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Abstract
It is difficult to distinguish Parkinson’s disease (PD) in the early stage from those of various disorders including atypical Par-
kinson’s syndrome (APS), vascular parkinsonism (VP), and even essential tremor (ET), because of the overlap of symptoms. 
Other, more challenging problems will arise when Parkinson’s disease develops into Parkinson’s disease dementia (PDD) 
in the middle and late stages. At this time, the differential diagnosis of PDD and DLB becomes thorny. These complicate 
the diagnostic process for PD, which traditionally heavily relies on symptomatic assessment and treatment response. Recent 
advances have identified several biomarkers in the blood and cerebrospinal fluid (CSF), including α-synuclein, lysosomal 
enzymes, fatty acid-binding proteins, and neurofilament light chain, whose concentration differs in PD and the related 
diseases. However, not all these molecules can effectively discriminate PD from related disorders. This review advocates 
for a paradigm shift toward biomarker-based diagnosis to effectively distinguish between PD and similar conditions. These 
biomarkers may reflect the diversity that exist among different diseases and provide an effective way to accurately understand 
their mechanisms. This review focused on blood and CSF biomarkers of PD that may have differential diagnostic value and 
the related molecular measurement methods with high diagnostic performance due to emerging technologies.
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Introduction

There are many diseases that overlap with the symptoms 
of Parkinson’s disease (PD). After excluding the exter-
nal causes of injury, infection, and poisoning, these three 
types of diseases, including atypical Parkinson’s syndrome 
(APS), vascular parkinsonism (VP), and essential tremor 
(ET), are difficult to distinguish from PD during the early 
stage and easily misdiagnosed due to the unknown course 
of onset (Jabbari et al. 2020; Yu et al. 2023; Yoo et al. 
2023). In addition, more than 80% of patients suffering 
long-term PD will develop into PD dementia (PDD); it is 
very hard to differentiate from dementia with Lewy bod-
ies (DLB) when PD develops into PDD in the middle and 
late stages.

APS includes progressive supranuclear palsy (PSP), 
corticobasal syndrome (CBS), and multiple system atro-
phy (MSA) (Anastassiadis et al. 2024). VP does not belong 

to the category of APS because of its vascular lesions of 
relative speciality (Holm et al. 2023). ET has no definite 
pathological changes in the nervous system, but abnormal 
pathway activity in the brain still exists, so it is listed sepa-
rately (Kosmowska and Wardas 2021). DLB and PDD are 
collectively referred to as Lewy body disease or synucle-
inopathy (Harris 2023). Unclear distinction between PD 
and the aforementioned diseases may result in indiscrimi-
nate clinical pathology studies or clinical trials (Hirsch-
berg et al. 2023).

Through an extensive literature search, we found that sev-
eral blood and cerebrospinal fluid (CSF) biomarkers signifi-
cantly differ between PD and other related diseases (Fig. 1). 
These molecules may be defined as differential diagnostic 
biomarkers of PD (Quadalti et al. 2021). While these bio-
markers have significant statistical differences in the study of 
groups, the traits of discrimination may need to be demon-
strated in many ways. The differential diagnostic biomarkers 
of PD may be used as reference for clinical pathological 
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studies and clinical trials, because differentiating these dis-
eases is the first step for such studies (Dutta et al. 2021).

Search Strategy and Selection Criteria

Through a literature review, we first identified 6 diseases 
that require differentiation from PD (see search query). 
Next, we screened for diagnostic biomarkers using the 
search statements (“Parkinson’s disease” OR “PD”) AND 
(“biomarker”) on PubMed and Web of Science. We initially 
obtained 11 PD-related biomarkers (see search query) and 
selected review articles to obtain a comprehensive biomark-
ers selection. Based on the biomarkers identified, we used 
the search formulas (“Parkinson’s Disease” OR PD) AND 
((“Atypical Parkinson’s syndrome” OR APS OR “Atypical 

