehabilitation studies.

Ref. Year Pathology Technology Study Goals

[126] 2022
Neonatal

Brachial Plexus
Palsy

GT9X-Link (ActiGraph,
Pensacola, FL, USA)

Activity trackers to measure
natural arm movements

[127] 2020 Distal radius
fractures

hand band model not specified
(Fisiocomputer, Rome, Italy)
and BTS Freeemg 300 (BTS

Bioengineering, Garbagnate
Milanese, Italy)

comparison of results
between KWF and VPF
with screws

[128] 2020 Not specified
Arm band model not specified

(BioSensics LLC, Newton,
MA, USA)

Study of the association
between vascular surgery
results and an
upper-extremity function
method

[129] 2021 Breast cancer Axivity AX3 (Axivity Ltd.,
Newcastle, UK)

Monitor limb recovery
following breast and
axillary surgery

[130] 2023 Breast cancer

Actigraph GT3X-BT
(ActiGraph, Pensacola, FL,
USA) and Sony FDR-AX33

(Sony, Tokyo, Japan)

Study of the upper-limb
function in post-operative
breast cancer patients

4.2.2. EMG

Regarding EMG sensors, Feldner et al. [131] conducted a qualitative study involving
stakeholders to assess its utilization in neurorehabilitation practice. Healthcare profession-
als perceive the use of this technology as beneficial for motivation and acquiring objective
data. However, the authors emphasized the importance of accessibility and adaptability
through intuitive, comfortable, and cost-effective implementations. Many of these charac-
teristics align with the development of most wearable sensors, as evidenced throughout
this review.

To jointly reconstruct the entire muscular-kinematic state of the upper limb, Bonifati
et al. [132], based on a theoretical solution proposed earlier, developed an undersensorized
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system using two IMUs and eight surface EMGs electrodes for the same purpose. Through
this solution, they were able to jointly reconstruct all 17 degrees of freedom (five joints,
twelve muscles) of the upper-limb musculoskeletal state. It is important to emphasize
that although this study combines both IMUs with EMGs sensors, it was classified on this
category due to the particular interest of the work in EMGs.

Specifically, regarding elbow function, Rahman et al. [133], utilizing EMG signals from
the biceps brachii muscle using a three-channel wearable sensor, post-processed by machine
learning methods called k-nearest neighbors (k-NN), determined the angle of the elbow
(at 0◦, 30◦, 60◦, 90◦, and 120◦). In a similar application, Mendez et al. [134] conducted a
comparative study and numerous methods to calculate finger angle through EMG sensory
data. In their study, the authors compared two DL with a standard state-of-the-art decoding
technique, determining that both DL conditions (RAW and FFT) perform better.

Regarding the complementarity of EMG with ML methods, Salinas et al. [135] con-
ducted a study comparing several ML algorithms on the classification of 26 ADLs using
EMG recordings from the forearm.

In the context of upper-limb rehabilitation to address common secondary injuries
and training fatigue, Zhao et al. [136] introduced a wearable device that integrates the
combination of EMG and ECG sensors. Additionally, they presented a software platform
aiding data analysis, enabling real-time monitoring of hand activities and individuals’
physiological states during training, with the potential for healthcare applications. EMG
units were also utilized in distinguishing healthy patients from those with motor issues,
specifically patients with elbow trauma [137].

To predict movement intentions for triggering prostheses in amputees, a linear dis-
criminant analysis (LDA) has proven efficient for processing EMG signals. However, in the
case of post-stroke patients, there are synergies consisting of involuntary flexion, which
can influence the use of LDA, which may be integrated with automated physiotherapeutic
methods using exosuits and/or exoskeletons. Considering this doubt, Kopk et al. [138]
evaluated whether it is possible to use LDA to make this prediction through myoelectric
signals and found promising results. In line with the work of Kopk et al. [138], Merlo
et al. [139] developed an algorithm to detect involuntary muscle activity through EMG
data. Still, from the perspective of an EMG signal analysis and associated noise, Teh and
Hargrove [140] developed an EMG signal filter for upper-limb-prosthesis activation, which
is also applicable to, for example, exoskeleton activation. This consisted of developing
a supervised denoising variational autoencoder that learns representations of wrist and
hand movements that are continuous. The authors showed that this latent space can be
used to build noise-resistant classifiers that are significantly more accurate than current
state-of-the-art classifiers.

