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Abstract: Security is one of the increasingly significant issues given advancements in technology
that harness data from multiple devices such as the internet of medical devices. While protecting
data from unauthorized user access, several techniques are used including fingerprints, passwords,
and others. One of the techniques that has attracted much attention is the use of human features,
which has proven to be most effective because of the difficulties in impersonating human-related
features. An example of a human-related attribute includes the electrical signal generated from the
heart, mostly referred to as an Electrocardiogram (ECG) signal. The methods to extract features from
ECG signals are time domain-based; however, the challenge with relying only on the time-domain
or frequency-domain method is the inability to capture the intra-leading relationship of Variational
Mode Decomposition signals. In this research, fusing multiple domains ECG feature and adaptive
Variational Mode Decomposition approaches are utilized to mitigate the challenge of losing the
intra-leading correlations of mode decompositions, which might reduce the robustness of encryption
algorithms. The features extracted using the reconstructed signal have a mean (0.0004), standard
deviation (0.0391), skewness (0.1562), and kurtosis (1.2205). Among the lightweight encryption
methods considered, Chacha20 has a total execution time of 27ps. The study proposes a lightweight
encryption technique based on the fused vector representation of extracted features to provide an
encryption scheme in addition to a bio-inspired key generation technique for data encryption.

Keywords: time-domain feature extraction; lightweight encryption; adaptive variational mode
decomposition; ECG feature extraction; bio-inspired key generation

1. Introduction

Feature extraction is one of the topical issues in medical diagnosing. In order to have
a proper diagnosis, one needs to understand the nature of feature extraction and its role
in determining a diagnosis. The typical features used in a medical diagnosis include an
Electroencephalogram or Electrocardiogram; while many techniques have been applied to
feature extraction in the context of an Electrocardiogram (ECG), the effectiveness of these
techniques has constantly been enhanced. Research has proven that using human features
to create an encryption algorithm provides a much stronger approach notwithstanding
the anticipated challenge it may have. Nonetheless, human biometric information are a
promising alternative for cryptographic key generation to the traditional use of passwords
as cryptographic keys. Cryptographic keys generated from biometrics are difficult to forge
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and thus expand the frontiers of research into the use of different biometric key generation
approaches. Keys can be extracted from biometric features, in raw ECG signals, which
can be reliable despite the noise in ECG signals or abnormalities [1]. ECG-based biometric
systems are much more reliable than other present biometric systems, e.g., fingerprints [2].
Furthermore, the widespread adoption of ECG technology in some clinical or hospital
facilities and the ease of deploying ECG sensors in consumer settings in wearable devices [3]
makes ECG signal encryption more imperative. Security-related application domains,
when equipped with ECG signal encryption, provide many strong features to secure data
on devices.

Currently, most Internet of Things (IoT) devices are championing the use of human
features in encrypting data from medical devices. These IoT devices used in the context
of medical diagnosing are so small that using traditional encryption algorithms on these
devices may require more energy for computation [4]. Though most consider the use
of a cloud computing framework to provide the needed encryption, it also requires that
devices are constantly connected to the internet for data encryption [5]. The efficiency
and security for privacy are often very distinct leading to the proposition of an image
privacy protection scheme that ensures high-quality reconstruction using the discrete
cosine transform compression and nonlinear dynamics [6]. When IoT devices use ECG
signals for feature extraction, then the amplitude and intervals are used, which are further
processed [7]. Here, it is the case that IoT devices are used to capture and monitor ECG
features. It is very common these days to have wearable ECG devices attached to the
human skin to continuously monitor ECG signals. This development demonstrates how
IoT devices have evolved. Again, it is common to have IoT devices and smart watches
equipped with ECG sensors to monitor a person’s heartbeat. The integration of IoT in these
areas suggests easy-to-collect ECG features; however, the challenge is the computation
algorithm to ensure encryption using ECG features. Therefore, crafting any algorithm based
on an ECG signal should be very lightweight. One of the key phases in the integration of
IoT with ECG is the security of data being transmitted.

Feature extraction in the context of an ECG requires the identification and analysis
of features in ECG data. When dealing with ECG feature extraction, the amplitude and
intervals are very time-dependent. Thus, time-domain feature extraction may have to
deal with the intra-leading relationship within the sequence of multiple ECG signals
from the same person. Mostly, statistical and machine learning techniques play a leading
role in analyzing these intra-leading correlations and thus model accuracy in analyzing
these is imperative. Again, these intra-leading relationships are key for a comprehensive
understanding of the heart’s electrical activity and for making accurate diagnoses based on
ECG data. One will expect that while these electrical activities are happening, the approach
to encrypting these data should be robust, taking into account the intra-leading correlations.
This research seeks to develop a lightweight encryption algorithm that considers these intra-
leading relationships using a time-domain feature, frequency-time domain, and adaptive
variational model decomposition-based technique. Existing cryptographic schemes are
complex, such that the key generation consumes a large computation time and a large
amount of energy [8]; thus, encryption schemes need a suitable lightweight approach
to encryption. Thus, this study contributes to the introduction bio-inspired algorithm
based on the Kestrel-based search algorithm as it randomizes searching with its half-life
component, which adds layers of randomization for a more secure key generation for
encryption. The advantage of the Kestrel-based approach is the ease of formulation, which
does not add more computational cost in the search for an optimal key.

The remainder section is organized as follows: Section 2 (literature review), Section 3
(methods and materials), Section 4 (results), Section 5 (discussion), and the conclusion in
Section 6.
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2. Literature Review

This section focused on reviewing articles on multiple domain feature extraction
techniques and also lightweight encryption mechanisms. The review is necessary to know
what has been performed and the gap that needs to be filled through our research. These
sections are aligned with the research topic, thus helping the crystallization of articles along
the thematic domains.

2.1. Model-Based and Multi-Fusion Domain Bio-Signals Techniques

ECG signals are electrical impulses generated by the heart’s activity, and these signals
are recorded in series of waves (P, Q, R, S, T), representing the varied phases of the electrical
activities of the heart’s cycle from its starts (P wave) to the end of the sequence (T wave).
The intermediate waves are the time to transition from one wave to another wave. Thus,
the regular and timing features are very relevant in diagnosing any heart-related condition.
In this regard, the ECG is very crucial in diagnosing heart-related issues. To capture these
electrical activities, electrodes are placed on the skin of an individual and then the waves
are monitored, which helps to differentiate people based on these waves [2].

The time-domain approach quantifies changes in ECG signal over time. Among the
time domain features include average heart rate variations, R-R intervals, and Shannon
entropy [9,10].

Zhao, Li [11] segmented and extracted ECG features into a time-domain matrix.
Then, the periodic signal was transformed into a wavelet to output the frequency domain
features in the matrix structure. Furthermore, a nature-inspired algorithm such as particle
swarm optimization (PSO) was utilized to fine-tune parameters to optimize the extraction
of ECG features. To address the accuracy of ECG feature identification from different
domains, such as time, frequency, or time—frequency; the multi-feature fusion method was
proposed, which combined Variational Mode Decomposition (VMD) and the Convolutional
Neural Network (CNN) [12]. On one hand, the VMD technique was used for feature
decomposition while the CNN was used to extract feature information from the ECG signal.
Furthermore, the features extracted were weighted and fused for ECG signal recognition.
Machine learning models have been leveraged for ECG feature extraction to help in cardiac
evaluation and treatment decisions [13]. It has been indicated that ECG signals are time
domain-reliant, leading to the conversion to spectrogram signals using a Short-Time Fourier
Transform (STFT) [14]. Thus, different signals of heartbeat were segregated into a deep
learning model for training. While using an open dataset, the six best P-QRS-T fragments
were extracted based on priority and the normalization of positions using the non-fiducial
symlets and non-fiducial daubechies [15]. Unfortunately, the accurate identification of
fiducial points is a very challenging task in ECG signals if not well addressed: it can degrade
the performance of the ECG-based biometrics [16]. This leads to the proposition of a
framework based on ECG signal for user authentication, which does not need the detection
of fiducial points. This framework utilized data-adaptive Variational Model Decomposition
for noise removal and feature extraction from the ECG signal. Pradhan, Neelappu [17]
suggested that mode decomposition approaches (e.g., empirical mode decomposition) are
effective in signal analysis.