parkinsonism disorder” OR APD) OR (“progressive supra-
nuclear palsy” OR PSP) OR (“corticobasal syndrome” OR 
CBS) OR (“multiple system atrophy” OR MSA) OR (“vas-
cular parkinsonism” OR VP) OR (“dementia with Lewy 
bodies” OR DLB) OR (“essential tremor” OR ET)) AND 
((“α-Synuclein” OR “α-Syn”) OR (“DOPA Decarboxylase” 
OR “DDC”) OR (“Amyloid beta” OR “Aβ”) OR “tau pro-
tein” OR “Exosomes” OR (“Neurofilament Light Protein” 
OR “NfL”) OR “MicroRNAs” OR (“FABP3” OR “Fatty 
acid-binding protein 3, heart type”) OR (“DJ-1” OR “Par-
kinson’s disease protein 7”) OR (“CRP” OR “C-Reactive 
Protein”) OR (“Serum amyloid A” OR “SAA”) (“YKL-40” 
OR “chitinase-3-like-1” OR “CHI3L1” OR “human cartilage 
glycoprotein-39” OR “HC-gp39”)) to retrieve targeted litera-
ture while selecting studies that were appropriate to meet 
our research objectives. After screening abstracts of top 500 

Fig. 1  Flow diagram of the different types of PD’s differential diagnostic biomarkers. CNS central nervous system, DDC DOPA decarboxylase, 
GFAP glial fibrillary acidic protein, NfL neurofilament light chain protein, FABP3 fatty acid-binding protein 3, heart type, Hcy homocysteine
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articles (sorted by best match), 160 articles were identified 
for further in-depth reading. Midkine (MK) and Kallikrein 
10 were mentioned in a separate study, but no similar results 
suggested their value for the purpose we needed. Also, lyso-
somal enzymes (multiple) were molecules not obtained in 
the earliest search, and no study further elaborated their roles 
between PD and related diseases. Ultimately, 104 articles 
were included in this review.

Proteins Specific to Central Nervous System

α‑Synuclein (α‑Syn) and Its Variants

α-Syn is detectable in both CSF and plasma and is the 
most widely researched biomarker of PD (Tsao et al. 2022; 
Estaun-Panzano et al. 2023; Tofaris 2022). Phosphorylation 
of the Ser129 site results in phosphorylated α-syn (PS-129), 
while pro-aggregating forms of α-syn, such as oligomeric 
α-syn (o-α-syn), are also found in CSF and blood (Ma et al. 
2024; Constantinides et al. 2021; Zubelzu et al. 2022; Chen 
et al. 2022a, b). Meanwhile, the pathogenic β-sheet seed is 
the pathological conformation of α-syn and can be detected 
in serum (Okuzumi et al. 2023).

Total α‑Syn in CSF

Several studies and meta-analyses have confirmed that when 
compared to the control group, the total α-syn (t-α-syn) lev-
els in the CSF are consistently lower in PD, MSA, PSP, 
CBS, and VP groups, with no significant differences among 
them (Zubelzu et al. 2022; Constantinides et al. 2017; Før-
land et al. 2020; Koníčková et al. 2023; Aerts et al. 2012). 
Therefore, t-α-syn levels in CSF cannot differentiate between 
PD and APS.

Phosphorylated α‑Syn

Utilizing a Bead-based Luminex assay (with a sensitivity of 
9 pg/mL), researchers measured the concentration of pS129 
in the CSF of patients with PD, MSA, and PSP, revealing 
differences among them. To differentiate between the dif-
ferent diseases, ROC analysis following the discovery phase 
indicated that pS-129/t-α-syn was superior to pS-129 alone, 
with a specificity of ≥ 80%. The sensitivity among the three 
different Parkinsonian disease groups was as follows: PD 
vs MSA, 40%; PD vs PSP, 72%; and MSA vs. PSP, 63% 
(Wang et al. 2012). However, with the latest detection tech-
nology, this result may no longer reliable (Dutta et al. 2021; 
Silva et al. 2024). In the future, more targeted experimental 
method of large sample are needed to determine the distribu-
tion of phosphorylated α-syn in different diseases.