Differently, targeting hand tremor symptoms, Baraka et al. [141] introduced a novel
measurement set comprising combined IMU and surface EMG sensors aimed at gathering
clinical information from patients diagnosed with PD. The measurements indicate that
EMG sensors on the forearm outperform those on the bicep in classifying movement
abnormalities. Researchers constructed six machine learning classifiers for the automatic
classification of Parkinson’s tremor, including decision tree (DT), linear LDA, KNN, support
vector machine (SVM), boosted tree, and bagged tree classifier, which would turn out to be
the method with the best results.

Another work in the field of sensory fusion emerges from Song et al. [142], who
developed a movement classification system using a bracelet with an IMU and an FMG
and a forearm band with an EMG. This system integrated a serious game in which each
detected/classified movement corresponded to an action in the game (see Figure 10).

As identified throughout our review, EMG signals are widely associated with hand
pattern identification. Zhou et al. [143] associated this aspect with the development of
wearable hand robots and acknowledges that EMG-based pattern recognition performance
remains unsatisfactory. Thus, the authors proposed decision fusion methods that combine
EMG features and kinematic features (Leap Motion) for hand pattern recognition.
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Figure 10. Wearable multimodal rehabilitation utilizing serious games involves extracting kinematic
data. Relevant features are identified and input into classification algorithms to predict movements
that serve as inputs for the game.

The practice of sensory acquisition through EMGs is commonly associated with wet
(gelled) electrodes. However, Abass et al. [144] took a different approach. They developed
a dry sensor through 3D printing and validated it for gesture recognition.

The continuous dissemination of this type of body-worn sensors brings with it the
challenge of processing substantial amounts of data. With this problem in mind, within the
scope of EMG sensors, Kanoga et al. [145] proposed a subject-to-subject transfer framework
that uses information available from other people (source) based on ML techniques (see
Table 7).

Table 7. Study characteristics for EMG studies.

Ref. Year Pathology Technology Study Goals

[131] 2020 Stroke

MC10 BiostampRC (Lexington,
MA, USA), Thalamic Labs My

Armband (Kitchener, ON, Canada),
Delsys Trign (Natick, MA, USA);

and a lab-designed prototype
Epidermal Sensor System (Austin,

TX, USA, patent pending),

Assess EMG utility in
neurorehabilitation
practice

[132] 2023 Not specified

Delsys Bagnoli EMG system
(Delsys Inc., Natick, MA, USA), the

Xsens MTw Awinda (XSens
Technologies, Enschede, The

Netherlands) and custom IMU
based wearable system

Muscular-kinematic
reconstruction of the
upper limb

[133] 2021 Not specified Shimmer3 EMG (Shimmer, Dublin,
Ireland) and EMG electrodes

Determine the angle of
the elbow

[134] 2021 Amputees
EMG Noraxon Delsys (Natick, MA,

USA) and LabJack (LabJack
Corporation, Lakewood, CO, USA)

Finger angle regression

[135] 2022 Not specified Biometrics EMG (Biometrics Ltd.,
Newport, UK)

Comparison of several
ML algorithms on the
classification of 26 ADLs

[136] 2020 Not specified

Custom ECG device composed by
na), read using the STM32L152

chip (STMicroelectronics, Geneva,
Switzerland), BMD101 A/D

converter (NeuroSky Company,
Wuxi, China), electrodes and BLE

module. Custom EMG deice
composed by STM32L152 chip
(STMicroelectronics, Geneva,

Switzerland), AD8221 amplifiers
(Analog Devices, Wilmington, MA,

USA) and BLE module.

Wearable device to
obtain accurate signals
during robotic
glove-assisted training
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Table 7. Cont.

Ref. Year Pathology Technology Study Goals

[137] 2019 elbow trauma Trigno Wireless system (Delsys Inc.,
Natick, MA, USA)

Distinction between
healthy and elbow
trauma patients

[138] 2019 Stroke

Delsys 16 channel Bagnoli (Delsys
Inc., Natick, MA, USA) and a load
cell 45E15A (JR3 Inc., Woodland,

CA, USA)

Movement intention
prediction

[139] 2023 Motor Neuron
Lesion

Mini Wave Plus, (Cometa Systems,
Milan, Italy)

Detect involuntary
muscle activity

[140] 2021 Not specified

Arm band with six electrodes
(Motion Control Inc., Salt Lake City,
UT, USA) and Ag/AgCl electrodes

(Bio-Medical Instruments,
Shenzhen, China)

EMG signal filter for
upper-limb-prosthesis
activation

[141] 2019 PD IMU and EMG Shimmer (Shimmer,
Dublin, Ireland)

