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Abstract: The perennial species Hypericum perforatum, commonly known as St. John’s Wort, is well
regarded for its medicinal attributes, particularly its strong anti-inflammatory and antidepressant
effects. Hypericum perforatum L., commonly known as balsam, is extensively employed in both
traditional and contemporary medicine due to its biological properties, although the plant’s medicine
distribution is limited to Europe and Asia. This study pioneers the investigation of Hypericum
perforatum cultivation in a Mediterranean country, specifically Greece, focusing on the effects of
irrigation and biostimulants of two distinct genotypes on quantitative (height, drug yield, essential
oil yield) and qualitative (essential oil content and composition) characteristics. A field trial was
conducted at the experimental farm of the Agrotechnology Department at the University of Thessaly,
located in the Larissa region. This study investigated various testing varieties under different
irrigation levels and biostimulant applications. The results underscore the importance of customized
irrigation and biostimulant strategies in improving yield and quality during the second growing
season, establishing a foundation for sustainable agricultural progress. Notably, irrigated treatments
significantly increased plant height, dry biomass yield, and essential oil production per hectare.
Specifically, the essential oil yields for irrigated treatments were nearly double those of rainfed
treatments, with 219 kg/ha for rainfed and 407 kg/ha for irrigated. The genotype played a crucial
role in influencing production potential, height, flowering, and essential oil composition, with one
variety demonstrating biennial blooming and modified essential oil compounds. While irrigation
positively impacted yield, it also reduced certain essential oil compounds while increasing β-pinene
content. The effects of biostimulants varied based on their composition, with some enhancing and
others diminishing essential oil content. Notably, the biostimulant containing algae with auxin and
cytokinin (B2) proved to be the most effective in improving the therapeutic profile. This study offers
valuable insights into the cultivation of H. perforatum in a Mediterranean climate, highlighting the
necessity for ongoing research into native populations, irrigation levels, biostimulants, fertilization,
and other factors that affect crop yield and quality characteristics.

Keywords: Hypericum perforatum; yield; essential oil; aromatic–medicinal plants; biostimulants;
irrigation

1. Introduction

Hypericum perforatum L., widely recognized as St. John’s Wort, stands out as the most
prominent perennial species within the Hypericaceae family, found across Central and
Eastern Europe, Asia, North Africa, and North America [1,2]. This plant has a long history
of medicinal use, spanning over two millennia [3]. Driven by the demand for natural
therapeutic agents and the beneficial biological properties of Hypericum perforatum L., it
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is frequently incorporated into medical practices [4–8]. Its extracts are noted for various
applications, including antiviral, antimicrobial, anti-inflammatory, and antitumor proper-
ties [9], as well as their effectiveness in alleviating symptoms of depression [10]. According
to pharmacopoeial standards, the raw material derived from Hypericum perforatum consists
of the flowering tops of the shoots (Hyperici herba), which must meet specific compound
content requirements [11].

Numerous studies have compared the chemical compositions of native and commer-
cial samples [12,13]. For instance, ref. [14] examined how the origin and biological source
influence the chemical makeup and biological properties of various St. John’s Wort species.
The extracts from all samples demonstrated significant antioxidant potential; however, in
most instances, the indigenous samples exhibited stronger effects than the original source.
Variations in the levels of phenolic compounds, particularly flavonoids, were linked to the
source of the drug, which impacted the observed activities. Nevertheless, further research
is necessary to investigate how commercial varieties adapt to different climatic conditions
and the subsequent effects on their phytochemical profiles.

In Europe, the main production of this crop takes place in Belarus, Germany, Italy,
Poland, Romania, Switzerland, and Siberia. A significant portion of the total supply of Hy-
pericum comes from the collection of wild plants, which has resulted in a troubling decrease
in their natural populations [15,16]. Although the cultivation of Hypericum perforatum offers
a lucrative opportunity for farmers, the lack of standardized agricultural practices for its
growth poses a challenge. Furthermore, slow growth rates, low yields, and variable quality
present considerable obstacles to its broader cultivation [17].

St. John’s Wort is a perennial shrub that can grow between 30 and 100 cm tall and
is capable of reproducing through both vegetative and sexual means. Notable physical
characteristics of Hypericum perforatum include its taproot system, woody stems, and
rhizomes. The leaves are distinguished by translucent glands scattered throughout the
lamina, and the plant produces cymes of yellow flowers that mature into dehiscent capsules
filled with seeds [18].

The quality of St. John’s Wort can differ due to various factors, including the specific
sub-species or varieties, the environmental conditions where it is grown, the timing of the
harvest [19], and the cultivation techniques employed. Research indicates that there are no-
table genotypic and phenotypic variations among different St. John’s Wort populations [20].
To identify these genetic distinctions, scientists conduct morphological and biochemical
analyses [21]. However, there is limited information on the cultivation and production of
Hypericum, despite extensive documentation of the medicinal benefits associated with its
aerial parts [22–24].

As mentioned above, St. John’s Wort is primarily recognized for its applications
as a food additive and in medicinal contexts. Consequently, it is crucial to explore the
potential for large-scale production utilizing organic farming methods. In this context,
the incorporation of biostimulants—natural compounds or microbial products—merits
consideration. These substances can greatly improve plant growth and their inherent
processes when applied [25].

In recent years, seaweed extracts have gained increased attention as a category of
biostimulants, largely due to various research studies [26,27]. As noted by [28], these
seaweed-derived biostimulants contribute to improved crop yields, enhanced root devel-
opment, flowering, resilience to stress, and better nitrogen uptake.