Physiological signals can be linked to emotions because both provide unconscious
responses, suggesting that ECG features can help recognize people’s emotions, which can
influence their physiological responses at any given time [18]. The ubiquity of wearable
ECG devices helps to recognize people’s emotions; however, there are high chances of
ECG signal contamination, which is caused by motion artifacts, thus leading to a decline
in distinguishing ECG features [19]. The feature extraction algorithm for coronary heart
disease detection using photoplethysmography used three algorithms that are respiratory
rate (RR) interval, HRV Features, and Time Domain Features [20]. A photoplethysmograph
(PPG) is a biomedical signal capable of detecting blood volume changes in the microvas-
cular bed of tissues [21]. Myocardial infarction, also known as heart attack, was detected
using 21 time-domain features that are extracted from 12-lead ECG signals [22]. Gender



Sensors 2024, 24, 7926

4of 24

classification based on ECG signals has also been proposed using time and frequency
domain features [23]. The Time Multiplexed Fast Fourier Transform (TMFFT) approach
was used to extract features for categorization into the frequency domain for Arrhythmia
classification [24]. An Electrocardiogram (ECG) is broadly utilized for monitoring and
diagnosing cardiac arrhythmia, which is an irregularity of the heartbeat that can potentially
cause difficulties that create an instantaneous life risk [25]. In this regard, the Selective
Opposition (5O)-based Artificial Rabbits Optimization (SOARO) strategy was applied to
extract different features on time, time—frequency, entropy, and nonlinearity features of
ECG [25]. In the context of the Autism Spectrum Disorders screening method, an acoustic
method was employed in speech processing, where the acoustic features are constructed
based on time—frequency domain independent component analysis (TF-ICA). In this ap-
proach, three methods used are, firstly extracting and combining the rows of the unmixing
matrix of each frequency point to build the feature vector; secondly, entailing the separation
of results on each frequency point as a time—frequency feature; and lastly, entailing the ex-
traction of time-domain features from the outputs of TE-ICA [26]. When time-domain (TD)
and frequency-time-domain (TFD) features are used together in a movement classification,
it improves efficiency [27]. The Singh and Krishnan [28] approach leads to the extraction of
the time domain, frequency domain, and time—frequency domain features in addition to
the use of decomposition and sparse domain for ECG signal processing.

In the context of person identification, different EEG features like time domain, fre-
quency domain, and time-frequency domain features were extracted and fused, in which a
supervised learning approach was applied and evaluated in terms of accuracy rate, speci-
ficity, sensitivity, and F-score, and it was determined that the fusing method is efficient for
user authentication [29].

Deep learning models such as the spatiotemporal deep learning technique have been
applied to learn time-domain features, which are extracted into a matrix structure [30]. Fur-
thermore, Khushaba, Phinyomark [31] proposed a simple time-domain feature extraction
technique that leverages the capability of waveform length, zero crossings, and root mean
squared to capture the relation between any number of channels.

In some instances, multiple domain feature extraction approaches were used combined
with ensemble machine learning methods for classification and prediction [32]. Wavelet
packet transform (WPT) and Short-Timed Fourier Transform (STFT) approaches were used
to extract features from EEG signals. It has been indicated that using a single feature does
not yield better performance compared to the fusion of multiple features [33]. In these
regards, model-based approaches have been applied for both ECG and EEG feature extrac-
tion, and examples of such models include CNN and supervised learning. Again, fusing
multiple different ECG features can provide an effective way to develop an encryption
algorithm for the Internet of Medical Things. The feature normalization approach proposed
used a binary classifier based on a support vector machine to classify features for high
classification accuracy [34].

2.2. Lightweight Encryption Mechanisms

The unique properties of ECGs described in the previous section demonstrate the
reason why it is preferred for user identification rather than the use of more traditional meth-
ods, such as passwords, etc. [35]. This section mainly focuses on the encryption mechanism.

Hash function and DNA cryptography were used to implement the Triple Data En-
cryption Standard (Triple-DES) that combines Hash function and DNA cryptography to
encrypt different bio-signals into the DNA format. Mathivanan, Ganesh [36] proposed a
system to convert ECG signals into QR codes. Additionally, Karthikeyan and Martin Leo
Manickam [37] introduced a secret key generation algorithm extracted from the parameters
of the ECG signal to allow device authentication. A reversible bio-signal steganography
method was applied using the Extended Binary Golay Code based on the error correction
method [38].
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A wavelet-based 128-bit key generator using the uniqueness and quasi-stationary
biometric behavior of ECG signals of individuals was proposed: there were two stages: key
generator on enroll and verify and another on key determination with an algorithm [39].
Many encryption algorithms that rely on the key size of the 256-bit key have also been
proposed, which include the Chacha20 encryption scheme [40]. This scheme encrypts data
a byte at a time leading to the generation of stream cipher for data encryption [41].

Heartbeat-based Random Binary Sequences (RBSs) that generate 128-bit RBSs using
inter-pulse intervals (IPIs) of heartbeats incorporate a finite monotonic increasing sequence
generation mechanism of IPIs and a cyclic block encoding procedure that extracts a high
number of entropic bits from each IPI [42].

The generation of a security key using the R-R interval feature of ECG signals as an
input for verification and identification occurs by generating a security key correspond-
ing to an individual. The system comprises two independent stages: registration and
authentication. The biometric security key, created in the registration stage, was generated
using Hamming Distance and the extended version of the triple DES algorithm. Biometric
security key generation, verification, authentication, and performance of the biometric
security key have been assessed using the R-R interval of ECG signals taken from the
standard MIT-BIH database [43]. The simulation results for 64-bit, 128-bit, and 256-bit
biometric security keys indicate that the performance of the proposed biometric security
key is reasonably good for a security system.

An energy-efficient and computationally less complex authentication technique for
BSN, which is a biometric-based algorithm, is proposed, which utilizes Heart Rate Vari-
ability (HRV) for a simple key generation process. The proposed algorithm is compared
with three data authentication techniques, namely Physiological Signal Key Agreement
(PSKA), Data Encryption Standard (DES), and Rivest Shamir Adleman (RSA). The results
suggest that the proposed algorithm is quite efficient in terms of transmission time utiliza-
tion, average remaining energy, and total power consumption [8]. The RSA encryption
algorithm is utilized to encrypt an ECG signal; however, the RSA algorithm only performs
one operation on encrypted data, which can either be addition or multiplication [44].

Generation of the fly without requiring the key pre-distribution solutions approach
was proposed involving two different Interpulse Interval (IPI) features of ECG-based
cryptographic key generation. The first approach is realized by using a pseudo-random
number and consecutive IPI sequences. The second approach is realized by utilizing the
Advanced Encryption Standard (AES) algorithm and IPI as the seed generator for the AES
algorithm [45].

Due to intra-individual variability, bio-crypto keys (bio-keys), in the context of wear-
able devices, based on Electrocardiograms (ECGs), were proposed for flexibility and con-
venience to use bio-key using ECGs. This approach minimizes biosignal variability using
normalization, clustering-based binarization, and the fuzzy extractor, enabling the genera-
tion of personalized seeds and offering ease of use with the accuracy of authentication [46].

Moosavi, Nigussie [45] combined two different bio-signals, such as ECG and EMG, to
generate keys in cryptographic systems by initially using a “pseudo-random number” and
consecutive IPI sequences, then followed by the use of an “Advanced Encryption Standard”
(AES) algorithm and IPI as a seed generator for the AES algorithm. The advantage of
this approach is that it avoids pre-key distribution and ensures ease of key generation.
Karthikeyan and Manickam [47] proposed an authentication model for a low resource-
constrained architecture where a secret key is generated from the ECG signal parameter
and combined with the Secure Force (SF) algorithm in a wireless network.

The generation of a persistent key from an ECG signal to ensure symmetric encryption
of data in a time-invariant key has been considered in [48]. Similarly, a time-invariant
cryptographic key generation mechanism based on electroencephalogram (EEG) signals
has also been proposed [49]. A key generation approach that uses a wavelet-based 128-bit
key generator from ECG signals was proposed, which comprises two independent steps,
that is, enrollment and verification generation [39].
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The ECG signal is distinct to an individual such that it is very difficult to emulate;
therefore, securing these features of ECG so that only an authenticated person can assess
these signals for diagnosis purposes is imperative [50]. Furthermore, the processing of
the ECG signal was achieved with the QRS complex method, which shows the heart rates
(HR) that can be visually seen and traced; thus, it is easy to encrypt the visual part of
ECG tracing.