Clinical information
acquisition system for
PD patients

[142] 2022 Stroke

Custom 6 EMG (Trigno Wireless
EMG System, MAN-012-2-6, Delsys

Inc., Natick, MA, USA) forearm
band and eight barometric

(MPL115A2, Freescale
Semiconductor Inc., Austin, TX,
USA) plus one IMU Wristband

(BNO055, BOSCH Inc.,
Baden-Württemberg, German)

Movement classification
to control a serious
game

[143] 2021 Stroke

Trigno wireless EMG system
(Delsys Inc., Natick, MA, USA) and

infrared motion sensor (Leap
Motion Inc., San Francisco, CA,

USA)

EMG-based pattern
recognition

[144] 2019 Stroke
Shimmer with custom dry 3D
printed electrodes (Shimmer,

Dublin, Ireland)

Development of a dry
sensor through 3D
printing

[145] 2021 Not specified
Myo Gesture Control Armband
(Thalmic Labs, Kitchener, ON,

Canada)

EMG data transfer
framework between
subjects based on ML
techniques

4.2.3. Additional Sensors

Beginning with the out-of-the-box technologies, the starting point of this analysis is the
work of Lee et al. [146], who developed a study about a wearable based on an RFID system
to monitor hand usage in individuals with upper-limb paresis. The research explores
an innovative approach that utilizes RFID technologies to quantify the amount of hand
use. The system consists of a wrist-worn RFID reader and a small passive tag placed on
an artificial fingernail. Furthermore, a machine learning-based data analysis pipeline is
introduced, which processes the backscattered RF signal to estimate the amount of hand
use. Inspired by the same concept, Bharadwaj R. and Koul S. [147] characterized the ultra-
wideband channel signal (4–8 GHz) through a wearable antenna placed on people’s wrists
while they performed a series of exercises. The purpose of this work was to characterize
the signal under different conditions; however, the results suggest that it could also be a
valid solution like that of Lee et al. [146] presented earlier.
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Differently, Yamamoto et al. [148] used a ring-shaped wearable device to measure
upper-limb and finger usage simultaneously. The ring-shaped wearable device can measure
hand movements and estimate the flexion angle of each finger through light-emitting
diode/phototransistor and an IMU.

In the work of Cisnal et al. [149], a device for biocooperative control in neuromotor
rehabilitation was developed and was composed of the already explored IMU and EMG
sensors as well as GSR, ECG, and SKT sensors. The authors developed such a device with
a focus on being highly versatile and low-cost. The system was tested in two scenarios:
first, in an upper-limb-rehabilitation virtual reality-based exergame where hand and arm
movements are recognized using EMG and IMU data, respectively; second, in the adaptive
assistive control of a wrist rehabilitation robot, adjusting assistance levels based on the
patient’s physiological state and motor performance using GSR, ECG, and SKT data.

Focusing on the physiological response of patients to a physiotherapeutic task, Badesa
et al. [150] developed a wearable of the accessory typology to evaluate the physiological
response of patients while establishing a human–machine interface during treatments. The
sensory units were EEG and EoG, and the physiological data were HRV and SCL. EEG
control is associated with a higher level of stress (associated with a decrease in HRV) and
mental workload (associated with a higher level of SCL) when compared to EoG control.

Through the implementation of resistive strain sensors, Ogata et al. [151] developed
a wearable sensor that can acquire detailed motion information of patients for remote
rehabilitation applications. To this end, 12 strain sensors were attached around the shoulder
girdle, and it was possible to obtain detailed motion information of the upper limbs in
combination with the IMU.

Other types of deformation sensors found throughout the literature were optical
waveguides [152]. These units were evaluated with a carbon fiber layer to constrain the
stretching of the optical waveguide, consequently pressing deformation partly and allowing
for bending deformation. From the test results, it was concluded that the sensitivity of the
proposed sensor to bending is three times higher than that of the typical optical waveguide
sensor. This was evaluated in a scenario where it was used as a band on the forearm.

Another less common sensory unit we encountered during the review was barometric
pressure sensing. In [153], a wristband composed of a matrix of 10 sensors of this nature was
proposed. The purpose of this would be gesture recognition and finger angle estimation
with the assistance of ML methods. Another uncommon sensor approach that emerges
as an alternative to EMGs for gesture recognition are A-mode ultrasound (US) sensors.
Yang et al. [154] conducted a comparative study for these two mentioned sensory units,
concluding that A-mode US outperforms EMGs in gesture recognition accuracy, robustness,
and discrete force estimation accuracy. In opposition, the authors stated that EMGs is
superior to US in continuous force estimation accuracy and ease of use in force estimation.

