The Effect of Nickel on Secretory Systems

STUDIES ON THE RELEASE OF AMYLASE, INSULIN AND GROWTH HORMONE

By ROBERT L. DORMER, ALAN L. KERBEY, MARGARET MCPHERSON, SUSAN MANLEY, STEPHEN J. H. ASHCROFT, J. GEORGE SCHOFIELD and PHILIP J. RANDLE Department of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K.

(Received 15 October 1973)

The effects of Ni²⁺ on the release of amylase from rat parotids, insulin from mouse pancreatic islets and growth hormone from bovine pituitary slices were investigated. In all these secretory systems, Ni²⁺ was shown to inhibit release evoked by a variety of stimuli both physiological and pharmacological. Measurements of rates of substrate oxidation and tissue concentrations of ATP and 3':5'-cyclic AMP suggest that this inhibitory action of Ni²⁺ does not arise through an effect on energy metabolism or cyclic AMP metabolism. It is concluded that although some effects of Ni²⁺ may involve antagonism between Ni²⁺ and Ca²⁺ in stimulus-secretion coupling, others appear to be independent of Ca²⁺. It is suggested that Ni²⁺ may block exocytosis by interfering with either secretory-granule migration or membrane fusion and microvillus formation. The possible mode of action of Ni²⁺ and its potential use as a tool in the study of exocytosis are discussed.

In view of the primary role ascribed to Ca²⁺ in stimulus-secretion coupling (Douglas, 1968) and the contribution made by specific inhibitors in clarifying biochemical pathways, an inhibitor which interferes with the action of Ca^{2+} in initiating exocytosis could provide insight into the mechanism of secretion. The bivalent cations Ni²⁺ and Co²⁺ are known to inhibit contraction of cardiac muscle (Kaufman & Fleckenstein, 1965) and the effect of these ions can be reversed by doubling the extracellular concentration of Ca²⁺ (Kleinfeld & Stein, 1968). This suggests that these ions interfere with the uptake of Ca²⁺ and/or its action on excitation-contraction coupling. Evidence has also been obtained that presynaptic neurotransmitter release is inhibited by Ni²⁺ and Zn²⁺ (Benoit & Mambrini, 1970) and by Mn²⁺ (Meiri & Rahaminoff, 1972) and again that inhibition by these ions is due to competition with Ca^{2+} . The similarity between the effects of these bivalent cations on excitation-contraction coupling in heart muscle and on excitation-secretion coupling in presynaptic nerve terminals suggests that they act on a fundamental process common to both contraction and secretion. If this is so, bivalent cations should also inhibit secretion of protein hormones, and, if that inhibition is at a fundamental level, stimulation by secretagogues acting in different ways should be inhibited.

In this paper we report effects of Ni^{2+} on the release of amylase from rat parotids, insulin from mouse pancreatic islets and growth hormone from ox pituitary slices in reponse to a range of physiological and pharmacological stimuli. We also report the effects of Ni^{2+} on some metabolic parameters in mouse islets and ox pituitary slices. The data suggest that Ni^{2+} is a specific and potent inhibitor of release in all three systems at a fundamental level.

Experimental

Reagents

[U-1⁴C]Glucose and DL- β -hydroxy[3-1⁴C]butyrate were from The Radiochemical Centre, Amersham, Bucks., U.K. Prostaglandin E₂ was a gift from Dr. J. R. Pike of Upjohn Ltd., Kalamazoo, Mich., U.S.A. All other chemicals were from British Drug Houses Ltd., Poole, Dorset, U.K.

Methods

Assay of protein release. Parotid glands were obtained from male albino rats starved overnight and were cut into pieces weighing 8–15 mg. Two or three fragments were placed in a perifusion chamber and perifused with bicarbonate-buffered salt solution (Krebs & Henseleit, 1932) as described by Robberlecht & Christophe (1971). The activity of amylase released into the medium was measured by the method of Bernfeld (1955).