ECG signals are used for identification because it varies between individuals [51].
From a diagnostic perspective, individuals who have a background of heart-related issues
and have a long record of ECG require a large amount of storage space [52]. Pan and
Tompkin’s algorithm helps in the detection of ECG signal [52]. In these regards, selecting
the optimal key parameter is significant for an encryption algorithm and this optimization
was achieved using the glow-worm swarm optimization method for encryption [5]. Thus,
this suggests that a nature-inspired optimization algorithm can play a role in key generation
for an encryption algorithm. ECG encryption technique relies on DNA layers and AES to
reduce the encryption execution time and improve security for IoT health applications [53].
Methods to extract ECG features include the Lyapunov exponent’s spectrum in which the
extracted features are used as a secret key to encrypt pictures and text messages [54].

3. Materials and Methods

The method and material section outlines the stages to preprocess ECG signals, extract
features, normalize features, generate the feature vector, conduct a statistical analysis on the
feature vector including zero crossing, and then save the final feature vector. Developing
an encryption algorithm using ECG (Electrocardiogram) signals is an intriguing idea that
combines elements of biometric security with cryptography. ECG signals are unique to
individuals, which means they can serve as a basis for personalized encryption. The
following sub-sections detail how the study approaches this.

3.1. Loading of the ECG Signal Dataset

The ECG signal is loaded from a file or data source. Each recording has a 20-s single-
lead ECG signal from LIMB II, with a sampling rate of 500 Hz. The dataset contains 89 ECG
recordings, including 25 from healthy individuals in a lab setting, 20 from the MIT-BIH
Arrhythmia Database (MITDB), and 44 from cardiac patients in a clinical environment.
These data are stored in the “data. mat” file and can be read using Python 3.13 with the
Scipy package. The package is organized as a dictionary, with corresponding labels and
original signal data, each containing 10,000 data points. The input to the model is the BIH
Arrhythmia Database (MITDB).

3.2. Preprocess ECG Signal

The raw ECG signal is cleaned from noise and normalized for further processing.
The band-pass filter approach is used to remove noise, which is expressed as a frequency
response H(f) (see Equation (1)). The band-pass filter allows only a specific range of
frequencies to pass while attenuating frequencies outside this range [0, 1].

0, otherwise

where f is frequency, f; is the lower cutoff frequency, and the upper cutoff frequency is fi;
therefore, Equation (2) is as follows:

h(t) = hpp(t) — hup(t) 2)

where hip p(t) and hyp(t) represent the impulse responses of the low-pass and high-pass
filters, respectively. To improve the model’s ability to generalize, the recordings were
normalized and scaled to a common range (e.g., 0 to 1) using min—max scaling expressed
in Equation (3), as follows:
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E _ F—F min
norm —

F max — F, min

where F,;, and Fy;x are the min and max feature normalization in the range [0, 1].

3.3. ECG Extract Features

The adaptive variational model decomposition (adaptive VMD) approach is used to
decompose the ECG signal and further remove noise. Thus, given the ECG signal x(), the
decomposition is expressed in Equation (4), as follows:

x(t) = Y0 Sit) +n(t) (4)

where x(t) is the observed signal, S;(t) is ith signal, n(t) is residual noise, and M is the
total number of signals. Residual noise in the ECG signal and noise after ECG signal
reconstruction can impact the feature extraction with the adaptive VMD; thus, functions
expressed in Equations (5)—(8) were employed to address these noises.
The variational mode defines the likelihood function Frn, which is expressed in
Equation (5), as follows:
Fn = p(x]s,n) 6)

where the prior distribution probability p(s, n) represents the likelihood of any other noise
in the ECG signal. Thus, the objective function of the variational mode is expressed in
Equation (6) as follows:

Obj(s, Tl) = Rerror + R (6)

where Rerror is the reconstruction error and R is the regularization, which is the smoothness
of the sparsity of noise. Thus, in Equations (7) and (8),

Rerror = ||x(t) — Zf\il Si(t) +n(t)[[2 @)

R=Y"" Allsi))llp+vIn(t)llq ®)

where A; and vy are the regularization parameters and ||.||p and ||.||q are the norms. The
model parameters are adjusted based on the input signal at the decomposition stage at
a learning rate based on the observed data; thus, s;) and n(t) parameters are iteratively
updated to reduce any possible impact of noise and the parameters were achieved using
Equations (9) and (10).

(k+1) _ (k) _, 9(Obj)

Si = Si — T]TSZ (9)
5(0bj)
k+1 _ k.
T =n"—y 5 (10)

where 77 and k are the learning rate and iteration, respectively.

Though mode decomposition aids in feature extraction, the study went a step further
to extract features using the R-peak, which aids in computing the Heart Rate Variability
(HRV), RR interval (Time between successive R-wave peaks), and wave characteristics
Q, S, and T in terms of amplitude and duration. The approach to compute the HRV
is based on the standard deviation of the R-R intervals, which is measured using the
Standard Deviation of NN intervals-SDNN). Also, by using the Root Mean Square of
Successive Differences (RMSSD), the continual differences in the interval are computed.
HRYV metrics capture the SDNN and RMSSD of the extracted features, which are expressed
using Equations (11) and (12):

sdnn = \/Nl_lzll,\]l(RRi — mean(RR))? (11)
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rmssd = \/N — 1 RRH_l — mean(RR;))? (12)

Three types of features are imperative in feature extraction, namely, time-domain,
frequency-domain, and time—frequency domain. The time-domain feature f(;,.) like the
mean, standard deviation, root mean square (RMS), skewness, and kurtosis from each
segment were computed.

The discrete Fourier transform (DFT) signal is used to compute the spectrum of finite
duration signal expressed in Equation (13) by

X[k = Yo x[n].e TR (13)
where X[k] and N are the DFT coefficient at index k and total number of samples, respec-
tively. x[n] is the discrete time-domain signal. Then, to recover the original discrete signal,
the Inverse Discrete Fourier Transform is expressed in Equation (14) by

1 «—N-1 i27kn
N k0 X[k].e/ "N (14)

x[n] =
where x[n] and X[k] are the n-th time domain in a sample and the k-th frequency domain
components, respectively. N represents the number of points in the sequence and j is the
imaginary units.

Furthermore, the time—frequency domain features f(;jefreq), which addresses the
changes in frequency over time, was computed using a Short-Time Fourier Transform
(STFT) that maps subsequent segments of ECG signal into dimensions of time and frequency
expressed in Equation (15), as follows:

[o0] .,
X(tf) = [ x(vw(r— e (15)
where w(T — t) is the window function positioned at .

Finally, the fusion of multiple domains ff,s., is expressed to concatenate all the
different domain features into a single vector representation that can be expressed in
Equation (16) as:

fifreq) \f <timefreq>} (16)

where f| ¢4 1s the fused vector, f(;,) is the vector of the time-domain feature, f(f,) is the
frequency-domain feature, and f(;yuefreq) is the vector of time—frequency domain features.

f(fused) = {f(time)

3.4. Statistical Analysis

Zero-crossing rate (ZCR) calculates the number of times the preprocessed signal
crosses zero within a time t window. ZCR for the continuous-time signal is expressed in

Equation (17) as
dS( ( )
f
ZCR = T/ ‘

where Sy represents the sign function of x(¢) between (+1, 0, —1) in Equation (18), as follows:

dt (17)

+1, for x(t) >
x(t) = —1 for x(t) (18)
0, if x(t) =

3.5. Bio-Inspired Key Generation

The bio-inspired method was inspired by the concept of the half-life of a radioactive
substance, which was considered in the formulation of the kestrel-based search algo-
rithm [55]. The half-life was expressed as having N unstable substances that decay at time
t is expressed in Equation (19):
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dN
- 1
at YN, (19)
Which can be simplified in Equations (20)—(22), as follows:
Vi =706 ¥ (20)
_ In0.5 (21)
—t
2
@ > 1, trail is new
ifp — (22)
0, otherwise

where ¢ is the decay constant and t%2 is the period of half-life representing the required
time for 7; to become half of ,. < is the light intensity variation generated at random
intervals between [0, 1]. The bio-inspired method has been applied in several problem
domains and the selection of the parameters in the method was demonstrated through an
experiment with promising performance results [55-57]. Among the parameters include
the flight (0.8) and perch (0.2) modes. The initial population in the bio-inspired algorithm
is generated using Equation (23), as follows:

Yt = [71/ Y2,---rYns Rﬂ?’ldBlt()} (23)

Randbit() represents a random bit generator to ensure randomization and reduce the
chance of unauthorized breaking of the encryption key. A unique key is generated from
the vectorized fused feature and hashed. Afterward, the bio-inspired algorithm final key is
generated using the following Equation (24):

Fkey = [UniqueFeatureKey, y¢| (24)

UniqueFeatureKey = (F, F, ... F,) (25)

where F; is the fused multi-domain vectorized ECG feature. The randomness of the
generated key with Shannon entropy and Min-entropy for the bio-key generated on the ECG
signal of the subject were evaluated to assess randomness through entropy in Equation (26):

Shannonentropy = —Zi Pilog, P; (26)

Minentropy = —log, () (27)

The final key Fkey is used with Chacha20 for encrypting ECG bio-signals. The en-
cryption scheme is mathematically modeled such that it takes the plaintext P; and applies
the XOR on the keystream k to output the cypher text C; at each position i as expressed by
Equation (28):

C=P®K; (28)

Furthermore, the decryption scheme is then expressed by Equation (29), as follows:

where P; represents the plaintext and C; is the cipher text at the ith position. The keystreams
k are extracted from the fused vector representation. Figure 1 below illustrates the encryp-
tion scheme.
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” @ Stream Cipher @ N

Key Nonce

Keystream/
\ Plaintext Data

Ciphertext

Figure 1. Diagram of the encryption scheme.

3.6. Algorithm to Implement Lightweight Encryption

The algorithm to implement the lightweight encryption steps is expressed with
Algorithms 1-3. Algorithm 1 indicates the steps in ECG signal processing. In this al-
gorithm, raw ECG signal is inputted, and then different mathematical computations are
performed to output the pre-processed ECG signal.

Algorithm 1: ECG signal Preprocessing

Input: raw ECG signal, F,,,, Fax,
Compute: H(f) using Equation (1)
Compute: h(t) using Equation (2)
Compute: F;,, using Equation (3)
Output: Preprocessed ECG signal

G L

Algorithm 2 presents the steps to implement the feature extraction.

Algorithm 2: Feature Extraction

//data-adaptive variational model decomposition

Compute: x(t) using Equation (4)

Compute: Obj(s, n) using Equation (6) to compute the objective function and likelihood
of error in mode reconstruction

Compute: sdnn, rmssd

Compute: discrete Fourier transform (DFT) signal using Equation (11)

Compute: X(, f) using Equation (15)

Compute: f(f,,.q4) using Equation (16)

Compute: ZCR using Equation (17)

Output: fused feature vector

PN AE® N

Algorithm 3 presents a fused feature vector and the bio-inspired key generation steps.
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Algorithm 3: Fused feature vector and bio-inspired key generation

Initialize population: F;

Generate Unique key for the feature vector in the string representation
Generate: random key using Half-life

Generate: Fkey

Output: Fkey

Apply: Fkey with the Chacha20 encryption scheme as expressed by
Equations (28) and (29).

S UL

4. Results

This section presents the experimental results. Figure 2 shows the frequency of the
original ECG data. The highest amplitude is a little above 0.3 and the lowest is below the
—0.3 amplitude.

Raw Signal

0.3+

e o
" ra
L

Amplitude
g
o
'

0117

. + " + . -
o 2000 4000 6000 2000 10000
Sample

Figure 2. Raw signal.

Figure 3 shows the extracted ECG signal using the adaptive VMD method in which
the amplitude signal was 0.90, such as the peak for the 10,000 samples.

Extracted ECG Signal (vMD)

0 2000 4000 6000 8000 loocoo
Sample

Figure 3. ECG signal extraction using adaptive VMD.

Figure 4 shows the adaptive VMD consisting of three stages. The first phase of the de-
composition initialized the noise tolerance value (0.0), in which the mode five decomposition
is created to enable a view of the behavior of the frequencies. The bandwidth constraint of
2000 was set within a tolerant convergence criterion of 1 x 10~7. The second stage is the
visualization of the mode decomposition in terms of the original signal and the five-mode
decomposition as shown in Figure 4.



Sensors 2024, 24, 7926

12 of 24

Original signal

Soo
Razha
G
.

L A A e B

20‘00 40;30 60‘00
Mode 1

0.25
0.00

TN AN A PANAA VAN AN NN AN A A A AN

2000 4000 6000
Mode 2

T~ AR

2000 4000 6000
Mode 3

0.05 ]
-0.05

e e, . A . S, . S, . s ]

2000 4000 6000
Mode 4

0.05
Q.00 :|

i 0 e e 0 e 0 . 5 0 0, 0 . e

a

2000 4000 6000
Mode 5

0.05
0.00 <|

HHHHH

1]

2000 4000 HO00

Figure 4. Five adaptive Variational Mode Decomposition (VMD).

Finally, Figure 5 shows the mode reconstruction where all noise has been removed
from the signal in preparation for feature extraction. The highest amplitude was a little

above the 0.15 amplitude and the lowest amplitude was below —0.10.

Reconstructed Signal

0,15 4

0.10 4

0.05 4

0.00 4

amplitude

—0.05 1

-0.10

Figure 5. Signal reconstruction with adaptive VMD.

' 1 '
2000 4000 G000
Sample

B000

10000

Figure 6 depicts the power spectral density of the adaptive VMD models where mode

1 (in Figure 5) happens to have the highest peak of (0.0006) and mode 2 (0.0001).

Power Spectral Density of VMD Modes

0.0006 Made 1
— Mode 2
—— Mode 3
— Mode 4
0.0005 S
>
2 0.0004
2
o
a
T
2 0.0003
B
=3
[
]
z
& 0.0002
0.0001 r]|
0.0000 U(\"
100 200 300 400 500
Frequency (Hz)

Figure 6. Power spectral density of adaptive Variational Mode Decomposition (VMD).
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Figure 7 shows each adaptive VMD mode for the reconstructed signal. The mode
shows the decomposition of the ECG signal to help understand the frequencies in each
segment of the mode.
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PSD of Mode 3
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Frequency (Hz)
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Figure 7. Cont.
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Figure 7. Power spectral density of the adaptive VMD with five modes.

Figure 8 shows the Empirical Mode Decomposition method (EMD) as another ap-
proach to recovering the ECG signal in which the first Intrinsic Mode Function (IMF) of the
ECG signal is identified as it recognizes the highest frequency. IMF varies in amplitude
and frequency, where the high amplitude is approximating to 0.04.
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Extracted ECG Signal (EMD}

o 2000 4000 6000 8000 10000
Ssample

Figure 8. Extracted ECG signal with EMD.

Using the EMD approach, the first IMF becomes the recovered signal, which is depicted
in Figure 9.

Recovered ECG Signal (EMD)

———

0 2000 4000 6000 8000 10000
Sample

Figure 9. Recovered ECG signal (EMD).

Figure 10 shows the reconstructed signal with the time-domain features extracted
showing the mean (0.0004), standard deviation (0.0395), skewness (0.2989), and
kurtosis (1.4022).

Reconstructed Signal with Extracted Features

Mean: 0.0004
Std:)0.0395
Skewness: 0.2980

Kurtpsis:|1.4022
0.10

0.05 f |

amplitude
o
o
a
L

-0.10

il 1 ' 1 1 v
o 2000 4000 G000 a000 10000
Sample

Figure 10. Reconstructed signal with extracted features.

Figure 11 shows the frequency domain feature extractions using the continuous Fourier
transform. The magnitude spectrum was computed and the features captured are the
dominant frequency (14.3000 Hz), spectral centroid (—0.0030), spectral spread (80.3951),
spectral entropy (10.1530), and spectral Rolloff (—14.0000). In Figure 12, the Inverse Discrete
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Fourier Transform (IDFT) is presented as it converts the frequency-domain features back to
the corresponding time domain; such conversion confirms Figures 10 and 11.