As previously noted, similar to many medicinal plants, there are no established cul-
tivation protocols akin to those for traditional crops, despite their extensive use over the
years. The impact of cultivation methods, including those applicable to organic farming,
remains largely unknown for any species within the aromatic and medicinal plant category.
Consequently, this research focused on cultivating two recognized varieties of Hypericum
perforatum L. in Greece, employing both dry and fully irrigated treatments to explore the
potential for utilizing all types of land, including those lacking water resources. Addition-
ally, the study sought to investigate the application of biostimulants and their influence
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on overall performance regarding yield and quality during the second growing season,
particularly since one of the varieties blooms biennially. Notably, biostimulants can be
employed within organic production systems, underscoring their significance when these
crops are intended as raw materials for pharmaceutical applications.

2. Materials and Methods

A comprehensive experiment that involved different varieties, different irrigation
levels, and different biostimulant treatments was conducted. The study was designed to
assess their effects on growth metrics, yield outputs, and the qualitative attributes of the St.
John’s Wort varieties, including essential oil composition.

2.1. Experimental Site, Design, and Management

In May 2022, a field experiment was conducted at the experimental farm of the
Agrotechnology Department at the University of Thessaly, situated in the Larissa region of
Greece (latitude 39◦37′34.0′′ N, longitude 22◦22′52.4′′ E). The objective of this study was to
examine the impact of irrigation and biostimulant application on the overall performance
of two well-known varieties (Topaz and Taubertal) of St. John’s Wort, focusing on aspects
such as crop development, drug yield, essential oil content, and the quality of essential oil
within a typical Mediterranean soil–climatic setting.

A factorial split-split-plot design was used with six replicates (blocks) and twelve
plots per replication. The main factor was the different testing varieties (V1: Topaz and
V2: Taubertal). The main sub-factor was the different irrigation levels (I1: rainfed and
I2: 100% reference evapotranspiration (ETo); using a drip irrigation system while the
irrigation schedule was determined according to the Class A evaporation pan method [29]
and irrigation was conducted on a weekly basis, aiming to replicate the actual conditions
experienced by farmers during their irrigation practices). The main sub-sub-factor was
the different biostimulant applications (B1: control; B2: seaweeds; auxin 1.0 mg/lt and
cytokinin 0.031 mg/lt from Ecklonia maxima; application rate of 0.8 L per hectare per
year; and B3: a specific formulation including 10% w/v of amino acids, 11.3% w/v of pure
protein, 22% w/v of sucrose, and 10% w/v of UV filter; application rate of 1.6 L per hectare
per year). The biostimulants were applied annually prior to the onset of flowering (in the
final ten days of May and right after the prevailing rainfall), utilizing the specified amounts
and employing a micro electric sprayer for precise application.

Certified seedlings of Hypericum perforatum L. (varieties Topaz and Taubertal) were
transplanted into the field at a spacing of 60 cm between plants and 60 cm between rows.
Each plot measured 2 m × 1.70 m and contained 12 plants in 3 rows. The findings presented
pertain to the second growing season, during which both varieties exhibited blooming,
noting that one of the varieties blooms every other growing year.

It is important to note that both varieties of plants re-germinated within the first ten
days of March; however, there was a variation in the onset of flowering between them.
Topaz began to flower earlier than Taubertal, resulting in an earlier harvest for Topaz.
Consequently, Topaz was harvested around June 10, while Taubertal was harvested 20 days
later, on June 29.

2.2. Soil Physical–Chemical Characteristics

The soil of the experimental field is a sandy loam (SL) and is characterized as semi-
fertile to unfertile (organic matter of 1.3% at a depth of 0–30 cm). It is an alkaline nature
(pH 7.6), with a bulk specific gravity of 1.3 g cm−3 and electrical conductivity of 0.2 ms/cm.

2.3. Plant Growing Characteristics and Yield

The height, flowering height, and overall yield were assessed at the ideal harvesting
stage, which corresponds to full flowering, a stage known to maximize essential oil content.
To prevent any border effects, the harvested flowers from each plot were taken from the
inner row, specifically two plants per plot.
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The aerial parts (flowers and upper leaves) were collected, weighed, and promptly
transported to the laboratory, where they were air-dried in a shaded, well-ventilated area at
ambient temperature (25–28 ◦C) until a constant weight was achieved. The dry weight was
recorded for each plot to calculate the dry biomass yield per hectare and the distillation
process followed.

Manual weeding was conducted every two weeks to manage weed competition, while
there were no notable occurrences of pests or diseases; therefore, no pesticides were used
(Figure 1).
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2.4. Essential Oil Yield and Quality Characteristics

The dried samples were processed in a laboratory mill to achieve a consistent particle
size of around 1 mm. Thereafter, the essential oil content was assessed using a Clevenger-
type distillation apparatus. A total of 10 g of the dried plant material was subjected to
hydro distillation with 250 mL of distilled water for 2.5 h. This process was conducted
three times for each sample, and the essential oil content was calculated based on the dry
weight of the plant material. The extracted essential oils were measured volumetrically
and stored in amber glass vials in a refrigerator at 4 ◦C until further analysis [30,31].
Following storage, the essential oils were analyzed using gas chromatography coupled
with mass spectrometry (GC–MS) on a fused silica DB-5 column. The relative content of
each compound was determined as a percentage of the total chromatographic area, and
the results are presented as the mean percentage of three replicates [31,32]. Compound
identification was achieved by comparing retention indices (RIs) relative to n-alkanes
(C7–C22) with literature data and matching spectra against mass spectrometry libraries
(NIST 98, Willey) [33].

Moreover, the yield of the essential oil was calculated by multiplying the essential oil
concentration by the dry biomass yield per hectare.