FMG sensors, this type of sensory unit has been used to capture muscular activity,
which serves purposes in human–machine interface applications as well as movement
monitoring. In an effort to evaluate this sensory unit, Xiao and Menon [155] identified
the minimum sampling frequency needed for recording upper-limb FMG signals without
sacrificing signal integrity.

In the field of recognizing human intention for robotic applications, Mariani et al. [156]
developed a pressure sensor composed of two piezoresistive units for this purpose. Addi-
tionally, Stefanou et al. [157] presented an alternative to EMGs. Their solution consisted of
a tactile arm brace (TAB) composed of 8 force-sensitive resistive (FSR) sensors. Using TAB
data, machine learning algorithms achieved a classification accuracy of 99%, comparable to
a similar commercial intent recognition system based on surface electromyography (EMGs)
detection. In contrast to these two aforementioned works, Krausz et al. [158] took the
opposite direction by complementing EMGs with gaze tracking glasses. Their proposal
involved training two Support Vector Regressors (SVRs) using EMG sensory data to predict
hand position, and a Kalman filter-based approach was used to fuse these estimates with a
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prediction based on the relationship between gaze shifts and arm motion. Fusing gaze and
EMG produced higher accuracy position estimates than using EMG alone.

Another common solution described in the literature relies on optical tracking sensors.
One of the identified applications, in the field of motor rehabilitation, was their use in
synergy with VR from a serious gaming perspective [159]. On the other hand, in the work
of Wang et al. [160], this technology was used to predict three-dimensional movements
of multiple joints in the human upper limb, focusing on post-stroke rehabilitation. It
served as a sensory unit to feed a Deep Neural Network (DNN) based on a simplified
kinematic model.

As an alternative to conventional EMG for measuring muscle activity, Meagher
et al. [161] conducted a comparative study between electromyography and mechanomyog-
raphy. The study found that MMG sensory units, which record the mechanical activity of
muscles by detecting surface oscillations, provide reliable signals regarding the timing of
muscle activity onset, comparable to the reliability of EMG signals.

Lastly, there are several commercially available solutions at affordable costs that have
a direct impact on people’s lives. Krisshman V. and Rewale H. [162] extrapolated the basic
benefits of a Xiaomi MI fitness band to real and serious preventive health applications.
For that, the authors investigated the potential of PPG and IMU units. These authors
concluded that shoulder pain significantly increases the energy expenditure among manual
wheelchair users and hence should be addressed before wheelchair use for the prevention
of injuries (see Table 8).

Table 8. Study characteristics for additional sensors studies.

Ref. Year Pathology Technology Study Goals

[146] 2019 Paresis

Custom fingernail (RFID) and
custom wrist worn (M6E-M RFID
reader kit, ThingMagic, Bedford,

MA, USA)

Monitor hand usage

[147] 2019 Not specified Not specified

Characterization of the
ultra-wideband channel
signal during exercise
performance

[148] 2023 Stroke
(hemiplegia)

Custom finger band composed by
LED SFH 4550 (Osram Opto

Semiconductors, Regensburg,
Germany) and Phototransistor

SD5410 (Honeywell International
Inc., Charlotte, NC, USA) and

wristband composed by Adafruit
Feather M0 Adalogger (Adafruit
Industries, New York, NY, USA)

Hand movement
measurement and
estimation of finger
angle flexion

[149] 2023 Not specified

Custom board composed by IMU
ICM-20948 (InvenSense, San Jose,
CA, USA), ECG AD8232 (Analog
Devices, Wilmington, MA, USA),

EMG MCP3912 (Microchip
Technology, Chandler, AZ, USA),
GSR LM324 (Texas Instruments,

Dallas, TX, USA), SKT MLX90614
(Melexis, Tessenderlo, Belgium),
MCU TMS320F28069M (Texas

Instruments, Dallas, TX, USA), BLE
CC2650 (Texas Instruments, Dallas,

TX, USA) and MCP73831
(Microchip Technology, Chandler,

AZ, USA).

Adaptive assistive
control of a wrist
rehabilitation robot
based on the patient’s
physiological state.
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Table 8. Cont.