Dominant Frequency: 14.368@ Hz
Spectral Centroid: -8. 8829
Spectral Spread: 79.6748
Spectral Entropy: 18,2481
Spectral Rolloff: -14. 3868

Magnitude Spectrum

T

60

50

Magnitude
-
3

w
&

20

10

. v ) , !
—400 -200 0 200 400
Frequency (Hz)

Figure 11. Frequency domain features extracted from the reconstructed signal using a continuous
Fourier transform.

Recovered Time-Domain Signal (IDFT)
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Figure 12. Time domain signal.

Figure 13 shows the STFT magnitude spectrogram showing the actual signals. It
highlights the time—frequency property for an accurate representation of the signal. Colors
represent the amplitude frequency at each point in time. Dark portions are regions with
one signal. Through the distribution, the patterns can be visualized and timed in seconds
(s) displayed.

STFT Magnitude Spectrogram
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Figure 13. STFT Magnitude spectrogram visualization.



Sensors 2024, 24, 7926

17 of 24

Figure 14 shows the frequency domain in terms of the mean and spectral entropy
over time. The mean frequency describes the central frequency of the power spectrum

concentration.
Mean Frequency over Time
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Figure 14. Frequency domain.

Figure 15 shows the difference between reconstructed and recovered signals. The MSE
and RMSE are the statistical methods used to find the differences, which demonstrates that
the means were both 0.00, suggesting that there is no variation between the reconstructed
and the recovered signals. Figure 16 shows further analysis of the reconstructed and

recovered signal, which further demonstrates no variation.

le-16 Difference between Reconstructed and Recovered Signals

2.0

Amplitude

0 2000 4000 6000 8000 10000
sample

(mse): e.eeen

Error (RMSE): 66608

Figure 15. Differences between reconstructed and recovered signal.

Comparison of Reconstructed and Recovered Signals

— Recanstructed Signal
—— Recovered Signal (IDFT)

Amplitude

-0.2

0 2000 4000 6000 8000 10000
Sample

Figure 16. Comparison of reconstructed and recovered signal.

Figure 17 displays both the IBI and its histogram. The fluctuation in the heartbeat
varies with time indicates a functioning nervous system of the individual. Again, the
histogram demonstrates the time interval of successive heartbeats over some time. These
features of the heartbeat are imperative in creating an effective encryption scheme from the

human features.
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Figure 17. Inter-beat interval (IBI) and IBI histogram.

The HRV computation utilized standard deviation among others to calculate, in
beats per minute (BPM), the heart rate, which was recorded as 738.00 (BPM), RMSSD
(0.0840 s), SDNN (0.0191 s), NN50 (0), and pNNb50 (0.00%). Also, the zero-crossing rate was
0.0245. Table 1 shows the aggregated domain features in terms of the time domain and
frequency domains.

Table 1. Domain features.

Aggregated Features Value Type of Feature Domain
Dominant Frequency: 14.3000 Frequency domain
Spectral Centroid: —0.0029 Frequency domain
Spectral Spread: 79.6748 Frequency domain
Spectral Entropy: 10.2401 Frequency domain
Spectral Rolloff: —14.3000 Frequency domain
Mean Frequency: 0.0007 Time—frequency
Mean Spectral Entropy: 3.3442 Time-frequency
Mean 0.0004 Time domain
standard deviation 0.0395 Time domain
Skewness 0.2989 Time domain
Kurtosis 1.4022 Time domain

The fusing approach is an aggregation of time—frequency domain features, frequency
domain features, time-domain features, EMD, and adaptive VMD features, which were
vectorized. Having extracted these features as shown in a vector representation, the bio-
inspired algorithm was utilized to generate a random key. Before this, the extracted feature
vector is converted to string representation and the bio-key was applied to finally generate
the encryption key. The encryption scheme was evaluated by loading different ECG signals
to extract the features in vector format and applied for ECG signal encryption. The resultant
feature extracted is shown in Figure 18 as

Aggregated Features:
Doninant Frequency: 14.3888
-8.8829
.6748
Spectral Entropy: 3.3442
Spectral Rolleff: -14.3888
Mean Frequency: B.8@87

Spectral Centroid:
Spectral Sprea

Mean Spectral Entropy: 3.3442

Feature Vector: [14.3, -8.2@29 1 3 » TO.G674TTIZBISALLT, array([4.BE575882, 3.17452134, 2.BE174545, I.S1166797, 3. 61642615,
2.79134799 s 3.237 %3, 2.97473138,
3.67446404 s 3 3.52244186
2.57375795 s 2 3 5183,
3.6274%833, 3 3.6 3468620816,
2.74555641, 3.49773824, 3.59481521, 2.5851239%, 3.34447296,
1.50984615, 2.90640455, 3.19264629, 3.56171814, 349147876,
2.B714711E, 3.4B7412@2, 3I.57764866, 2.64887141, 3.36BB4634,
3.61996962, 2.6311235 » 3.68289135, 2.98419884,
3.17415784, 3.616GE131 . 3.2B55181 , 3.6812E278,
3.83034219, 3.1B411653, » 3.38377912, 2.74385371,
3.35147697, 3.67178181 » 3.1B135583 &
2.72745831, 3 s 3
3. 8428 s 3.3
2.78319689 s 2.

1.66214471
Bio Key: 14.3890-8.282

31 S7EE2ZE]1, 5.EBL14688, 1}, -14.3, P.@R@G52EI41718576382, 3.3441687179%@11E]

9.67483.3442-14 30009 . 00873 3442

Figure 18. Fused feature vector with adaptive VMD.
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Figure 19 depicts the bio-key, random bio key, and encryption key obtained from the
feature vector.
Bio Key: 14.3888-8.882070.E7483.3442-14. 30008 BBATI. 1442

Randomized Bio Key: 8.7E-8.78- 84918132368238. 343 . 284 A4A08T3324 84
Encryption Key: a3lf6ddil1é5%6elfedifiifcbdalasfebbTodldccdcl2fe2YeTEcB@565Tee

Figure 19. Key generation.
Figure 20 shows the cipher and decrypted text. It also indicated the status of decryption.

Ciphertest: S45201d1tdedSBo7fadcoaidE6004cB000480 10052516784 0aF 17 cabelasl
Decrypled Hashed Key: BFedS2ablE30iaccGBEfbSSlefaccd5Babdsasliblii28qcoffl27etbcdbfedidb

Decryption Successful! True
Figure 20. Cipher and decrypted text.

A large population of kestrels can cover a broader search area, which increases the
chances of finding a global optimum key but requires more computational resources. In this
study, the population size was 200, to limit the computational cost of devices. However, a
small population might fail to explore enough of the solution space, leading to a less secure
key. Table 2 provides a comparison of the execution time of the encryption algorithms.

Table 2. Comparison of execution time.

Encryption Scheme Encryption Time Decryption Time Key Generation Time  Total Time
ChaCha20 9.40 us 9.75 us 7.85 us 27 us
ChaCha 10.80 us 10.98 us 7.85 ps 29.63 ps
Salsa20 11.45 ps 11.60 ps 7.85 us 30.90 us

The computing time (execution time) was considered in terms of time of encryption,
time of decryption, and time for key generation. In this instance, the same population size
in the bio-inspired search method was maintained and the efficiency was recorded in terms
of execution time. The speed of encryption and decryption were measured (in microseconds
(us)) by executing the algorithm and recording the time taken. From Table 2, it can be
observed that Chacha20 has a total execution time of 27 us, Chacha (29.63 ps), and Salsa20
(30.90 ps). Thus, Chacha20 was efficient and suitable for resource-constrained devices.

The potential vulnerability of the proposed encryption scheme was the noise removal
from the raw signal, which may impact the encryption key generation. Thus, the signal
reconstruction approach was introduced to further remove noise, thus providing the surety
and robustness of the encryption scheme.