2.5. Meteorological Data and Statistical Analysis

Weather data, encompassing air temperature, radiation, humidity, wind speed, pre-
cipitation, and the class-A pan evaporation rate, were gathered from an automatic meteo-
rological station situated near the experimental field. The data collected were subjected
to an analysis of variance (ANOVA) for all measured and derived variables at designated
time intervals, employing the GenStat statistical software (7th Edition). The differences
in means for both the main effects and interaction effects were assessed using the LSD0.05
(least significant difference at 5%) test criteria [34]. This statistical evaluation enabled a
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thorough examination of the data, confirming that any observed differences among the
studied variables were statistically significant and not due to random variation.

3. Results and Discussion
3.1. Meteorological Data

The Mediterranean climate characteristic of the research area is recognized for its warm
summers and mild winters. In the experimental year under investigation, the average
air temperature during the crop re-emergence phase ranged from 2.1 to 21.8 ◦C (average
air temperature 11.9 ◦C). Throughout the crop growth period (re-emergence–beginning
of flowering), the maximum air temperature reached 29.3 ◦C, while the minimum was
recorded at 14 ◦C (average air temperature 20.8 ◦C; Figure 2). Thereafter, during the growing
stages between the beginning of flowering until harvest, the maximum air temperature
reached 29.3 ◦C, while the minimum was recorded at 14 ◦C (average air temperature
20.8 ◦C; Figure 2).
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Figure 2. Temperature (Max, Avg, Min) and precipitation from January to July 2023 (10-day intervals).

Precipitation is another vital environmental factor that greatly influences crop devel-
opment and yield. In 2023, the region experienced 194.2 mm of rainfall during the growing
season (re-emergence–harvest). Specifically, between this period, the monthly rainfall totals
were recorded as 60.6 mm, 39 mm, 62.4 mm, and 0 mm for March to June, respectively.

These data highlight the occurrence of drought conditions during the summer months,
particularly from April to June (Figure 2).

3.2. Plant Characteristics and Yield

As indicated in Table 1, there were statistically significant differences among the
varieties examined for all three characteristics: plant diameter, inflorescence height, and
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plant height. Furthermore, the irrigation factor also demonstrated statistically significant
differences concerning inflorescence height and plant height.

Table 1. Plant characteristics (diameter, florescence height, plant height in cm) as affected by different
varieties (V1, V2), different irrigation levels (I1, I2), different biostimulants (B1, B2, B3), and their
interactions at final harvest.

Plant
Diameter

(cm)

Florescence
Height

Plant Height
(cm)

Plant
Diameter

(cm)

Florescence
Height

Plant Height
(cm)

Varieties Irrigation×Biostimulants
V1 52.7 55.8 80.7 I1×B1 56.7 44.8 64.2
V2 57.9 47.4 65.5 I1×B2 56.1 45.5 66.4

LSD0.05 3.81 5.91 8.15 I1×B3 57.7 45.2 67.0

Irrigation I2×B1 56.1 58.6 80.9
I1 56.7 45.2 65.9 I2×B2 53.6 57.9 79.6
I2 53.8 58.1 80.3 I2×B3 51.7 57.7 80.4

LSD0.05 ns 4.613 4.83 LSD0.05 ns ns ns

Biostimulants Varities×Irrigation×Biostimulants
B1 56.4 51.7 72.5 V1×I1×B1 54.2 45.6 66.9
B2 54.9 51.7 73.0 V1×I1×B2 54.1 48.3 73.2
B3 54.6 51.4 73.7 V1×I1×B3 54.8 47.9 72.1

LSD0.05 ns ns ns V1×I2×B1 53.8 66.6 93.6

Varieties×Irrigation V1×I2×B2 49,8 63,8 87,5
V1×I1 54.3 47.3 70.8 V1×I2×B3 49.6 62.8 90.8
V1×I2 51.0 64.4 90.6 V2×I1×B1 59.2 44.1 61.4
V2×I1 59.1 43.0 61.0 V2×I1×B2 58.1 42.6 59.6
V2×I2 56.6 51.7 70.0 V2×I1×B3 60.2 42.4 61.9
LSD0.05 ns ns 8.59 V2×I2×B1 58.5 50.5 68.2

Varieties×Biostimulants V2×I2×B2 57.5 52.1 71.7
V1×B1 54.0 56.1 80.2 V2×I2×B3 53.8 52.6 70.1
V1×B2 51.9 56.0 80.4 LSD0.05 ns ns ns

V1×B3 52.2 55.3 81.4 CV (%) 9.3 11.6 11.9

V2×B1 58.8 47.3 64.8
V2×B2 57.8 47.4 65.6
V2×B3 57.0 47.9 66.0
LSD0.05 ns ns ns

LSD: least significant difference; ns: non-significant; V1: Topaz; V2: Taubertal; I1: rainfed; I2: 100% Eto; B1:
control; B2: seaweeds, auxin 1.0 mg/lt and cytokinin 0.031 mg/lt from Ecklonia maxima; B3: specific formulation
including 10% w/v of amino acids, 11.3% w/v of pure protein, 22% w/v of sucrose, and 10% w/v of UV filter.

Specifically, Variety 1 (Topaz) demonstrated a statistically significant superiority in
both flowering height and overall plant height, with its final measurement exceeding that
of Variety 2 by 15 cm. Conversely, Variety 2 (Taubertal) resulted in plants exhibiting a larger
crown diameter, with a difference of nearly 5 cm, suggesting a greater capacity for spatial
expansion (Table 1).

Concerning the irrigation factor, it was anticipated that the fully irrigated treatment
(100% ETo) would produce the greatest values for both inflorescence height and overall
plant height in comparison to the rainfed treatment. This anticipation is corroborated
by meteorological data, which reveal a combination of recorded rainfall and elevated
temperatures throughout the crop growth period. Notably, the total rainfall measured
was 194.2 mm, while evaporation during the same timeframe reached 446.3 mm (data not
presented). As illustrated in Table 1, the irrigation treatment led to plants that were, on
average, 15 cm taller, with an average height of approximately 80 cm.