Oligomeric α‑Syn

Notably, earlier studies have shown higher levels of o-α-syn 
in patients with PD compared to patients with PSP (Tokuda 
et al. 2010). But recent researches revealed that levels of 
o-α-syn in PD and other Parkinsonian syndromes do not 
differ significantly even though it is elevated compared to 
that of the control group (Eusebi et al. 2017; Majbour et al. 
2020; Luo et al. 2024).

Pathogenic β‑Sheet Seed

Aggregates of α-syn, including propagative α-syn seeds, 
showed high diagnostic performance in differentiating 
between PD and MSA (Siderowf et al. 2023; Painous et al. 
2024; Parnetti et al. 2019; Goolla et al. 2023; Shahnawaz 
et  al. 2020). Amplified seeds maintain disease-specific 
properties, allowing for the differentiation of samples from 
individuals with PD and MSA (Painous et al. 2024). Oku-
zumi et al.’ study (2023) suggested that the rate of nega-
tive results of IP/RT-QuIC in patients with MSA was sig-
nificantly higher than that in patients with PD. Additionally, 
their study also examined the distinctive morphological fea-
tures of seeds in various diseases. The fibril morphology of 
products derived from IP/RT-QuIC of serum α-syn seeds in 
patients with synucleinopathies could differentiate PD, DLB, 
and MSA, allowing for further research in this area (Fig. 2). 
A study found that the intensity of the signal in MSA was 
greater than that in PD when aggregation was performed in 
a specific buffered solution, indicating that α-syn seed aggre-
gation from various diseases require different conditions for 
optimal detection (Martinez-Valbuena et al. 2022). These 
results suggest that our follow-up study can focus on the 
structural diversity and disease specificity of α-syn seeds.

α‑Syn in Erythrocytes

While pathological α-syn aggregations primarily localize in 
the central nervous system, peripheral α-syn concentrations, 
particularly in erythrocytes, are higher than those in the CSF 
(Barbour et al. 2008). It is reported that more than 99% of 
the α-syn in the blood are in red blood cells (Miglis and 
Muppidi 2020). α-Syn in erythrocytes are reportedly excel-
lent biomarkers for diagnosing PD (Yu et al. 2023, 2022).

Total α-syn levels in erythrocytes are higher in patients 
with ET than in those with PD. Moreover, the proportion 
of aggregated α-syn levels to t-α-syn levels in erythrocytes 
is markedly lower in patients with ET than in those with 
PD and HCs. ROC curve analysis showed that the ratios of 
aggregated α-syn to monomeric α-syn concentrations per-
formed well in distinguishing patients with ET from those 
with PD and HCs, with an AUC of 0.892, sensitivity of 
86.67%, and specificity of 97.96% for patients with ET vs. 
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HCs. For ET vs. PD, the AUC was 0.817, with a sensitivity 
of 80.00% and specificity of 81.25% (Yu et al. 2023).

Glial Fibrillary Acidic Protein (GFAP)

Studies revealed that plasma GFAP levels in patients with 
PDD were higher than those in HCs, PD with mild cogni-
tive impairment (PD-MCI), and PD with normal cognition 
(Bartl et al. 2023; Tang et al. 2023; Lin et al. 2023; Che et al. 
2024). This may indicate that GFAP is associated with the 
progression of dementia in PD.

Neurofilament Light Chain (NfL)

NfL in CSF (cNfL) and plasma (pNfL) is a marker for neu-
ronal damage that may potentially be used to distinguish 
between clinically similar conditions, such as frontotemporal 
dementia from AD and PD from APS (Quadalti et al. 2021).

Among Parkinsonian syndromes, the mean cNfL levels 
were higher in MSA, PSP, and CBS when compared with 
PD (Bridel et al. 2019).