5. Discussion

This study focused on extracting features from ECG signals to create an encryption
scheme. The results demonstrated the capability to extract features into vector forms using
time domain, frequency domain, and time-frequency domains. The advantage of time-
domain approaches is their simplicity, which is based on statistical measures such as mean
and variance. Again, this suggests less computation in signal analysis. Furthermore, it is
effective for stationary signal analysis due to the statistical properties that do not change
over time [58]. The advantage of the frequency domain is that it is more applicable for
non-stationary signals due to the changing frequency over time. Again, it is more useful
for processing more compact signals. Furthermore, it helps to identify noise signals and
filter the signal to identify the most relevant signals [59]. Whereas, the advantage of time—
frequency domain is that it provides a more comprehensive analysis of the signal, in both
time and frequency domain features, over time. Again, it shows more patterns and insight
into the signal. Bao, Yan [12] provided fusing mechanisms that leverage Variational Mode
Decomposition (VMD) and Convolutional Neural Networks (CNNs) for feature extraction
toward user identification system development. The VMD model can decompose features
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and remove noise that may affect the ECG signal quality. Modes from these decomposed
features were derived (Figure 5) after all residual noise had been removed to enable feature
extraction. In furtherance to this, the Empirical Mode Decomposition method (EMD) is
an approach to enable the ECG signal to be recovered using the IMF to find the highest
frequency. The EMD technique is used to assist in understanding the frequency oscillations
of heartbeats.

In terms of the time domain, by using the reconstructed signal features, the mean
(0.0004), standard deviation (0.0391), skewness (0.1562), and kurtosis (1.2205) were all
extracted (Figure 10) from the ECG data. The use of IDFT and DFT further validated the
consistency of the conversion as captured in Figures 10 and 11, such that the frequency-
domain features are correlated with the back with the time-domain representation features.

With respect to the frequency domain, the mean and spectral entropy were also
displayed in Figure 14. The spectral entropy helps quantify the uncertainty that might
occur in the power distribution of the signal from different frequency points of view.
While high spectral entropy signifies the complexity of frequency distribution, the contrary
suggests a more predictable distribution. Moreover, the power distribution is indicative of
how power can be dispersed over frequencies [28].

Using metrics of MSE and RMSE to measure variation, Figure 15 shows that there was
no deviation between the reconstructed and the recovered signals. Hence, the viability of
our methods is demonstrated.

The features of the heartbeat are critical in the process of developing unique bio-keys
for encryption; these features are indicated in the inter-beat interval and histogram as
illustrated in Figure 17. Metrics about the time and frequency domain were extracted
through HRV computation as outlined in Table 1 from these HRV-related features.

In the final analysis, the study utilized the feature extraction methods in this paper
to aggregate these metrics into feature vectors to enable the encryption scheme develop-
ment. Notably, HRV was employed as a simple key-generation approach [8]. Moreover,
our approach provides a more robust key generation approach because it leverages the
capabilities of more feature extraction approaches to create a more complex feature vector.

Bio-inspired algorithms, which by their nature provide randomness, increase the
robustness of the encryption key. The bio-inspired algorithm Kestrel’s initial population
is randomly generated as potential solutions to be found. This randomized searching
enables bits of the fused feature vector to be chosen at random. The concept of half-life,
introduced in the Kestrel algorithm, provides an additional layer of randomization, via the
light intensity variation in the half-life component, in the formulation of the encryption key.

The selection of parameters in bio-inspired algorithms is crucial for the efficiency and
security of the encryption key generation. Tuning the population size of the bio-inspired
algorithm optimizes the generation of robust unpredictable keys that enhance the security
of encryption systems. Moreover, an improper parameter selection may result in weak keys
or longer computation times, which could undermine the effectiveness of an encryption
system. Setting an optimal population size can provide an efficient key generation for
an encryption algorithm and also ensure security. The trade-off between security and
efficiency depends on the computing limitations and the strength of the encryption key [40].
Thus, while a smaller population size may guarantee faster results, it may compromise
the security of the generated key. On the other hand, a larger population size provides a
more secure encryption key at a high computational cost. Thus, while Table 2 provides the
trade-offs on executing time as the measure of efficiency, Chacha20 was efficient.

This simplified encryption key is provided as a parameter for use in the ChaCha20
encryption algorithm while The ChaCha20 algorithm is a symmetric-key algorithm as it
ensures that the same key is both used for encryption and decryption in applications that
require high speed and security [41]. Our study has provided an encryption scheme that is
suitable for high-speed environments and for IoMT devices that can process data quickly
but also ensure the security transmission of data using extracted human features. Our
study extracts human features from the bio-signals of these IOMT devices to ensure that
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these bio-signals can be securely encrypted and transmitted. From a theoretical perspective,
this study contributes to the introduction of the unique bio-inspired Kestrel algorithm
with its randomized searching and its half-life component, both of which add layers of
randomization for a more secure key for ECG signals. In this research, the impact of
noise on generated encryption keys and the impact of bio-inspired search parameters on
key generation were, respectively, addressed with signal reconstruction and the use of
population tuning of the bio-inspired search method.

6. Conclusions

The paper sought to extract features from ECG signals to create an encryption scheme
that does not only rely the on time domain, frequency domain, or time—frequency do-
mains. Instead, through the use of the mode decomposition approach, features of an
intra-relationship were extracted and statistically validated to help create a fusion feature
vector. Through leveraging this vector with the unique features of the bio-inspired Kestrel
algorithm, a more robust encryption scheme is provided. Thus, by leveraging the chacha20
encryption algorithm with our feature extraction and key generation approach, we provide
an encryption scheme that might be suitable for lightweight devices like IoMT. Future work
includes further evaluation of this proposed encryption scheme within the context of IOMT
devices in the real-world environment.

Author Contributions: Conceptualization, methodology, writing—original draft preparation,
writing—review and editing, L.E.A.; writing—review and editing, supervision, analysis, R.C.M.;
writing—review and editing, E.F,; writing—review and editing, W.W.; writing—review and editing,
X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the National Key R&D Program of China (Grant
number: 2023YFE0110200), in part by the National Research Foundation of South Africa (Grant
number 151178).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Karimian, N.; Guo, Z.; Tehranipoor, M.; Forte, D. Highly reliable key generation from electrocardiogram (ECG). IEEE Trans.
Biomed. Eng. 2016, 64, 1400-1411. [CrossRef] [PubMed]

2. Aziz, S.; Hayat, M.M.; Naqvi, S.Z.H.; Furqan, M.; Khan, M.U.; Zahid, M.Z. Electrocardiography based Biometric Verification
System. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE),
Istanbul, Turkey, 12-13 June 2020.

3. Neri, L.; Oberdier, M.; van Abeelen, K.; Menghini, L.; Tumarkin, E.; Tripathi, H.; Jaipalli, S.; Orro, A.; Paolocci, N.; Gallelli, L; et al.
Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. Sensors
2023, 23, 4805. [CrossRef] [PubMed]

4. Asim, M.; Akhtar, M.; Faraz, M.; Khan, M.U.; Aziz, S.; Montes, G.A. Pattern Analysis for Biometric Authentication using
Electrocardiogram Signal. In Proceedings of the 2023 2nd International Conference on Emerging Trends in Electrical, Control,
and Telecommunication Engineering (ETECTE), Lahore, Pakistan, 27-29 November 2023.

5. Shuma, M.; Madhumathy, P. Brakerski-Gentry-Vaikuntanathan fully homomorphic encryption cryptography for privacy pre-
served data access in cloud assisted internet of things services using glow-worm swarm. Trans. Emerg. Telecommun. Technol. 2022,
33, e4641. [CrossRef]

6. Lin, Y.; Xie, Z.; Chen, T.; Chen, X.; Wen, H. Image privacy protection scheme based on high-quality reconstruction DCT
compression and nonlinear dynamics. Expert Syst. Appl. 2024, 257, 124891. [CrossRef]

7.  Karpagachelvi, S.; Arthanari, M.; Sivakumar, M. ECG Feature Extraction Techniques—A Survey Approach. (IJCSIS) Int. ]. Comput.
Sci. Inf. Secur. 2010, 8, 1-5.