Islets of Langerhans were isolated by a collagenase procedure (Coll-Garcia & Gill, 1969) from 3–4-weekold male mice starved overnight. Islets were incubated in bicarbonate medium either in batches of five islets (Ashcroft *et al.*, 1973) or as a batch of 40 islets in the perifusion apparatus described by Cooper *et al.* (1973) by using a peristaltic pump to obtain flow rates of approx. 0.2 ml/min. Insulin concentrations in incubation media or perifusates were measured by double-antibody radioimmunoassay (Coll-Garcia & Gill, 1969).

Bovine pituitary slices (approx. 0.3 mm) were obtained from heifers within 5 min of death, sliced with a hand microtome and incubated in bicarbonate medium as described by Schofield (1967). The concentration of growth hormone in the media was measured by a double-antibody radioimmunoassay (Schofield, 1967). To combine results of several experiments, release in each experiment was expressed as a percentage of release by control slices in the same experiment.

Measurement of metabolic parameters. The rate of oxidation of [U-¹⁴C]glucose by mouse islets was measured as described by Ashcroft *et al.* (1973) and rates of oxidation of [U-¹⁴C]glucose and DL- β -hydroxy[3-¹⁴C]butyrate by bovine pituitary slices as described by McPherson & Schofield (1972).

The ATP content of mouse islets was measured by the firefly-luciferase assay (Ashcroft *et al.*, 1973). The ATP and cyclic AMP contents of pituitary slices were measured as described by Cooper *et al.* (1972).

Results

Release of amylase from parotid slices

The effect of Ni²⁺ on the stimulation of amylase release by adrenaline, *p*-chloromercuribenzoate and high K⁺ is shown in Fig. 1. Fig. 1(*a*) shows that Ni²⁺ (2mM) had no effect on basal release but blocked the release in response to adrenaline (10 μ M). However, this effect was reversible, since subsequent removal of the Ni²⁺ permitted adrenaline stimulation of release to occur. Fig. 1(*b*) shows that 0.2 mM-Ni²⁺ also blocked the stimulation by adrenaline and that raising the extracellular concentration of Ca²⁺ from 1.3 to 5.2 mM overcame this inhibition. However, Ni²⁺ (0.5 mM) did not block stimulation of release by 72 mM-K⁺ (Fig. 1*c*) nor *p*-chloromercuribenzoate (0.1 mM) (Fig. 1*d*).

 Ni^{2+} inhibits the activity of amylase (about 20% inhibition at 0.5 mm- Ni^{2+}) and this effect was taken into account in the calculation of amylase activity in the medium.

Release of insulin from islets of Langerhans

Table 1 shows that Ni^{2+} (2 mm) almost completely inhibited insulin release evoked by glucose (16.7 mm) in the presence or absence of caffeine, by p-chloromercuribenzoate (0.2 mm) in the presence of 3.3 mmglucose, and by tolbutamide (0.2 mg/ml), high K⁺ concentration, or leucine (5mm) all in the presence of 3.3 mm-glucose and 5 mm-caffeine. The rapidity of onset of inhibition of Ni^{2+} is shown in Fig. 2(a); addition of 2 mm-Ni²⁺ to islets perifused with 16.7 mmglucose and 5 mm-caffeine returned the rate of insulin release to control values without any appreciable delay. The inhibition of glucose-stimulated insulin release by 2mm-Ni²⁺ was at least partially reversible, since after a 9 min exposure to Ni²⁺ islets consequently responded to high glucose with increased insulin release (Fig. 2b). The effect of increasing Ni²⁺ concentrations on glucose-stimulated release is shown in Fig. 2(c). Some inhibition was detected with 0.05 mm-Ni²⁺ and the inhibition was complete at 0.5 mm-Ni²⁺. The radioimmunoassay of insulin was not affected by Ni²⁺.

Release of growth hormone from ox pituitary slices

Table 2 shows the effect of Ni²⁺ (0.2–1 mM) on the stimulation of growth-hormone release by Ba²⁺ (2.3 and 6.9 mM). Ni²⁺ did not alter basal growth-hormone release at 0.2 or 0.5 mM, although a small but significant (p < 0.05 by Student's *t* test) increase was seen at 1 mM. However, Ni²⁺ markedly inhibited Ba²⁺-stimulated release at 0.2 mM and had a greater inhibitory effect at higher concentrations. There was no evidence that the higher Ba²⁺ concentration decreased the sensitivity to Ni²⁺.