Some studies have compared serum NfL levels in PD and 
ET (Hansson et al. 2017). Huang et al. (2022) reported that 
serum NfL concentrations in patients with PD (16.6 ± 3.5 pg/
mL) were significantly higher than that in patients with 
ET (12.2 ± 2.4 pg/mL) and HCs (11.8 ± 2.4 pg/mL) (both 
p < 0.01, effect sizes = 1.47 and 1.60, respectively). When 
the cut-off was set at 13.65 pg/mL, the sensitivity and 

Fig. 2  α-Syn seeds show a specificity of deeper aspects. The differ-
ences in three dimensions make this biomarker show extremely high 
specificity in discriminating PD and MSA. PD Parkinson’s disease, 
MSA multiple system atrophy, plateau height: the peak at which the 
interaction of amyloid-binding dyes and α-syn aggregates ultimately 
reaches, aggregation time: speed of interaction between amyloid-
binding dyes and α-syn aggregates, fluorescence maximum: the final 

intensity of fluorescence when the binding peak is reached, counts 
of spectral peaks: the wavelengths corresponding to the peaks of the 
derived two seed fibrils in the spectrum, fiber width: fibrils width 
in Cryo-ET (cryo-electron tomography), twist length: the length 
between the twisted nodes, reflecting the number of twists, the longer 
the length, the lower the twist frequency

Fig. 3  Concentrations of NfL in PD were considerably different from 
those in APS, PDD, and ET, with NfL concentrations higher in APS 
and PDD than in PD and the opposite in APS (VP is not included). 
This may suggest a different pathogenesis of its disease at the molec-
ular level. NfL Neurofilament light protein, PD Parkinson’s disease, 
APS atypical Parkinson’s syndrome, PSP progressive supranuclear 
palsy, CBS corticobasal syndrome, MSA multiple system atrophy, 
PDD Parkinson’s disease dementia, ET essential tremor
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specificity of distinguishing between PD and ET were 76.7% 
and 84.1%, respectively, with an AUC of 0.854 (Fig. 3).

Classic Alzheimer’s Disease (AD) Biomarkers

Amyloid-beta-Aβ42, tau protein-τT, and phosphorylated tau 
protein-τP-181 are classical biomarkers of AD (Sung et al. 
2023). Notably, their significance in Parkinson’s syndrome 
has been re-recognized.

When compared to patients with PD, τT/Aβ42 ratio was 
increased in patients with MSA (Constantinides et al. 2017, 
2021). An elevated τT/Aβ42 ratio effectively differentiated 
MSA from PD, with an optimal cut-off value of 0.344 that 
yielded a sensitivity of 0.71 and specificity of 0.93 (Con-
stantinides et al. 2017).

Despite being a hallmark of AD, tau proteins are also 
found in the brains of patients with PD and DLB (Shim et al. 
2022). A study aimed at distinguishing AD, DLB, and PD 
revealed that t-tau levels were higher in the DLB group than 
in the control and PD groups, but the differences were not 
statistically significant. Meanwhile, the t-tau/t-α-syn ratio 
had a better performance than standalone markers. For AD 
vs. DLB, the AUC increased from 0.66 for t-tau alone (70% 
sensitivity and 68% specificity) to 0.74 for the t-tau/t-α-syn 
ratio (55% sensitivity and 95% specificity) (Førland et al. 
2020).

Inflammatory Markers

C‑Reactive Protein (CRP)

CRP concentrations in the CSF are higher in patients with 
PD and PDD than in patients with PD without dementia and 
HCs (Lindqvist et al. 2013; Hall et al. 2018; Qiu et al. 2019). 
However, distinguishing between patients with PD and DLB 
or other neurodegenerative diseases (NDDs) based on CRP 
levels was not feasible.

YKL‑40

YKL-40 is a biomarker of AD dementia and shows great 
potential in identifying AD dementia and other types of 
dementia, but so far there is no literature to explain its poten-
tial in identifying PDD and DLB (target literature of this 
review). The results showed that the contents of PDD and 
DLB were lower than those of AD dementia, but there was 
no difference (Morenas-Rodríguez et al. 2019; Mavroudis 
et al. 2021; Amin et al. 2022; Paolini Paoletti et al. 2023; 
Gautam and Singh 2024). A meta-analysis reached the oppo-
site conclusion to that of a single study which showed that 
YKL-40 can significantly distinguish PD from MSA with 

a large effect size. However, the authors also point out that 
due to the small number of studies included in YKL-40, 
they cannot be regarded as promising biomarkers at present 
(Xiang et al. 2022).