Finally, a statistically significant difference in plant height was observed regarding
the interaction between the varieties and irrigation methods. Notably, the fully irrigated
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Variety 1 (Topaz) demonstrated the greatest plant height, measuring 90.6 cm, compared to
the other treatments analyzed (Table 1).

The statistical analysis presented in Table 2 indicates that significant differences in
production metrics, specifically fresh and dry weight, were observed solely among the
examined cultivars.

Table 2. Plant fresh and dry weight as affected by different varieties (V1, V2), different irrigation
levels (I1, I2), different biostimulants (B1, B2, B3), and their interactions at final harvest.

Fr.W
(kg ha−1)

D.W
(kg ha−1)

Fr.W
(kg ha−1)

D.W
(kg ha−1)

Varieties Irrigation×Biostimulants
V1 8371 3137 I1×B1 6285 2497
V2 4522 1775 I1×B2 6286 2407

LSD0.05 1598 512.6 I1×B3 5731 2215

Irrigation I2×B1 7412 2748
I1 6101 2373 I2×B2 6454 2410
I2 6792 2539 I2×B3 6509 2458

LSD0.05 ns ns LSD0.05 ns ns

Biostimulants Varities×Irrigation×Biostimulants
B1 6849 2622 V1×I1×B1 8742 3382
B2 6370 2409 V1×I1×B2 8750 3222
B3 6120 2337 V1×I1×B3 7662 2856

LSD0.05 ns ns V1×I2×B1 9403 3500

Varieties×Irrigation V1×I2×B2 7329 2759
V1×I1 8385 3154 V1×I2×B3 8338 3102
V1×I2 8356 3120 V2×I1×B1 3829 1611
V2×I1 3818 1593 V2×I1×B2 3823 1593
V2×I2 5227 1957 V2×I1×B3 3801 1574
LSD0.05 ns ns V2×I2×B1 5421 1995

Varieties×Biostimulants V2×I2×B2 5579 2060
V1×B1 9072 3441 V2×I2×B3 4681 1815
V1×B2 8039 2991 LSD0.05 ns ns

V1×B3 8000 2979 CV (%) 35.1 32.6

V2×B1 4625 1803
V2×B2 4701 1826
V2×B3 4241 1694
LSD0.05 ns ns

LSD: least significant difference; ns: non-significant; Fr.W: Fresh Weight; D.W: dry weight; V1: Topaz; V2:
Taubertal; I1: rainfed; I2: 100% Eto; B1: control; B2: seaweeds, auxin 1.0 mg/lt and cytokinin 0.031 mg/lt from
Ecklonia maxima; B3: a specific formulation including 10% w/v of amino acids, 11.3% w/v of pure protein, 22%
w/v of sucrose, and 10% w/v of UV filter.

In particular, Variety 1 (Topaz) demonstrated the highest production levels, achieving
fresh and dry weights of 8371 kg and 3137 kg per hectare, respectively. These figures are
nearly double those of the second variety, Taubertal, as shown in Table 2.

Irrigation and biostimulants did not demonstrate a statistically significant impact
on crop yield, as indicated in Table 2. The average yields for the irrigation factor and
biostimulants, irrespective of the variety, were approximately 6500 kg per hectare for fresh
weight and 2400 kg per hectare for dry weight.

Finally, the interaction analysis of the three factors did not demonstrate a statistically
significant impact on crop yield, while it indicated that Variety 1 (Topaz) attained maximum
dry weight production under full irrigation (100% ETo) conditions without the use of any
biostimulant (control), resulting in a yield of 3500 kg per hectare.
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3.3. Essential Oil Yield and Quality Characteristics Measurements

According to the ANOVA table below (Table 3), the essential oil content does not
appear to vary significantly among the different varieties of St. John’s Wort. However, it is
influenced by the irrigation and fertilization treatments, as well as their interactions.

Table 3. The essential oil content (%) and essential oil yield (kg ha−1) as affected by the different
varieties (V1, V2), the different irrigation levels (I1, I2), the different biostimulants (B1, B2, B3), and
their interactions at the final harvest.

Essential Oil
Content (%)

Essential Oil
Yield (kg

ha−1)

Essential Oil
Content (%)

Essential Oil Yield
(kg ha−1)

Varieties Irrigation×Biostimulants
V1 0.128 397 I1×B1 0.133 327
V2 0.124 229 I1×B2 0.087 214

LSD0.05 ns 59.2 I1×B3 0.048 115

Irrigation I2×B1 0.124 345
I1 0.089 219 I2×B2 0.200 468
I2 0.163 407 I2×B3 0.163 408

LSD0.05 0.0126 84.8 LSD0.05 0.0203 107.7

Biostimulants Varities×Irrigation×Biostimulants
B1 0.128 336 V1×I1×B1 0.173 431
B2 0.144 341 V1×I1×B2 0.095 304
B3 0.105 362 V1×I1×B3 0.067 185

LSD0.05 0.0145 ns V1×I2×B1 0.127 443

Varieties×Irrigation V1×I2×B2 0.165 450
V1×I1 0.096 307 V1×I2×B3 0.185 566
V1×I2 0.159 487 V2×I1×B1 0.138 223
V2×I1 0.082 131 V2×I1×B2 0.078 124
V2×I2 0.166 327 V2×I1×B3 0.028 46
LSD0.05 ns ns V2×I2×B1 0.122 246

Varieties×Biostimulants V2×I2×B2 0.235 485
V1×B1 0.127 437 V2×I2×B3 0.142 250
V1×B2 0.130 377 LSD0.05 0.0274 137.2

V1×B3 0.126 376 CV (%) 35.1 32.6

V2×B1 0.130 235
V2×B2 0.157 304
V2×B3 0.085 148
LSD0.05 0.0187 87.8

LSD: least significant difference; ns: non-significant; V1: Topaz; V2: Taubertal; I1: rainfed; I2: 100% Eto; B1: control;
B2: seaweeds, auxin 1.0 mg/lt and cytokinin 0.031 mg/lt from Ecklonia maxima; B3: a specific formulation
including 10% w/v of amino acids, 11.3% w/v of pure protein, 22% w/v of sucrose, and 10% w/v of UV filter.