Ni²⁺ also markedly inhibited the stimulation of growth-hormone release by $20 \,\mu M$ p-chloromercuribenzoate (Table 3). To test the possibility that Ni²⁺ inhibits by competing with Ca²⁺, the effect on pchloromercuribenzoate-stimulated release was tested at 2.54 and 0.125 mm-Ca²⁺. At the lower Ca²⁺ concentration the ability of p-chloromercuribenzoate to increase release was not impaired, confirming the Ca²⁺-independence of p-chloromercuribenzoate stimulations observed earlier (Schofield, 1971). Moreover the sensitivity of the pituitary to Ni²⁺ was not altered by changes in the Ca²⁺ concentrations, suggesting that inhibition is independent of Ca²⁺.

 Ni^{2+} also inhibited K⁺-induced growth-hormone release, and the dependence of this inhibition on Ca^{2+} was tested (Table 4). The stimulation by K⁺ was not increased when the Ca^{2+} concentration was raised to 10 mM but was markedly decreased when the Ca^{2+} concentration was lowered to 0.125 mM, which confirms the Ca^{2+} -dependence of K⁺ stimulation noted by Schofield & Cole (1971). At 10 mM-Ca²⁺ there was no evidence that the pituitary was protected against Ni²⁺ inhibition. However, there was some

Fig. 1. Effects of Ni²⁺ on amylase release from perifused parotid

Parotid glands were perifused as described in the text with Krebs bicarbonate medium containing $5 \text{ mm}-\beta$ -hydroxybutyrate and other additions as follows. (a) Inhibition of adrenaline-stimulated release. 0–20min, no addition; 20–40min, $2 \text{ mm}-\text{Ni}^{2+}$; 40–80min, $7 \text{ mm}-\text{Ni}^{2+}+10 \mu \text{m}$ -adrenaline; 80–100min, $10 \mu \text{m}$ -adrenaline; 100–130min, no addition. (b) Effect of Ca²⁺ on inhibition of adrenaline-stimulated release. 0–20min, $1.3 \text{ mm}-\text{Ca}^{2+}$; 20–40min, $1.3 \text{ mm}-\text{Ca}^{2+}+0.2 \text{ mm}-\text{Ni}^{2+}+10 \mu \text{m}-adrenaline; 60–80min, <math>5.2 \text{ mm}-\text{Ca}^{2+}+0.2 \text{ mm}-\text{Ni}^{2+}+10 \mu \text{m}-adrenaline; 60–80min, <math>5.2 \text{ mm}-\text{Ca}^{2+}+10 \mu \text{m}-adrenaline; 80–100 \text{ min}, 5.2 \text{ mm}-\text{Ca}^{2+}+10 \mu \text{m}-adrenaline; 60–80 \text{ min}, 5.2 \text{ mm}-\text{Ca}^{2+}+10 \mu \text{m}-adrenaline; 80–100 \text{ min}, 5.2 \text{ mm}-\text{Ca}^{2+}+10 \mu \text{m}-adrenaline; 60–80 \text{ min}, 0.5 \text{ mm}-\text{Ni}^{2+}+72 \text{ mm}-\text{K}^+: 40-60 \text{ min}, 72 \text{ mm}-\text{K}^+: 60-80 \text{ min}, no additions; 20–40 \text{ min}, 0.5 \text{ mm}-\text{Ni}^{2+}+72 \text{ mm}-\text{K}^+: 40-60 \text{ min}, 72 \text{ mm}-\text{K}^+: 60-80 \text{ min}, no additions; (d) Effect on p-chloromercuribenzoate; 50–80 \text{ min}, 0.1 \text{ mm}-p-chloromercuribenzoate; 80–100 \text{ min}, no additions; 20–50 \text{ min}, 0.5 \text{ mm}-\text{Ni}^{2+}+0.1 \text{ mm}-p-chloromercuribenzoate; 30–100 \text{ min}, no additions. Amylase in the perifusates was measured as described in the text. PCMB, p-chloromercuribenzoate.$