Ref. Year Pathology Technology Study Goals

[150] 2019 Not specified

Tobii Glasses (Tobbi, Stockholm,
Sweden), e Enobio 8

(Neuroelectrics, Barcelona, Spain),
BioHarness 3 (Zephyr Technology,

Washington, DC, USA) and
Shimmer 3 GSR+ (Shimmer,

Dublin, Ireland)

Monitor physiological
response of patients
while establishing a
human–machine
interface

[151] 2022 Not specified

XSens MTw Awinda (XSens,
Enschede, The Netherlands) and a

custom system composed by an
IMU and a network of strain

sensors [163]

Monitoring shoulder
motion

[152] 2023 Not specified

Custom Optical waveguides
composed by two elastomers, a

polyurethane elastomer corewith a
higher refractive index (Smooth-on
Inc., Macungie, PA, USA), a LED

TSHA4400, Vishay Semconductors,
Malvern, PA, USA), photodiode

SFH229 (arm-OSRAM AG,
Premstaetten, Austria)

Carbon fiber layer to
constrain the stretching
of the optical
waveguide

[153] 2019 Not specified

Custom wristband composed by 10
modified barometric pressure

sensor units (TakkTile, New York,
NY, USA)

Wristband to recognise
gestures and to estimate
finger angle

[154] 2020 Stroke and
Amputee

A-mode US transducers (model not
specified) and Biometrics EMG
(Biometrics Ltd., Newport, UK)

Comparative study
between A-mode US
and EMG sensors in
gesture recognition

[155] 2019 Not specified

Custom forearm and distal strap
composed by 8 FSR402 FMG

sensors (Interlink Electronics Inc.,
Camarillo, CA, USA)

Minimum sampling
frequency needed for
recording upper-limb
FMG signals

[156] 2022 Not specified

Custom arm strap composed by a
piezoresistive unit fixed on a 3d
printed structure, and National
Instrument USB-6003 for data

acquisition (National Instrument,
Austin, TX, USA)

Recognizing human
intention

[157] 2019 Stroke

Tactile arm brace (TAB), composed
by 8 FSR sensors (model not

specified) and use an Arduino
(Arduino Srl, Turin, Italy) to

acquire data.

Recognizing human
intention

[158] 2020 Stroke and
Amputee

Telemyo dts (Noraxon, Scottsdale,
AZ, USA) and SMI Eye Tracking

Glasses (SensoMotoric Instruments,
Teltow, Germany)

Gaze and EMG fusion
to predict hand position

[159] 2020
CP and

Developmental
Dyspraxia

Haptic Device [164], Oculus Rift
VK2 (Meta Platforms, Inc., Menlo
Park, CA, USA) and OptiTrackTM
V120 Trio (NaturalPoint, Inc. DBA

OptiTrack, Corvallis, OR, USA)

Physiotherapeutic
efficacy of combining
VR and wearable haptic
devices.
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Table 8. Cont.

Ref. Year Pathology Technology Study Goals

[160] 2021 Stroke
Vicon Motion Capture (Vicon
Motion Systems, Ltd., Oxford,

England)

3D movement
prediction of multiple
joints

[161] 2020 Stroke

Biometrics EMG (Biometrics Ltd.,
Newport, UK) and a custom device
composed by Microphone SPU1410

(Knowles, Itasca, IL, USA).

Comparative study
between
electromyography and
mechanomyography for
measuring muscle
activity

[162] 2020 SCI Xiaomi MI Band Version 2 (Xiaomi
Inc., Beijing, China)

Impact of shoulder pain
on energy expenditure
in manual wheelchair
users.

4.2.4. Actuators

This section is focused on acting elements, such as vibrators and myoelectric stimu-
lation devices. Concerning actuators through vibration, these serve two main purposes
in motor rehabilitation: as stimulation or reminders. Regarding reminder application,
Signal et al. [165] suggested the use of wrist-worn devices to promote increased usage
of the affected arm in post-stroke patients. Additionally, it was utilized to measure the
association of upper-limb movement with the occurrence of haptic nudge reminders to
move the affected UL in 20 people undergoing inpatient rehabilitation. The results showed
an increase equivalent to a 32% rise in the average movement of the affected arm. Further
works in this “Remind-to-Move” perspective, such as that of Wei et al. [166] and Mayrhuber
et al. [167], followed the same principle of utilizing wearables with vibration stimulation to
remind subjects to move the affected arm.