Irrigation appears to have a beneficial impact on the essential oil percentage, nearly
doubling its content. In terms of biostimulants, B2 seems to enhance the oil content
significantly, whereas B3 shows a detrimental effect when compared to the control (Table 3).

According to the essential oil content analysis, Variety 2 (Taubertal) has the highest
essential oil concentration at 0.235% when it is subjected to the irrigation regime and treated
with Biostimulant 2 (B2: seaweeds, auxin at 1.0 mg/lt, and cytokinin at 0.031 mg/lt derived
from Ecklonia maxima).

To calculate the essential oil production per hectare in kilograms, the percentage
essential oil content must be multiplied by the yield of the crop (dry weight per hectare,
see Table 2). The result will represent the yield of essential oil per hectare.

Table 3 illustrates the statistical evaluation of essential oil production concerning
the study factors analyzed, which include varieties, irrigation, and biostimulants. The
results indicate that only two of the three factors exhibit a statistically significant impact on
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essential oil yield per hectare. Specifically, when comparing the varieties, Topaz (V1) shows
a statistically significant superiority over Taubertal (V2), with essential oil production
capacities of approximately 397 kg per hectare and 229 kg per hectare, respectively.

The irrigation factor appears to have a similar impact, as treatments with irrigation
led to higher yields. In particular, irrigated treatments (I2) can yield approximately 407 kg
of essential oils per hectare, in contrast to the 219 kg per hectare observed in the rainfed
treatments (I1).

The interaction of irrigation factor with biostimulants demonstrated a statistically
significant advantage for the irrigated treatments that utilized the combination of the two
biostimulants, B2 and B3, compared to all other treatments. This approach resulted in
essential oil production reaching as high as 468 kg per hectare (I2B2; Table 3). In the case
of the interaction of varieties with biostimulants, a statistically significant benefit was
observed for the Topaz variety (V1), irrespective of the type of biostimulant used, achieving
an essential oil yield of 407 kg per hectare (V1B1, Table 3).

The expected result, considering the previously mentioned factors, indicates that
the treatment resulting in the greatest production of essential oil, amounting to 566 kg
per hectare, is the irrigated treatment (I2) of the Topaz variety (V1) when paired with
Biostimulant 3 (B3). This finding demonstrates a numerical advantage rather than a
statistically significant difference when compared to the other biostimulant treatments (i.e.,
V1I2B1 is roughly equivalent to V1I2B2 and V1I2B3, as shown in Table 3).

The analysis of the essential oil obtained from the experimental treatments, conducted
using gas chromatography coupled with mass spectrometry (GC–MS), revealed not only
the primary compounds hypericone and pseudo-hypericin (which are not presented in
the current study) but also identified an additional 14 compounds present in concen-
trations exceeding 1%. These compounds include 2-Methyl-Decane, 2-Methyl-Octane,
(E)-β-Farnesene, α-Pinene, Benzyl Benzoate, 2-β-Funebrene, γ-Muurolene, (E)-β-Ocimene,
Oxide-Caryophyllene, β-Pinene, (E)-Caryophyllene, γ-Himachelene, δ-Cadinene, and
Spathulenol. The effects of the studied factors are detailed in the Anova table provided
below (Table 4).

It appears that all three factors—variety, irrigation levels, and biostimulants—have
a statistically significant impact, depending on the compounds analyzed. Among the
thirteen compounds studied, nine (2-methyl-decane, (ε)-β-phamesene, benzyl benzoate,
2-β-Funebrene, γ-Muurolene, osimene (ε-β), Caryophyllene oxide, (E)-Caryophyllene,
and spathulenol) show a statistically significant effect related to the various biostimu-
lants. Additionally, seven compounds (γ-Muurolene, Caryophyllene oxide, β-pinene,
(E)-Caryophyllene, δ-Cadinene, and spathulenol) are significantly affected by the differ-
ent irrigation levels, while seven compounds ((ε)-β-phamesene, α-pinene, benzyl ben-
zoate, 2-β-Funebrene, Caryophyllene oxide, β-pinene, (E)-Caryophyllene, and Spathulenol)
demonstrate significant variation across the different varieties.

All of the examined factors influence the composition of the essential oils and the
percentage of each component. It is essential to note that the Taubertal variety does not
contain “(E)-β-Farnesene” and “2-β-Funebrene”, while there is a significant reduction
(over 50%) in the levels of “Oxide-Caryophylene”, “β-Pinene”, and “Benzyl Benzoate.” In
contrast, the content of “α-Pinene” in the Taubertal variety is 2.5 times higher. This finding
emphasizes the importance of genetic factors and the necessity for meticulous planning in
crop cultivation and product application.
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Table 4. Essential oil characteristics (% components found using GC–MS; 2-Methyl-Decane, 2-Methyl-Octane, (E)-β-Farnesene, α-Pinene, Benzyl Benzoate,
2-β-Funebrene, γ-Muurolene, (E)-β-Ocimene, Oxide-Caryophyllene, β-Pinene, (E)-Caryophyllene, γ-Himachelene, δ-Cadinene, Spathulenol) as affected by different
varieties (V1, V2), different irrigation levels (I1, I2), different biostimulants (B1, B2, B3), and their interactions at final harvest.