	Incubation conditions		Insulin release (pg/min per islet)			
Glucose concn. (тм)	Caffeine (5 mм)	Other additions	No Ni ²⁺	2 mм-Ni ²⁺		
3.3	-	<u> </u>	8.26 ± 2.33 (20)	3.67 ± 1.37 (15)		
16.7	-		$31 \pm 3.7(10)$	$4.25 \pm 1.25(5)$		
3.3	+	_	7.08 ± 1.02 (25)	4.63 ± 1.87 (10)		
16.7	+		$263 \pm 36(25)$	16.3 ± 8.77 (20)		
3.3	-	<i>p</i> -Chloromercuribenzoate (0.2 mм)	$282 \pm 40(5)$	<0.25 (5)		
3.3	+	Tolbutamide (0.2mg/ml)	$72 \pm 5(5)$	<0.25 (5)		
3.3	+	К ⁺ (60 mм)	$31.5 \pm 0.4(5)$	$0.4 \pm 0.2 (5)$		
3.3	+	Leucine (5mm)	$126 \pm 13(5)$	2.7 ±1.5 (5)		

Table 1. Effects of Ni²⁺ on insulin release

Batches of five islets were incubated for 2 h in bicarbonate medium containing albumin (2 mg/ml) at 37°C under the conditions given. Insulin released into the medium was assayed by radioimmunoassay. Results are given as mean±s.E.M. for the number of batches of islets given in parentheses.

evidence that at 0.12 mm-Ca^{2+} the sensitivity to Ni²⁺ was increased. Thus the K⁺-induced release was abolished by 0.2 mm-Ni^{2+} in the presence of 0.12 mm-Ca^{2+} but only halved in the presence of 2.5 mm-Ca^{2+} . It was also observed that 10 mm-Ca^{2+} caused a decrease in basal release to $73 \pm 6\%$ of the control value.

The results of experiments to test the reversibility of Ni²⁺ inhibition are shown in Table 5. Slices incubated in high K⁺ responded after a 30min lag period to a second high-K⁺ stimulation with almost the same output of growth hormone as during the first high-K⁺ period. Slices incubated in Ni²⁺ and high K⁺ and then given a 30min rest period also responded to high K⁺ in the absence of Ni²⁺ in the second stimulation period although the reversal was not complete.

Prostaglandin- E_2 -induced release of growth hormone was also markedly inhibited by Ni²⁺. Slices incubated for 60min with prostaglandin E_2 (1 μ M) released 1.66±0.23 mg of growth hormone/h per g of tissue compared with control release rate of 0.72±0.06 mg/h per g. In the presence of 1 mM-Ni²⁺ and prostaglandin E_2 the release rate was 0.72±0.15 mg/h per g (all values are mean±s.E.M. for 16 slices).

Effects of Ni²⁺ on metabolism

The results given in Table 6 show that for mouse islets incubated for 2h *in vitro* neither the ATP content nor the rate of formation of ${}^{14}CO_2$ from [U- ${}^{14}C$]glucose was significantly affected by the presence of 2mm-Ni²⁺ (p < 0.05 by Student's *t*-test).

Ni²⁺ (0.5 mm) did not significantly decrease the rate of oxidation of glucose or of β -hydroxybutyrate

(Table 7) by ox pituitary slices over a 60 min period. Ni^{2+} (2 mm) decreased the rate of oxidation of glucose but not of β -hydroxybutyrate under these conditions. However, preincubation for 90 min in Ni²⁺ (0.5 or 2 mm) decreased the rates of oxidation of both glucose and β -hydroxybutyrate in a subsequent 60 min incubation in the presence of Ni²⁺. No changes in pituitary content of ATP content were observed in slices incubated with 2mm-Ni²⁺. The basal concentration of cyclic AMP was not altered by 1 mm-Ni²⁺, nor was the ability of prostaglandin E_2 to raise the concentration of cyclic AMP (suggesting no change in adenvlate cyclase activity), nor was the increase in cyclic AMP elicited by the inhibitor of phosphodiesterase, 3-isobutylmethylxanthine (suggesting that phosphodiesterase activity was also unaffected).