On the other hand, Wang et al. [168], leveraging the benefits of vibration, recognized its
potential to enhance and synchronize muscle recruitment while fostering muscle strength
and endurance. Consequently, the authors presented a wearable system that delivers
vibration-based muscle activation for upper-limb function rehabilitation, extending the
reach of rehabilitation efforts beyond clinical settings. Similarly, in [169], it was demon-
strated that illusion-inducing vibrations can be used as augmented proprioceptive sensory
feedback to improve the motor performance of stroke patients (see Figure 11). Inspired by
the previous works, Pennington et al. [170] assessed the potential of vibration technologies
on reach and grasp activities, concluding that improvements were more pronounced for
grasping than for reaching. Furthermore, in the field of vibration stimulation, this func-
tionality was also verified for haptic feedback purposes. In [171], an active wearable via
vibration was introduced to provide feedback on upper-limb extremity velocity. Addi-
tionally, Mortaza et al. [172] studied muscle-tendon vibration over the wrist flexors and
extensors, finding that the vibration group had faster reactions and superior performance
in the transfer condition.

Regarding electrical muscle stimulation, Choudhury et al. [173] conducted a study in
this area, complementing it with auditory clicks. They involved 95 post-stroke patients
randomized into three groups, utilizing a wearable device delivering stimulation for at least
4 h daily over 4 weeks. Significant improvements in upper-limb function were observed in
the paired stimulation group, particularly in grasp function, suggesting meaningful gains
in hand function for stroke survivors. Differently, Ward et al. [174] studied the effect of
electrical stimulation on the performance of standardized manual gestures. This technology
of muscle stimulation was further integrated into a solution constantly in symbiosis with
EMG sensory units. Crepaldi et al. [175] developed a device that integrates these mentioned
technologies, managing the stimulation level based on muscle activity detected via EMG.
In a similar concept, Yong and Sai [176] developed a myoelectric stimulation system driven
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by sensory data from EMG but involving a human-to-human interface (HHI) between
patient and therapist. The uniqueness lies in the dynamic stimulation resulting from the
therapist’s feedback, as the therapist had EMG sensors attached to measure the intensity
of their movements to vary the stimulation in the patient accordingly. Similarly, Kim
et al. [177] combined an IMU sensor unit in a wristband to analyze upper-limb tremors with
an electrode to modulate/attenuate tremors through peripheral-nerve electrical stimulation.
This system showed a significant reduction in both tremor frequency and power (Table 9).
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[165] 2020 Stroke BuzzNudge 310-103 (Precision
Microdrives Ltd., London, UK)

Increase the usage of
the affected arm in
post-stroke patients.

[166] 2019 Stroke
Wristwatch SCW-V2 (The Hong Kong

Polytechnic University, Hung Hom,
Hong Kong)

Increase the usage of
the affected arm in
post-stroke patients.

[167] 2023 Stroke
ARYSTM me|tracker and ARYSTM

pro|tracker (Tyromotion Gmbh, Graz,
Austria)

Increase the usage of
the affected arm in
post-stroke patients.

[168] 2022 Stroke
Custom vibration device, FoVi,

composed by four vibration motor
pods

muscle recruitment

[169] 2021 Stroke Vibrasens VB200, (TechnoConcept,
Manosque, France) muscle recruitment

[170] 2023 Stroke TheraBracelet [178]

Improvements for
reach and grasp
capability more
pronounced for
grasping

[171] 2023 CP TELOS [179]
feedback on
upper-limb
extremity velocity
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Table 9. Cont.

Ref. Year Pathology Technology Study Goals

[172] 2023 Stroke

Two-point discrimination 16022
(Lafayette Instrument, Lafayette, IN,

USA), Touch-TestVR Sensory
Evaluators: SemmesWeinstein

Monofilaments (North Coast Medical,
Morgan Hill, CA, USA) and Eccentric

Rotating Mass motor (model not
specified)

enhance reactions
and performance

[173] 2020 Stroke

Electrical stimulator with a constant
current and 220 V compliance (model
not specified), Dynamometers Power

and Pinch Grip (Biometrics Ltd.,
Newport, UK) and Electrogoniometer
SG75 (Biometrics Ltd., Newport, UK)

Significant
improvements in
upper-limb function
particularly in grasp
function

[174] 2020 Stroke

Custom stimulation system, Microsoft
Kinect v2 (Microsoft, Seattle, WA,
USA), Raspberry Pi (Raspberry Pi

Foundation/Raspberry Pi Trading Ltd.,
Cambridge, UK),

reliably generate
specific target
gestures on healthy
users

[175] 2021 Stroke
(Hemiplegia)

FITFES, custom necklace layout system
composed by EMG amplifier AD8326

(Analog Devices, Wilmington, MA,
USA), STM32L476 (STMicroelectronics,

Geneva, Switzerland), Bluetooth
BGM13P (Silicon Labs, Austin, TX,
USA), HVPS Flyback regulator (not

specified), IMU (not specified),
Functional Electrical Stimulation

eletrodes (Axelgaard, Fallbrook, CA,
USA), EMG electrodes (MedicoTest
A/S, Glamsbjerg, Denmark), LED

Indicators (not specified).