2-Methyl-
Decane

2-Methyl-
Octane

(E)-β-
Farnesene α-Pinene Benzyl

Benzoate
2-β-

Funebrene
γ-

Muurolene
(E)-β-

Ocimene
Oxide-

Caryophyllene B-Pinene (E)-
Caryophyllene

γ-
Himachelene δ-Cadinene Spathulenol

Varieties
V1 2.89 22.57 1.43 15.38 1.36 1.13 1.34 1.55 12.90 12.01 8.69 0.98 0.84 5.95
V2 2.46 20.40 0.00 38.26 0.41 0.00 1.38 1.39 3.42 5.34 2.34 0.98 0.82 4.16

LSD0.05 ns ns 0.502 6.393 0.780 0.63 ns ns 3.147 2.099 1.262 ns ns 0.341

Irrigation
I1 2.78 21.92 0.74 25.19 0.94 0.63 1.52 1.87 9.38 7.93 6.29 1.08 1.01 6.83
I2 2.57 21.05 0.69 28.45 0.83 0.50 1.20 1.55 6.94 9.42 4.74 0.88 0.64 3.28

LSD0.05 ns ns ns ns ns ns 0.224 ns 1.306 1.067 1.113 ns 0.302 0.816

Biostimulants
B1 2.63 22.73 0.66 28.11 0.73 0.46 1.13 1.60 6.25 8.83 5.69 0.95 0.71 4.76
B2 2.45 19.76 0.85 25.90 1.13 0.74 1.46 1.29 10.91 7.78 6.12 1.03 0.92 5.96
B3 2.94 21.97 0.64 26.45 0.80 0.49 1.50 1.51 7.32 9.41 4.74 0.97 0.84 4.45

LSD0.05 0.353 ns 0.094 ns 0.264 0.129 0.244 0.173 1.288 ns 1.105 ns ns 0.795

Varieties×Irrigation
V1×I1 2.95 23.99 1.48 15.11 1.48 1.26 1.47 1.64 14.14 10.73 10.01 1.14 0.94 7.34
V1×I2 2.83 21.14 1.37 15.65 1.25 1.00 1.21 1.45 11.67 13.28 7.38 0.83 0.73 4.57
V2×I1 2.61 19.84 0.00 35.27 0.41 0.00 1.56 1.13 4.63 5.14 2.57 1.02 1.08 6.33
V2×I2 2.31 20.96 0.00 41.26 0.42 0.00 1.20 1.64 2.21 5.55 2.1 0.94 0.555 2.00
LSD0.05 ns ns ns ns ns ns ns 0.205 ns 1.664 ns ns ns ns

Varieties×Biostimulants
V1×B1 2.82 22.43 1.313 15.14 1.01 0.92 1.11 1.52 9.51 12.00 8.99 0.93 0.64 6.42
V1×B2 2.37 19.14 1.693 13.75 2.01 1.47 1.78 1.32 18.69 10.30 10.04 1.12 1.19 7.86
V1×B3 3.48 26.14 1.274 17.24 1.08 0.99 1.14 1.80 10.52 13.72 7.06 0.91 0.68 3.58
V2×B1 2.44 23.04 0.00 41.08 0.46 0.00 1.14 1.68 2.99 5.67 2.39 0.968 0.79 3.10
V2×B2 2.53 20.38 0.00 38.05 0.25 0.00 1.14 1.26 3.14 5.25 2.20 0.940 0.65 4.06
V2×B3 2.40 17.79 0.00 35.65 0.53 0.00 1.85 1.22 4.13 5.11 2.42 1.02 1.00 5.33
LSD0.05 0.549 ns 0.420 ns 0.592 0.516 ns 0.2146 2.421 1.927 1.414 ns 0.248 0.929

Irrigation×Biostimulants
I1×B1 2.72 25.4 0.50 26.89 0.73 0.50 1.12 1.52 6.30 9.19 6.68 1.01 0.73 6.64
I1×B2 2.49 19.07 0.89 24.79 1.14 0.83 1.67 1.13 11.82 7.81 6.09 1.08 1.17 7.28
I1×B3 3.13 21.28 0.83 23.88 0.96 0.56 1.77 1.52 10.04 6.8 6.10 1.15 1.13 6.58
I2×B1 2.55 20.07 0.82 29.33 0.74 0.43 1.13 1.68 6.21 8.48 4.70 0.88 0.70 2.88
I2×B2 2.41 20.45 0.80 27.02 1.12 0.64 1.25 1.46 10.01 7.74 6.14 0.98 0.68 4.64
I2×B3 2.75 22.65 0.44 29.01 0.65 0.43 1.23 1.50 4.61 12.03 3.38 0.78 0.56 2.33
LSD0.05 ns ns 0.133 ns ns ns ns ns 1.771 1.757 1.516 ns 0.321 ns
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Table 4. Cont.