Discussion

The present study demonstrates that Ni^{2+} is a potent inhibitor of secretion in three glands, parotid (amylase), islets of Langerhans (insulin) and pituitary (growth hormone). These findings are at variance with the recent report of La Bella *et al.* (1973) that Ni^{2+} at the concentration used here stimulated release of a number of hormones from bovine pituitaries *in vitro*. We have observed no stimulation of growth-hormone release from bovine pituitaries by Ni^{2+} . We suggest that the long delay (60 min) between the death of the animal and removal of the pituitary in the experiments of La Bella *et al.* (1973) could drastically change the behaviour of the pituitary *in vitro* and thus account for this discrepancy.

The secretory process in parotid, islet β -cells and pituitary is thought to involve exocytosis, that is,

Fig. 2. Effects of Ni²⁺ on insulin release from perifused mouse islets

Batches of 40 islets were perifused as described in the text with Krebs bicarbonate medium containing albumin (2mg/ml) and caffeine (1mg/ml) and the following additions. (a) 0-40 min, 3.3mm-glucose (LG); 40-70 min, 16.7mm-glucose (HG); 70-100min, HG+2mM Ni²⁺. (b) 0-33 min, LG; 33-64 min, HG; 64-76 min, HG+2mM Ni²⁺; 76-92 min, HG; 92-104 min, HG+2mM-Ni²⁺; 104-116 min, HG. (c) 0-30 min, LG; 30-60 min, HG; 60-76 min, HG+0.05 mM-Ni²⁺; 76-92 min, HG+0.1 mM-Ni²⁺; 92-108 min, HG+0.5 mM-Ni²⁺; 108-120 min, HG+2 mM-Ni²⁺. Insulin in the perifusates was measured by radioimmunoassay as described in the text.

migration of secretory granules to the plasma membrane followed by discharge of granule contents through the plasma membrane (Amsterdam *et al.*, 1969; Lacy, 1961; Farquhar, 1961). Stimulation of

Vol. 140

secretion by physiological agents and many drugs is dependent on extracellular Ca²⁺ (Selinger & Naim, 1970; Milner & Hales, 1968; Schofield, 1971) and on adequate intracellular concentrations of ATP (Babad et al., 1967: Ashcroft et al., 1973: Schofield & Stead, 1971). It is therefore suggested that stimulussecretion coupling is mediated by uptake of extracellular Ca²⁺ and/or by release of Ca²⁺ from intracellular organelles and that ATP is utilized in exocytosis. Cyclic AMP may also augment the secretory process by an unknown mechanism because agents that increase intracellular cyclic AMP accelerate secretion in the three tissues that we have studied (Malamud, 1972; Cooper et al., 1972, 1973). Thus possible sites for the inhibitory action of Ni²⁺ are ATP synthesis, cyclic AMP metabolism and Ca²⁺ uptake and/or action.

In isolated islets and in isolated pituitary slices Ni^{2+} inhibited secretory responses to agents which depend for their effect on extracellular Ca²⁺ [glucose, leucine, tolbutamide and high K⁺ in islets; high K⁺ and prostaglandin E₁ in pituitary slices (Milner & Hales, 1968; Cooper *et al.*, 1972)]. Ni²⁺ blocked secretory responses which may not involve increasing the intracellular cyclic AMP [e.g. glucose in islets (Montague & Cook, 1971; Cooper *et al.*, 1973)] and it also blocked secretory responses associated with increased cyclic AMP, e.g. methylxanthine potentiation in islets (Montague & Cook, 1971; Cooper *et al.*, 1972), adrenaline in parotid (Malamud, 1972) and prostaglandin E₁ in pituitary (Cooper *et al.*, 1972).