Serum Amyloid A (SAA)

Hall et al.’s (2018) research measured the difference of 
SAA content in different diagnostic groups, and the results 
showed that the SAA level of PDD and MSA patients was 
higher than that of the control group. Furthermore, SAA 
levels were higher in PDD and MSA patients than in non-
dementia PD patients. However, like other inflammatory 
markers, it is difficult to distinguish PD from other diag-
nostic groups.

Extracellular Vesicles

Pathological Proteins in Exosomes

Exosomes themselves do not have disease specificity; 
however, α-syn and its variants, tau and its variants can be 
detected in exosomes. Here is a detailed description of the 
nerve vesicles of central origin. Vesicles leaking out of the 
CNS in peripheral blood and CSF have been used to distin-
guish PD and MSA (Taha and Bogoniewski 2024; Taha and 
Hornung  et al. 2023; Yan et al. 2024).

Dutta et al.’s (2021) study confirmed that α-syn concen-
trations in exosomes were markedly lower in the control 
group and significantly higher in the MSA group compared 
to the PD group. They created a ratio using α-syn concen-
trations of putative oligodendroglial exosomes and putative 
neuronal exosomes with good sensitivity in distinguish-
ing PD and MSA. By incorporating this ratio along with 
the α-syn and total exosome concentrations, a multinomial 
logistic model successfully distinguished PD from MSA, 
with an area under the curve (AUC) of 0.902, sensitivity 
of 89.8%, and specificity of 86.0% after application to an 
independent validation cohort.

Meloni et al. (2023) investigated neural-derived extracel-
lular vesicles (NDEVs) isolated from the blood. Analysis of 
NDEVs revealed a significant increase in o-α-syn levels in 
PD compared to APS (CBD and PSP). Additionally, levels 
of tau aggregates in NDEVs were significantly elevated in 
APS compared to PD (p < 0.0001). ROC analysis showed 
that the concentration of NDEVs of both oligomeric o-α-
syn and tau aggregates exhibited an “excellent” power of 
classification that effectively distinguished PD from APS. 
For o-α-syn, the AUC was 0.817 (95% confidence interval 
(CI): 0.732–0.885; p < 0.0001), sensitivity of 78.6%, and 
specificity of 77.5%. For tau aggregates, the AUC was 0.856 
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(95% CI 0.776–0.915; p < 0.0001), sensitivity of 90.0%, and 
specificity of 75.7%.

Taha et al. (2023) were the first to measure pS129-α-syn 
levels in neuronal extracellular vesicles (nEVs) and oligo-
dendroglial extracellular vesicles (oEVs). They reported that 
nEV pS129-α-syn concentrations were highest in healthy 
controls (HC) followed by PD and MSA, but the differences 
were not statistically significant. Conversely, oEV concentra-
tions of pS129-α-syn were also highest in HC followed by 
PD and MSA and were significantly higher in both disease 
groups. Additionally, their study revealed that the oEV/nEV 
pS129-α-syn ratio increased in the order of HC < PD < MSA. 
Furthermore, they also measured total tau, pT181-tau (tau 
phosphorylated at Thr181) in nEVs and oEVs, and/or serum 
neurofilament light protein (NfL) levels. Due to the detection 
sensitivity, pT181-tau was detected in few samples. Other 
results were similar to experiments involving plasma or CSF.

MicroRNAs in Secreted Vesicles

MicroRNAs, which are small non-coding RNAs with 20–22 
nucleotides, play a critical role in several mechanisms under-
lying the pathogenesis of various neurodegenerative dis-
eases, including PD (Maiese 2022; Guévremont et al. 2023). 
More importantly, they can be detected in serum (Wamelen 
et al. 2020).