8.  Pirbhulal, S.; Zhang, H.; Mukhopadhyay, S.C.; Li, C.; Wang, Y.; Li, G.; Wu, W.; Zhang, Y.-T. An Efficient Biometric-Based

Algorithm Using Heart Rate Variability for Securing Body Sensor Networks. Sensors 2015, 15, 15067-15089. [CrossRef]


https://doi.org/10.1109/TBME.2016.2607020
https://www.ncbi.nlm.nih.gov/pubmed/28113243
https://doi.org/10.3390/s23104805
https://www.ncbi.nlm.nih.gov/pubmed/37430719
https://doi.org/10.1002/ett.4641
https://doi.org/10.1016/j.eswa.2024.124891
https://doi.org/10.3390/s150715067

Sensors 2024, 24,7926 22 of 24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Kumar, S.; Vaishali, K.; Maiya, G.; Shivashankar, K.N.; Shashikiran, U. Analysis of time-domain indices, frequency domain
measures of heart rate variability derived from ECG waveform and pulse-wave-related HRV among overweight individuals: An
observational study. F1000Research 2023, 12, 1229. [CrossRef]

Escribano, P; Rédenas, J.; Garcia, M.; Arias, M.A.; Hidalgo, V.M.; Calero, S.; Rieta, ].J.; Alcaraz, R. Combination of frequency-and
time-domain characteristics of the fibrillatory waves for enhanced prediction of persistent atrial fibrillation recurrence after
catheter ablation. Heliyon 2024, 10, €25295. [CrossRef]

Zhao, L.; Li, ].; Ren, H. Multi domain fusion feature extraction and classification of ECG based on PCA-ICA. In Proceedings of the
2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China,
12-14 June 2020.

Bao, Z.; Yan, L.; Wang, M. Multi-feature Fusion ECG Signal Recognition Algorithm Based on VMD. In Proceedings of the 2022 4th
International Conference on Natural Language Processing (ICNLP), Xi'an, China, 25-27 March 2022.

Bazhutina, A.; Khamzin, S.; Sinitca, A.; Chmelevsky, M.; Zubarey, S.; Budanova, M.; Rainer, W. An Ensemble of Machine Learning
Models for Multilabel Classification of Cardiovascular Diseases by ECGs. In Proceedings of the 2023 Computing in Cardiology
(CinC), Atlanta, GA, USA, 1-4 October 2023.

Buyya, A.; Ogeti, T.; Suhas, G.; Kashapogula, P.; Panigrahy, A.K. Arrhythmias Classification by using STFT-based Spectrograms,
Transfer Learning and Concatenation of features. In Proceedings of the 2023 4th International Conference for Emerging Technology
(INCET), Belgaum, India, 26-28 May 2023.

Choudhary, S.K.; Sandee, B. Real Time Biometric Authentication System Using ECG. In Proceedings of the 2023 14th International
Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6-8 July 2023.

Choudhary, T.; Das, M.; Sharma, L.N.; Bhuyan, M.K. A Non-Fiducial Noise Robust VMD-based Framework for ECG-based
Biometric Recognition. In Proceedings of the 2021 IEEE 18th India Council International Conference (INDICON), Guwahati,
India, 19-21 December 2021.

Pradhan, B.K.; Neelappu, B.C.; Sivaraman, J.; Kim, D.; Pal, K. A Review on the Applications of Time-Frequency Methods in ECG
Analysis. |. Healthc. Eng. 2023, 34, 3145483. [CrossRef]

Anjitha, P; Dhanya, K.R; Sindhu, N; Jerritta, S. The Untapped Potential of Feature Selection for Emotion Recognition: Literature
Review. In Proceedings of the 2020 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur,
India, 17-19 December 2020.

He, W.; Ye, Y,; Pan, T.; Meng, Q.; Li, Y. Emotion Recognition from ECG Signals Contaminated by Motion Artifacts. In Proceedings
of the 2021 International Conference on Intelligent Technology and Embedded Systems (ICITES), Chengdu, China, 31 October
2021-2 November 2021.

Ihsan, M.F,; Mandala, S.; Pramudyo, M. Study of Feature Extraction Algorithms on Photoplethysmography (PPG) Signals to
Detect Coronary Heart Disease. In Proceedings of the 2022 International Conference on Data Science and Its Applications
(ICoDSA), Bandung, Indonesia, 6-7 July 2022.

Khan, M.U,; Aziz, S.; Naqvi, S.Z.H.; Zaib, A.; Magsood, A. Pattern Analysis Towards Human Verification using Photoplethysmo-
graph Signals. In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi,
Pakistan, 26-27 March 2020.

Omar, N.; Dey, M.; Ullah, M.A. Detection of Myocardial Infarction from ECG Signal Through Combining CNN and Bi-LSTM. In
Proceedings of the 2020 11th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh,
17-19 December 2020.

Khan, M.U,; Saad, M.; Aziz, S.; Ch, ] M.; Naqvi, S.Z.H.; Qasim, M.A. Electrocardiogram based Gender Classification. In
Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul,
Turkey, 12-13 June 2020.

Mahmud, M.S.; Nayan, M.M.R; Hasan, S.; Taj, M.N.A. A Deep Ensemble Model with an Efficient Feature for Multi-class
Arrhythmia Classification Utilizing 12-Lead ECG Signal. In Proceedings of the 2022 12th International Conference on Electrical
and Computer Engineering (ICECE), Dhaka, Bangladesh, 21-23 December 2022.

Nijaguna, G.S.; Lal, N.D.; Divakarachari, P.B.; Prado, R.P.d.; WoZniak, M.; Patra, R K. Feature Selection Using Selective Opposition
Based Artificial Rabbits Optimization for Arrhythmia Classification on Internet of Medical Things Environment. IEEE Access
2023, 11, 100052-100069. [CrossRef]

Chen, L.; Zhang, C.; Gao, X. Speech Signal Analysis of Autistic Children Based on Time-Frequency Domain Distinguishing
Feature Extraction. In Proceedings of the 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI),
Macao, China, 31 October 2022-2 November 2022.

Kuznetsov, I.V. Movements Classification Based on Surface Electromyography Using Time-frequency Domain Features. In
Proceedings of the 2024 XXVII International Conference on Soft Computing and Measurements (SCM), Saint Petersburg, Russian,
22-24 May 2024.

Singh, A.K.; Krishnan, S. ECG signal feature extraction trends in methods and applications. BioMed. Eng. OnLine 2023, 22, 22.
[CrossRef] [PubMed]

Alyasseri, Z.A.A.; Al-Betar, M.A.; Awadallah, M.A.; Makhadmeh, S.N.; Alomari, O.A.; Abasi, A K.; Doush, .A. EEG Feature
Fusion for Person Identification Using Efficient Machine Learning Approach. In Proceedings of the 2021 Palestinian International
Conference on Information and Communication Technology (PICICT), Gaza, Palestine, 28-29 September 2021.


https://doi.org/10.12688/f1000research.139283.1
https://doi.org/10.1016/j.heliyon.2024.e25295
https://doi.org/10.1155/2023/3145483
https://doi.org/10.1109/ACCESS.2023.3312537
https://doi.org/10.1186/s12938-023-01075-1
https://www.ncbi.nlm.nih.gov/pubmed/36890566

Sensors 2024, 24,7926 23 of 24

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Khushaba, R.N.; Al-Timemy, A.H.; Samuel, O.W.; Scheme, E.]. Myoelectric Control with Fixed Convolution-Based Time-Domain
Feature Extraction: Exploring the Spatio—Temporal Interaction. IEEE Trans. Hum. Mach. Syst. 2022, 52, 1247-1257. [CrossRef]
Khushaba, R.N.; Phinyomark, A.; Al-Timemy, A.-H.; Scheme, E. Recursive Multi-Signal Temporal Fusions With Attention
Mechanism Improves EMG Feature Extraction. IEEE Trans. Artif. Intell. 2020, 1, 139-150. [CrossRef]

Jiang, K.; Wang, Z.; Shen, R.; Wang, S; Liu, Y.; Feng, Y.; Lisun, X.; Li, Z. A Neurological Recovery Prediction Algorithm Based on
Multi-Feature Extraction and Bagging Aggregation. In Proceedings of the 2023 Computing in Cardiology (CinC), Atlanta, GA,
USA, 1-4 October 2023.

Kherdekar, V.A.; Naik, S.A. Feature Fusion Extraction Method for Improvement of Recognition of Continuous Speech: A Feature
Fusion Method for Recognition of Continuous Speech. In Proceedings of the 2024 Fourth International Conference on Advances
in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 11-12 January 2024.