These effects of Ni²⁺ do not appear to result from interference with energy metabolism and ATP synthesis. Thus in islets Ni²⁺ did not change the rate of glucose oxidation or islet content of ATP. In pituitary slices, Ni²⁺ inhibited oxidation of glucose and 3-hydroxybutyrate but it did not lower ATP concentration, and the inhibitory effects on oxidation required higher concentrations of Ni²⁺ or longer exposure to Ni²⁺ than was necessary to give inhibitory effects on release. No evidence has been obtained that Ni²⁺ interferes with the metabolism of cyclic AMP: thus in pituitary slices Ni²⁺ did not lower either the basal cyclic AMP concentration or the elevated concentration after exposure to prostaglandin E_1 . This suggests that Ni²⁺ may act by inhibiting some aspect of stimulus-secretion coupling which is fundamental to the action of a number of different types of secretagogue and regardless of their mechanism.

Some evidence for antagonism between Ca^{2+} and Ni^{2+} was obtained with adrenaline stimulation of amylase release, where the Ni^{2+} effect was partially reversed by raising the Ca^{2+} concentration, and with high K⁺ stimulation in the pituitary, where sensitivity to inhibition by Ni^{2+} was increased by lowering extracellular Ca^{2+} concentration. The ability of Ni^{2+} to inhibit stimulation of growth-hormone release by Ba^{2+} could also be interpreted as indirect evidence

In each experiment three or four bovine pituitary slices were incubated at 37° C in 2ml of Krebs bicarbonate medium (containing 2.5mm-glucose, 2.5mm-sodium glutamate and 2.5mm- β -hydroxybutyrate) in which SO₄²⁻ was replaced by Cl⁻. Ba²⁺ and Ni²⁺ were present at the concentration given. After incubation (60min) the tissue was removed from the medium, blotted and weighed and the growth hormone released into the medium was determined by radioimmunoassay. Release from each slice was expressed as a percentage of the mean rate of release by four control (i.e. no Ni²⁺ or Ba²⁺) slices in the same experiment, and the data in the table are mean values ± s.E.M. for several incubations under each condition; the numbers of slices are given in parentheses.

Growth-hormone release (% of control)

Ni ²⁺ concn. (mм)	No Ba ²⁺	2.3 mм-Ba ²⁺	6.9 mм-Ba ²⁺
0	$100 \pm 3(137)$	260 ± 17 (30)	511±52 (29)
0.2	$139\pm24(25)$	$185 \pm 19(17)$	$363 \pm 31(16)$
0.5	$92 \pm 10(27)$	141 ± 28 (28)	153 ± 23 (12)
1.0	$124 \pm 9(36)$	111 ± 23 (4)	

Table 3. Effect of Ni^{2+} on the stimulation of growth-hormone release by p-chloromercuribenzoate at two Ca^{2+} concentrations

In each experiment four slices were incubated in the presence or absence of $20 \,\mu$ M-p-chloromercuribenzoate with the concentrations of Ni²⁺ and Ca²⁺ given in the table. The data given are mean values ± s.E.M. for the rates of release under each condition expressed as a percentage of the rate of release by four control slices from the same pituitary incubated at 2.54 mM-Ca²⁺ in the absence of p-chloromercuribenzoate with the total number of slices under each condition given in parentheses. For other details see the legend to Table 2.

Growth-hormone release

	•			
Ni ²⁺ concn. (тм)	2.54 mм-Ca ²⁺	0.125 mм-Ca ²⁺		
0	844 ± 92 (24)	890±106 (16)		
0.2	$618 \pm 123(8)$	591 ± 76 (8)		
0.4	554 ± 78 (12)			
1.0	307±42 (16)	313±85 (8)		

for antagonism between Ni²⁺ and Ca²⁺. In both the adrenal medulla (Douglas, 1968) and the pancreatic β -cell (Milner & Hales, 1968) the effect of Ba²⁺ is independent of Ca²⁺, and it is assumed that it either replaces Ca²⁺ in the secretory process or displaces Ca²⁺ from intracellular binding sites. However, the stimulation of growth hormone release by p-chloromercuribenzoate is not dependent on extracellular Ca²⁺ (Schofield, 1971). Nevertheless, this stimulation was substantially inhibited by Ni²⁺. This would suggest that Ni²⁺ may have direct effects on the process of exocytosis which are distinct from any effects that it may have on Ca²⁺ uptake or action. The nature of this postulated direct effect of Ni²⁺ is not known, but likely sites are granule migration or membrane fusion and microvillus formation. Electron microscopy may provide further evidence on this point. Ni²⁺ may thus prove to be a useful tool in identifying components of the secretory system and in characterizing their role in the secretory process.