2-Methyl-
Decane

2-Methyl-
Octane

(E)-β-
Farnesene α-Pinene Benzyl

Benzoate
2-β-

Funebrene
γ-

Muurolene
(E)-β-

Ocimene
Oxide-

Caryophyllene B-Pinene (E)-
Caryophyllene

γ-
Himachelene δ-Cadinene Spathulenol

Varities×Irrigation×Biostimulants
V1×I1×B1 2.76 27.91 1.00 16.24 0.86 1.00 1.03 1.41 8.30 12.90 10.37 0.84 0.42 8.64
V1×I1×B2 2.35 19.46 1.78 14.36 2.01 1.66 1.91 1.41 18.79 10.71 10.02 1.34 1.37 8.02
V1×I1×B3 3.76 24.62 1.67 14.71 1.56 1.12 1.48 2.10 15.34 8.57 9.63 1.24 1.03 5.34
V1×I2×B1 2.89 16.95 1.63 14.03 1.16 0.85 1.19 1.63 10.72 11.09 7.60 1.01 0.85 4.20
V1×I2×B2 2.39 18.53 1.60 13.14 2.01 1.28 1.64 1.24 18.59 9.88 10.05 0.91 1.01 7.69
V1×I2×B3 3.20 27.65 0.88 19.77 0.59 0.85 0.81 1.49 5.69 18.87 4.49 0.57 0.33 1.82
V2×I1×B1 2.68 22.90 0.00 37.53 0.60 0.00 1.21 1.63 4.29 5.47 2.98 1.18 1.03 4.63
V2×I1×B2 2.62 18.69 0.00 35.21 0.26 0.00 1.42 0.84 4.85 4.91 2.16 0.82 0.97 6.54
V2×I1×B3 2.51 17.95 0.00 33.06 0.36 0.00 2.05 0.93 4.73 5.03 2.57 1.05 1.23 7.81
V2×I2×B1 2.21 23.19 0.00 44.63 0.32 0.00 1.08 1.74 1.69 5.87 1.81 0.75 0.54 1.56
V2×I2×B2 2.43 22.07 0.00 40.89 0.23 0.00 0.86 1.68 1.43 5.60 2.24 1.06 0.34 1.59
V2×I2×B3 2.29 17.64 0.00 38.25 0.70 0.00 1.65 1.51 3.52 5.19 2.27 1.00 0.78 2.84
LSD0.05 ns ns 0.384 ns 0.628 ns ns 0.326 2.829 2.561 ns 0.686 0.390 1.424

CV (%) 15.3 17.2 15.3 15.8 34.4 26.5 20.7 13.6 18.2 18.3 23.2 24.8 25.1 18.2

LSD: least significant difference; ns: non-significant; V1: Topaz; V2: Taubertal; I1: rainfed; I2: 100% Eto; B1: control; B2: seaweeds, auxin 1.0 mg/lt and cytokinin 0.031 mg/lt from
Ecklonia maxima; B3: a specific formulation including 10% w/v of amino acids, 11.3% w/v of pure protein, 22% w/v of sucrose, and 10% w/v of UV filter.
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The data presented in Table 4 clearly illustrate that, aside from the genetic material
(plants) utilized, varying cultivation practices can lead to differences in the composition
of the essential oil produced, even when the same genotype (variety) is involved. In the
context of biostimulant application, it is evident that B2 (comprising seaweeds, auxin at
1.0 mg/lt, and cytokinin at 0.031 mg/lt sourced from Ecklonia maxima) significantly in-
creases the concentrations of “(E)-β-Farnesene”, “Benzyl Benzoate”, “2-β-Funebrene”,
“Oxide-Caryophyllene”, and “Spathulenol”; in some cases, almost doubling the concentra-
tion, while concurrently reducing the levels of “(E)-β-Ocimene” with a reduction of about
20% compared to the control.

Finally, it is evident from Table 4 that enhanced irrigation leads to a statistically
significant increase of approximately 18% in the percentage of “β pinene” when compared
to the rainfed treatment. In contrast, the compounds γ-Muurolene, Caryophyllene oxide,
(E)-Caryophyllene, δ-Cadinene, and Spathulenol show a statistically significant decrease in
their percentages with increased irrigation, exhibiting reductions ranging from 15% to 50%
relative to the rainfed treatment.

4. Discussion

Hypericum perforatum originates from Europe and Asia, where it thrives under specific
ecological conditions [35,36]. The rising industrial and medicinal demand for this plant ne-
cessitates substantial production volumes [16,37]. Consequently, its cultivation is essential
to satisfy both industrial and biotechnological needs. This research provides initial insights
into the adaptation of cultivated Hypericum perforatum to the climatic and soil conditions
found in Greece, a representative Mediterranean nation.

The existing global literature regarding the impacts of cultivating medicinal plants
remains insufficient [38–40], with particularly limited data available for the Mediterranean
region, especially concerning St. John’s Wort. The aim of this study is to initiate a series
of experiments.

Most prior research has concentrated on Hypericum perforatum development under
regulated environmental conditions. For instance, ref. [41] examined the impact of light
quality and intensity on the growth of Hypericum perforatum L. In a similar vein, ref. [42]
investigated how nickel pollution affected Hypericum perforatum L. growth and its secondary
metabolite profile. Additionally, ref. [43] studied how varying light quality affects growth
and secondary metabolite production in the adventitious root cultivation of Hypericum
perforatum.

Studies contacted in Turkey and in Jordan [44–46] recorded the flowering of Hypericum
perforatum between April and September, which agrees with the results of the current
study. One other growth characteristic is plant height, which varies according to different
studies. Ref. [47] reported a height range of 45 to 99 cm, whereas [48] indicated that the
height can vary between 25 and 44 cm and 55 and 80 cm, depending on the conditions of
establishment. The abovementioned range also agrees with the plant height that was found
for the different examined factors of this study.