EMG-controlled
electrical
stimulation system.

[176] 2022 Stroke and SCI

Custom neuromuscular electrical
stimulation composed by EMG,
accelerometer, LEDs and A/D

converters (models not specified)

Human-to-human
management
stimulation signals
between the patient
and therapist.

[177] 2020 Essential tremor

Custom wristband composed by IMU
LSM303D (STMicroelectronics, Geneva,
Switzerland), microcontroller CC2510
(Texas Instruments, Dallas, TX, USA),
Wireless Transceiver (not specified),

Voltage-mode Stimulator
Circuitry—(custom-built, not

specified), battery Charger LTC4054
(Analog Devices, San Jose, CA, USA)

Boost Converter LM27313 (Texas
Instruments, Dallas, TX, USA),

Electronic Switches (not specified),
Variable Resistor AD5162 (Analog
Devices, Wilmington, MA, USA)

Surface Electrodes (Syrtenty, São Paulo,
Brazil).

Tremors attenuation
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5. Discussion and Future Perspectives

The introduction of wearables into people’s daily lives has significantly increased in
recent years. If initially they were primarily used for tracking physical activity param-
eters, mainly for recreational purposes, with their evolution, the applicability of these
devices has expanded to various uses. With their impacts becoming more significant and
increasingly relevant to continuous health promotion, they have started gaining traction
among healthcare professionals. In the field of motor rehabilitation, for example, in the
past, the process of motor recovery was limited exclusively to the clinical environment.
Nowadays, it is increasingly possible to extend the treatment and monitoring of patients’
motor abilities to the home setting, both mechanically and physiologically. Based on these
two pillars, mechanical or physiological responses, our discussion is structured around the
technologies that integrate wearable systems and their applications to assess the impacts
they have on patients’ lives (see Figure 12).
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Technologically, in terms of monitoring, the systems identified in the review can in-
tegrate various sensory units and/or actuator essential for the recovery and monitoring
of upper-limb motor functions. In terms of motor response, it can be categorized as the
capacity to reach and grasp, where IMU and EMG sensors play a dominant role, according
to our review. Although they were the most prominent sensory units, other solutions can
be found in the literature. For assessment reach capacity, deformation sensors (capacitive,
resistive, and optical waveguide types) were often associated with joint reconstruction
performance. In this area of strain sensors, there is a recognized need to address their
susceptibility to interference from changes in temperature and humidity, particularly when
attached directly to the body. Although these aspects were not the primary focus of this
study due to the specific requirements defined in the methods section, it is important
to highlight that strain sensors have been the subject of recent investigations aimed at
overcoming these challenges. Various studies have explored approaches to enhance sensor
stability under variable environmental conditions [180,181]. These contributions highlight
the importance of conducting a literature review in this area to deepen understanding
and drive advancements in the field. On the other hand, for evaluation of grasp capacity,
alternatives included MMGs, FMG, FSR, A-mode US, or even optical waveguides. Regard-
ing physiological response, an analysis can be conducted based on patients’ reactions to
specific treatments and physiotherapy exercises by measuring parameters such as skin
temperature and conductivity, EEG, among others [150]. Additionally, from the perspective
of promoting motor rehabilitation, actuators play a crucial role in localized muscle or
nervous stimulation. They can serve as reminders for performing physical activities or
even assist in muscle activation and the reduction of tremors through localized vibratory
and micro-electrical stimuli. In some cases, in the literature, active elements are combined
with sensory units that serve as stimulus managers depending on the level of muscle
activation recorded.
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All these described technologies have been integrated into wearable systems designed
for various purposes, applications, and impacts on patients’ lives. These devices have
evolved to such an extent that they can now compare to some gold-standard tools and have
opened new possibilities for continuous health promotion that were previously unattain-
able. As identified by some studies, motor skills acquired in clinical physiotherapy do
not always translate into practical results in patients’ daily lives. Thus, these systems
play a crucial role in remote patient monitoring aids in decision-making for patient treat-
ment. These devices have evolved to such an extent that they can now compare to some
gold-standard tools and have opened new possibilities for continuous health promotion
that were previously unattainable. This concept also led to the introduction of egocentric
cameras that significantly impact the monitoring of patients with upper-limb disabilities,
whether due to a pathology or post-operative conditions, by observing how they interact
with everyday objects. Beyond recovery monitoring, these systems are also essential for
tracking motor degradation due to pathological reasons or increased frailty with aging.