Table 4. Effect of Ni^{2+} on K^+ -stimulated growth-hormone release at different Ca^{2+} concentrations

In each experiment, four slices were incubated in medium in which the K^+ concentration was increased to 72 mM and the Na⁺ concentration correspondingly lowered. The data are presented as in Table 3.

	Grow	ontrol)	
Ni ²⁺ concn. (тм)	10mм-Ca ²⁺	2.5 mм-Ca ²⁺	0.12 mм-Ca ²⁺
0 0.1	437±46 (20)	484±42 (60)	248 ± 32 (16) 142 ± 18 (8)
0.2	316±88 (8)	311±31 (20)	142 ± 10 (0) 131 ± 15 (12)
0.4	207±23 (12)	164 ± 18 (12)	104±12 (12)
1.0		152 ± 10 (12) 162 ± 12 (24)	_

Table 5. Reversibility of the inhibition by Ni^{2+} of K^+ -stimulated growth-hormone release

Slices were incubated in the presence or absence of Ni²⁺ (1 mM) in normal or 72 mM-K⁺ media for 60min (period 1). Slices were transferred to control medium for 30min and then reincubated in normal or high-K⁺ media (period 2). Growth-hormone release during periods 1 and 2 is given as means \pm S.E.M. for twelve slices in three experiments.

Incubation conditions		Growth-hormone release (mg/h per g of wet tissue)		
K ⁺ concn.	Ni ²⁺ (in period 1 only)	Period 1	Period 2	
Normal	_	1.06 ± 0.14	0.71 ± 0.10	
High (72mм)	-	3.75 ± 0.38	3.91 ± 0.31	
Normal	+	1.02 ± 0.11	0.93 ± 0.15	
High (72 mм)	+	1.37 ± 0.16	2.11 ± 0.27	

Table 6. Effect of Ni²⁺ on the oxidation of [U-14C] glucose and the content of ATP in mouse pancreatic islets

For measurement of glucose oxidation, batches of ten islets were incubated for 2h at 37°C in Krebs bicarbonate medium containing $[U^{-14}C]$ glucose (3 mCi/mmol). Rates of glucose oxidation were determined as described in the text. For measurement of islet ATP content batches of six islets were incubated for 2h at 37°C in Krebs bicarbonate medium containing albumin (2mg/ml) and caffeine (5mm). After incubation islets were extracted with HClO₄ and ATP was determined by a luciferase assay. Results are given as means \pm s.E.M. with the numbers of batches of islets in parentheses.

Incubation c	onditions	Chucose evidetion	ATD content	
Glucose concn. (mм)	Ni ²⁺ concn. (mм)	(pmol/h per 10 islets)	(pmol/islet)	
10		190+13 (10)		
10	0.5	$160 \pm 10(10)$		
10	2	$161 \pm 13(10)$		
3.3			9.7±0.6 (5)	
	2		11.3 ± 1.3 (5)	
16.7	—	—	10.6 ± 1.8 (5)	
	2		14.3 ± 1.4 (5)	

Table 7. Effects of Ni²⁺ on metabolic parameters in pituitary slices

For measurement of oxidation rates, pituitary slices were either (a) incubated for 60min at 37° C in Krebs bicarbonate medium containing the radioactive substrate and Ni²⁺ as described in the text or (b) preincubated for 90min at 37° C with the non-radioactive substrate and Ni²⁺ and then incubated for a further 60min at 37° C with radioactive substrate and Ni²⁺. For other details see the text. Data represent mean±s.E.M. for the numbers of observations given in parentheses.