While there is a lack of field studies specifically examining the cultivation of St. John’s
Wort and the impact of irrigation and biostimulant use on its yield, the existing litera-
ture [49–54] indicates a beneficial effect of irrigation on the yields of various aromatic and
medicinal plants, similar to the findings of the current research. In the case of biostimulant
effects, numerous studies have indicated that the application of biostimulants leads to a
notable enhancement in the growth characteristics of various aromatic and medicinal plants,
including increases in plant height, leaf count, and both fresh and dry weight such as in the
results of the current study [55–59]. Several researchers [60–63] have suggested that these
beneficial effects may stem from enhanced cell elongation, improved cellular membrane
permeability, or increased nitrogen absorption, all of which contribute to vigorous root and
foliage development. However, it is also noted in the literature that, despite the advantages,
the application of biostimulants can lead to a significant decrease in the fresh and dry
weights of plants, roots, and chlorophyll b content in certain cases [64].
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H. perforatum L. essential oil is primarily derived from the aerial parts of the plant [65].
Numerous studies have documented the chemical variability of H. perforatum, indicating the
presence of chemotypes that lack certain compounds [66,67], which aligns with the findings
of the current research. Additionally, this study highlights the significance of plant variety
and cultivation methods, which can result in statistically significant variations in both the
yield of essential oil and the composition of its various components. The literature [68–70]
indicates that H. perforatum essential oil contains a variety of compounds in significant
amounts, including β-pinene (18.32%), α-pinene (5.56–30.92%), δ-Cadinene (0.0–22.58%),
and caryophyllene (15.26%), while several compounds are present in lesser quantities, such
as (E)-β-caryophyllene, δ-Cadinene, (E)-β-Ocimene, 2-methyldecane, germacrene-δ, and
2-methyl octane, which align with the focus of this research.

The differences in the chemical composition of the essential oils derived from medicinal
plants, influenced by several factors as highlighted in this research, represent a major
challenge for the modern herbal industry. These compositional differences may restrict the
use of specific oils in industrial applications or necessitate their application in alternative
products [71–75].

Reference is specifically made to certain substances, including α- and β-pinene, which
are significant constituents of the monoterpene family and are frequently present in the
essential oils of numerous plants. They are associated with a broad spectrum of pharma-
cological effects, including modulation of antibiotic resistance, antitumor activity, antimi-
crobial effects, antimalarial properties, antioxidant capabilities, anti-inflammatory actions,
anti-Leishmania effects, and analgesic properties [76]. The diverse biological activities of
these phytochemicals facilitate their application in numerous fields, such as fungicides,
flavoring agents, fragrances, and both antiviral and antimicrobial products [77]. Addition-
ally, α- and β-pinene are integral components in certain renal and hepatic medications [78].
Their antibacterial properties are attributed to their toxic effects on cellular membranes.
Furthermore, studies have indicated that these compounds exhibit inhibitory effects against
breast cancer and leukemia [79]. Consequently, higher concentrations of α- and β-pinene
in essential oils correlate with enhanced efficacy in these properties. Specifically, treat-
ments that increase α-pinene concentrations include the V2×I2×B1 treatment, while the
V1×I2×B3 treatment is effective for β-pinene.

Caryophyllene oxide is an oxygenated terpenoid that typically arises as a metabolic
byproduct of Caryophyllene. This compound is recognized for being non-toxic and non-
sensitizing, making it a popular choice as a preservative in food, pharmaceuticals, and
cosmetics, as well as serving as an insecticide. Its potential application as a cancer treatment
is bolstered by findings that indicate a lack of genotoxicity and its effective absorption
through cellular membranes. As a result, higher concentrations found in essential oils
are associated with improved efficacy in these roles. Notably, treatments that elevate its
concentration include V1×I1×B2 and V1×I2×B2.

Finally, a review of the existing literature reveals that Spathulenol exhibits signifi-
cant bioactive properties, including anticholinesterase activity, antinociceptive and anti-
hyperalgesic effects, and anti-mycobacterial properties [80–82]. Recent research has also
identified Spathulenol as an eco-friendly insecticide effective against aphids [83]. Notably,
higher concentrations of Spathulenol found in essential oils correlate with enhanced effec-
tiveness in these applications, with specific treatments such as V1×I1×B2 and V1×I2×B2
leading to increased concentrations.

Therefore, by analyzing the most effective combination of treatments with components
at their optimal percentages, it is determined that the treatments V1×I1×B2, V1×I1×B3,
and V1×I2×B3 are the most suitable options.

5. Conclusions

This study marks the first investigation into the cultivation of the medicinal plant
Hypericum perforatum under the climatic conditions of a Mediterranean country, specifically
Greece. The research focused on the impact of irrigation and biostimulants on two distinct
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genotypes (varieties) of the plant, assessing both quantitative factors (such as height, drug
yield, and essential oil yield) and qualitative characteristics (including essential oil content
and composition). The findings highlight the importance of customized irrigation and
biostimulant approaches in enhancing both the yield and quality of balsam cultivars during
their second growing season, setting a foundation for future advancements in sustainable
agricultural methods.

The findings indicate that the genetic material used plays a significant role in the
performance of the plant, influencing percentage characteristics such as production poten-
tial, height, and flowering, as well as the composition of the essential oil. Notably, one
of the two varieties blooms biennially, resulting in either a complete absence of certain
compounds in the essential oil or their presence in very limited quantities.

Furthermore, the research revealed that irrigation positively affects the overall yield
of the balsam plant, enhancing production while simultaneously reducing the levels of
several essential oil compounds. However, a notable increase in β-pinene content was
observed during this study.

Regarding biostimulants, their effects appear to vary based on their specific composi-
tion, with some contributing to an increase in essential oil compound content while others
may lead to a decrease.

These findings represent some of the first data from a field experiment on the cul-
tivation of H. perforatum in a Mediterranean climate. Continued research is essential
and could focus on native populations from the surrounding area (to explore different
genetic materials), varying irrigation levels, additional biostimulants, fertilization, and
other factors that may influence crop yield and alter the quality characteristics, such as the
essential oil composition of H. perforatum.
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