Jain, R.; Garg, V.K. An Efficient Feature Extraction Technique and Novel Normalization Method to Improve EMG Signal
Classification. In Proceedings of the 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM),
London, UK, 27-29 April 2022.

Premkumar, S.; Mohana, J. An efficient method for Secure ECG Feature Based Cryptographic Key Generation. In International
Journal of Innovative Technology and Exploring Engineering (IITEE); Blue Eyes Intelligence Engineering & Sciences Publication:
Bhopal, India, 2019.

Mathivanan, P.; Ganesh, A.B.; Venkatesan, R. QR code-based ECG signal encryption/decryption algorithm. Cryptologia 2019, 43,
233-253. [CrossRef]

Karthikeyan, M.]J.; Martin Leo Manickam, A. 128-Bit secret key generation using unique ECG Bio-signal for medical data
cryptography in lightweight wireless body area networks. J. Biotechnol. 2017, 14, 257-264.

Rahman, M.S.; Khalil, L; Yi, X. Reversible Biosignal Steganography Approach for Authenticating Biosignals using Extended
Binary Golay code. IEEE |. Biomed. Health Inform. 2020, 25, 35-46. [CrossRef]

Garcia-Baleon, H.A.; Alarcon-Aquino, V.; Starostenko, O. A Wavelet-Based 128-bit Key Generator Using Electrocardiogram
Signals. In 2009 52nd IEEE International Midwest Symposium on Circuits and Systems; IEEE: Piscataway, NJ, USA; pp. 644—647.
Radhakrishnan, I.; Jadon, S.; Honnavalli, P.B. Efficiency and Security Evaluation of Lightweight Cryptographic Algorithms for
Resource-Constrained IoT Devices. Sensors 2024, 24, 4008. [CrossRef]

Kebande, V.R. Extended-Chacha20 Stream Cipher with Enhanced Quarter Round Function. IEEE Access 2023, 18, 114220-114237.
[CrossRef]

Pirbhulal, S.; Zhang, H.; Wu, W.; Mukhopadhyay, S.C.; Zhang, Y.-T. Heart-Beats Based Biometric Random Binary Sequences
Generation to Secure Wireless Body Sensor Networks. IEEE Trans. Biomed. Eng. 2018, 65, 2751-2759. [CrossRef]

Khokher, R.; Singh, R.C. Generation of Security Key using ECG Signal. In Proceedings of the International Conference on
Computing, Communication and Automation (ICCCA2015), Greater Noida, India, 15-16 May 2015; pp. 1-6.

Viand, A.; Jattke, P; Hithnawi, A. SoK: Fully Homomorphic Encryption Compilers. In Proceedings of the 2021 IEEE Symposium
Conf. on Security and Privacy (SP), IEEE Computer Society, San Francisco, CA, USA, 24-27 May 2021; pp. 1092-1108.

Moosavi, S.R.; Nigussie, E.; Virtanen, S.; Isoaho, J. Cryptographic Key Generation Using ECG Signal. In Proceedings of the 2017
14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8-11 January 2017;
pp- 1-8.

Hwang, H.B.; Lee, J.; Kwon, H.; Chung, B.; Lee, J.; Kim, Y. Preliminary Study of Novel Bio-Crypto Key Generation Using
Clustering-Based Binarization of ECG Features. Sensors 2024, 24, 1556. [CrossRef]

Karthikeyan, M.; Manickam, ].M.L. ECG-signal based secret key generation (ESKG) scheme for WBAN and hardware implemen-
tation. Wirel. Pers. Commun. 2019, 106, 2037-2052. [CrossRef]

Gonzalez-Manizano, L.; Fuentes, ].M.D.; Peris-Lopez, P.; Camara, C. Encryption by Heart (EbH)-using ECG for time-invariant
symmetric key generation. Future Gener. Comput. Syst. 2017, 77, 136-148. [CrossRef]

Hernandez-Alvarez, L.; Barbierato, E.; Caputo, S.; Fuentes, ] M.d.; Gonzélez-Manzano, L.; Encinas, L.H.; Mucchi, L. KeyEncoder:
A secure and usable EEG-based cryptographic key generation mechanism. Pattern Recognit. Lett. 2023, 173, 1-9. [CrossRef]
Shaikh, M.U.; Adnan, W.A.W.; Ahmad, S.A. Secured electrocardiograph (ECG) signal using partially homomorphic encryption
technique-RSA algorithm. Pertanika J. Sci. Technol. 2020, 28, 231-242. [CrossRef]

Ahmed, A.A.A.; Madboly, M.M.; Guirguis, S.K. Securing data transmission and privacy perserving using fully homomorphic
encryption. Int. . Intell. Eng. Syst. 2023, 16, 2023.

Shaikh, M.U.; Adnan, W.A.W.; Ahmad, S.A. Sensitivity and positive prediction of secured electrocardiograph (ECG) transmission
using fully homomorphic encryption technique (FHE). In Proceedings of the 2020 IEEE-EMBS Conference of Biomedical
Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1-3 March 2021; pp. 292-297.

Madhloom, ] K.; Ghani, M.K.A; Baharon, M.R. ECG encryption enhancement technique with multiple layers of AES and DNA
computing. Intell. Autom. Soft Comput. 2021, 28, 493-512. [CrossRef]

Premkumar, S.; Mohana, J. A novel ECG based encryption algorithm for securing patient confidential information. Int. J. Electr.
Eng. Technol. (IJEET) 2020, 11, 35-43.


https://doi.org/10.1109/THMS.2022.3146053
https://doi.org/10.1109/TAI.2020.3046160
https://doi.org/10.1080/01611194.2018.1549122
https://doi.org/10.1109/JBHI.2020.2988449
https://doi.org/10.3390/s24124008
https://doi.org/10.1109/ACCESS.2023.3324612
https://doi.org/10.1109/TBME.2018.2815155
https://doi.org/10.3390/s24051556
https://doi.org/10.1007/s11277-018-5924-x
https://doi.org/10.1016/j.future.2017.07.018
https://doi.org/10.1016/j.patrec.2023.07.008
https://doi.org/10.47836/pjst.28.s2.18
https://doi.org/10.32604/iasc.2021.015129

Sensors 2024, 24, 7926 24 of 24

55.

56.

57.

58.

59.

Agbehadji, LE.; Abayomi, A.; Bui, K.-H.N.; Millham, R.C.; Freeman, E. Kestrel-based Search Algorithm (KSA) for parameter
tuning unto Long Short Term Memory (LSTM) Network for feature selection in classification of high-dimensional bioinformatics
datasets. In Proceedings of the Federated Conference on Computer Science and Information Systems, Poznan, Poland, 9-12
September 2018; pp. 15-20.

Agbehadji, LE.; Millham, R.; Fong, S.J.; Hong, H.-J. Nature-Inspired Search Method and Custom Waste Object Detection and
Classification Model for Smart Waste Bin. Sensors 2022, 22, 6176. [CrossRef]

Agbehadji, LE.; Millham, R; Fong, S.J.; Hong, H.-J. Integration of Kestrel-based search algorithm with artificial neural network
for feature subset selection. Int. |. Bio-Inspired Comput. 2019, 13, 222-233. [CrossRef]

Wang, W.-K.; Wan, M.; Zhang, W.-H.; Yang, Y. Chatter detection methods in the machining processes: A review. J. Manuf. Process.
2022, 77,240-259. [CrossRef]

Jardine, AK.S.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based
maintenance. Mech. Syst. Signal Process. 2006, 20, 1483-1510. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/s22166176
https://doi.org/10.1504/IJBIC.2019.100151
https://doi.org/10.1016/j.jmapro.2022.03.018
https://doi.org/10.1016/j.ymssp.2005.09.012

	Introduction 
	Literature Review 
	Model-Based and Multi-Fusion Domain Bio-Signals Techniques 
	Lightweight Encryption Mechanisms 

	Materials and Methods 
	Loading of the ECG Signal Dataset 
	Preprocess ECG Signal 
	ECG Extract Features 
	Statistical Analysis 
	Bio-Inspired Key Generation 
	Algorithm to Implement Lightweight Encryption 

	Results 
	Discussion 
	Conclusions 
	References