- ---

	N1 ²⁺ concn. (mm)				
	õ	0.5	1.0	2.0	No. of observations
(a)	2.45 ± 0.34	2.42 ± 0.36		1.27 ± 0.08	(8)
(b)	0.81 ± 0.07	0.49 ± 0.04		0.36 ± 0.04	à
(a)	2.16 ± 0.25	2.49 ± 0.16		1.84 ± 0.17	(8)
(b)	1.28 ± 0.20	0.87 ± 0.14		0.42 ± 0.04	(8)
	0.77 ± 0.03	_	0.82 ± 0.06		(8)
	0.04 ± 0.01		0.05 ± 0.01		(8)
	0.17 ± 0.04	_	0.24 ± 0.05		(8)
	1.57 ± 0.22		1.34 ± 0.12	—	(8)
	(a) (b) (a) (b)	$\begin{array}{c} & & \\ & & \\ 0 \\ (a) & & 2.45 \pm 0.34 \\ (b) & & 0.81 \pm 0.07 \\ (a) & & 2.16 \pm 0.25 \\ (b) & & 1.28 \pm 0.20 \\ & & 0.77 \pm 0.03 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Vol. 140

We thank Mrs. Rawson for expert technical assistance. The cost of these investigations was met in part by the British Diabetic Association, the Medical Research Council and the British Insulin Manufacturers.

References

- Amsterdam, A., Ohad, I. & Schramm, M. (1969) J. Cell Biol. 41, 753
- Ashcroft, S. J. H., Weerasinghe, L. C. C. & Randle, P. J. (1973) *Biochem. J.* 132, 223–231
- Babad, H., Ben-Zui, R., Bdolah, A. & Schramm, M. (1967) Eur. J. Biochem. 1, 96–101
- Benoit, P. R. & Mambrini, J. (1970) J. Physiol. 210 681-695
- Bernfeld, P. (1955) Methods Enzymol. 1, 149-158
- Coll-Garcia, E. & Gill, J. R. (1969) Diabetologia 5, 61-66
- Cooper, R. H., McPherson, M. & Schofield, J. G. (1972) Biochem. J. 127, 143-154
- Cooper, R. H., Ashcroft, S. J. H. & Randle, P. J. (1973) Biochem. J. 134, 599-605
- Douglas, W. W. (1968) Brit. J. Pharmacol. 34, 451-474
- Farquhar, M. (1961) Trans. N.Y. Acad. Sci. 23, 346-351
- Kaufman, R. & Fleckenstein, A. (1965) Pflügers Arch. Gesamte Physiol. Menschen Tiere 282, 290–297

- Kleinfeld, M. & Stein, E. (1968) Amer. J. Physiol. 215, 593-599
- Krebs, H. A. & Henseleit, K. (1932) Hoppe-Seyler's Z. Physiol. Chem. 210, 33-66.
- La Bella, F., Dular, R., Vivian, S. & Queen, G. (1973) Biochem. Biophys. Res. Commun. 52, 786-791
- Lacy, P. E. (1961) Amer. J. Med. 31, 851-859
- Malamud, D. (1972) Biochim. Biophys. Acta 279, 373-376
- McPherson, M. & Schofield, J. G. (1972) FEBS Lett. 24, 45-48
- Meiri, U. & Rahaminoff, R. (1972) Science 176, 308-309
- Milner, R. D. G. & Hales, C. N. (1968) Biochim. Biophys. Acta 150, 165-167
- Montague, W. & Cook, J. R. (1971) Biochem. J. 122, 115-120
- Robberlecht, P. & Christophe, J. (1971) Amer. J. Physiol. 220, 911-917
- Schofield, J. G. (1967) Biochem. J. 103, 331-341
- Schofield, J. G. (1971) Biochim. Biophys. Acta 252, 516-525
- Schofield, J. G. & Cole, E. H. (1971) Mem. Soc. Endocrinol. 19, 185–199
- Schofield, J. G. & Stead, M. (1971) FEBS Lett. 13, 149-151
- Selinger, Z. & Naim, E. (1970) Biochim. Biophys. Acta 206, 335–337