Throughout our review, numerous wearable systems were introduced, encompassing
a wide range of technologies, from passive components (sensors) to active ones (actuators).
Given their critical importance and impact on the reliability of the wearable systems
they are integrated into, it would be highly beneficial for future studies to focus more
extensively on the characteristics of these components. This would enable readers to
perform comparative analyses of similar wearable systems in the literature. However,
as these components (sensors and actuators) are integrated into more complex wearable
systems designed for specific diagnostic purposes, effective comparisons and quality
validation would necessitate the standardization of gold-standard tools as validation
metrics for these systems. As observed in Section 4.2.1. (ii) (IMUs, Comparison with Other
Methods), only a limited number of studies have implemented this practice, highlighting a
gap that should be addressed in future research.

Wearable systems are often combined with AI processing methods and complementary
technologies. AI methods play a critical role in the post-processing and analysis of sensory
data, aiding healthcare professionals in decision-making through their ability to identify
patterns that classify patients’ health states or predict their progression. Complementing
wearable systems with technologies such as VR, MR, and AR, which intersect with gaming
concepts where wearables serve as game controllers, enhance patient adherence to more
immersive and tailored treatment forms.

While the concept of wearable systems has already advanced motor recovery, there is
still a long way to go. Most of the research on this topic is heavily focused on monitoring
and decision-making rather than being a full-fledged therapeutic tool that can be used
at home to promote continuous treatment. Moreover, there is a lack of contextualization
regarding daily activities within monitoring and physiotherapy procedures, which is also
reflected in the commercial offerings available. As observed throughout our review, the
primary commercially available accessories are predominantly smartwatches and smart
bands, likely due to their user-friendly nature and relatively simple design, which helps
keep costs manageable. While these devices effectively monitor reach capacity, they fall
short in capturing grasp capability. Given these considerations, a promising approach
could be to incorporate sensors into everyday objects and utensils. This approach would
enable the monitoring of patients’ interactions with common items in their daily routines
without disrupting their usual activities.

Additionally, it is important to highlight that throughout this review, data privacy
considerations are rarely emphasized in the majority of studies despite this being a critical
factor when discussing wearables that continuously collect patient health data. Given
that these devices are frequently viewed as tools for remote medical monitoring, they are
required to provide connectivity, which raises heightened concerns regarding data privacy
and potential vulnerabilities that could compromise data confidentiality. This issue should
be a key focus for future developments in the field.



Sensors 2024, 24, 7973 32 of 40

6. Conclusions

This paper reviewed wearable systems in the context of the continuous health of the
upper limb specifically in motor rehabilitation, monitoring, and prediction. Numerous
studies in this same domain were identified despite presenting highly diverse technological
principles. Through a more detailed analysis of accessory-type devices, this study identified
numerous pathologies for which proposals could be made, focusing particularly on the
context and, more importantly, the sensory and actuation units they integrate. Thus, it is
possible to provide readers with a holistic perspective on the evolution of this field and,
essentially, to create connections between wearable systems with different purposes and
the ability to adapt identified technologies to different realities. For instance, we observe
inertial units being used to assess the quality of reach and grasp for post-stroke patients or
to evaluate the amplitude and frequency of upper-limb vibration in Parkinson’s patients.
One wonders whether some of the systems integrating IMUs and only proposing to address
one of these pathologies could not be adapted for the other.

Throughout this work, it is evident that the focus was placed on what we consider
fundamental technologies, primarily directed towards hardware development. However,
it is important to highlight the significance of complementary technologies. We associate
the driver with complementary technologies, as they play a fundamental role in wearable
adoption through a more immersive application with VR, MR, and AR or even in the
post-processing of sensor data through the implementation of ML and DL methods.

This study clearly demonstrates the potential of wearable technologies as potential
medical tools. In a time when there is much talk of decentralization, Web3, among others,
it is evident that telerehabilitation applied to motor rehabilitation, monitoring, and/or
prediction thereof can also move towards the decentralization of medical units. However,
it is important that many of these works be translated into marketable devices to avoid the
disproportionality that exists in Europe between the number of published scientific articles
and the number of commercialized devices [26].
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