Among microRNAs, miR-30c and miR-148b are spe-
cific to individuals with PD, whereas miR-24, miR-223, and 
miR-324-3p are present in patients with both PD and MSA 
when compared with healthy individuals (Villar-Menéndez 
et al. 2014). Three microRNAs of miR-24, miR-34 b, and 
miR-148b were found significantly up-regulated in MSA 
compared with PD (Annamaria Vallelunga et al. 2014). Of 
course, these conclusions from the findings of high-through-
put assays of RNA have not been validated by extensive 
sample measurements of larger samples.

Enzyme Protein

DOPA Decarboxylase (DDC)

A primary pathological feature of PD is the degeneration of 
dopaminergic neurons in the substantia nigra (Stoker and 
Greenland 2018). DDC is a diagnostic marker of dopamin-
ergic dysfunction and can be detected in CSF (Painous et al. 
2024).

Several studies have attempted to reveal the differences in 
DDC between PD and APS (Paslawski et al. 2023; Pereira 
et al. 2023). CSF levels of DDC may potentially be useful in 
differentiating among degenerative parkinsonisms (PD vs. 
APS) (Paslawski et al. 2023).

Kallikreins

Kallikreins, which is a subgroup of serine proteases, play vari-
ous physiological roles. Recent research has emphasized their 
involvement in carcinogenesis, highlighting several kallikreins 
as promising candidates for novel biomarkers in cancer and 
other diseases. This supports the potential utility of kallikreins 
in clinical diagnostics and therapeutic targeting (Kalinska et al. 
2016).

Kallikrein 10 has exhibited specific changes in APS com-
pared to PD and controls; unfortunately, these changes were 
not elaborated (Paslawski et al. 2023).

Lysosomal Enzyme

Lysosomal enzyme is one of the markers of PD, and its 
various isoforms have little discriminatory power. We have 
found some potential lysosomal enzymes, GCase, Arylsul-
fatase A (ASA), cathepsin D, and β-hexosaminidase, which 
are related to the degradation of α-synuclein in patients with 
PD (Angelopoulou et al.2020). Someone needs to further 
measure the content of lysosomal enzyme isoforms in dif-
ferent PD, which is an unfinished direction.

NAD‑Dependent Deacetylase Sirtuin‑1 (SIRT1)

SIRT1 can regulate a variety of physiological and patho-
logical processes, including inflammation, oxidative stress, 
metabolism, cell proliferation, cell differentiation, apoptosis, 
and so on (Li et al. 2020a, b). Li et al.’s (2023) outcome 
showed that the serum SIRT1 level of VP patients was sig-
nificantly lower than that of PD, and SIRT1 was related to 
the severity of the disease, which could be used as an index 
to distinguish PD from VP.

Embryonic Protein

Midkine (MK)

MK is predominantly expressed during midgestation in 
embryogenesis, but its presence in normal adult brains is 
minimal. However, MK may recently play a role in various 
adult brain pathologies (Neumaier et al. 2023).

MK has demonstrated significant diagnostic potential as 
its levels were notably higher in patients with PD compared 
to those with APS (Paslawski et al. 2023).

DJ‑1 (Aka Parkinson’s Disease Protein 7)

Regarding the discriminatory role of DJ-1 in APS, the most 
original research literature may be: The DJ-1 concentra-
tion in cerebrospinal fluid does not differentiate among 
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Parkinsonian syndromes (2012). Similar subsequent small 
sample studies also came to the same conclusion, that is, 
DJ-1 has low value in distinguishing PD from various APS 
(Xiang et al. 2022; Guo et al. 2024; Gautam et al. 2024).

Other

Fatty Acid‑Binding Protein 3, Heart Type (FABP3)

FABP3 is a small cytosolic protein that plays a role in lipid 
transport (Chiasserini et al. 2017). In the brain, FABP3 plays 
a regulatory role in the lipid composition of the membrane, 
suggesting a potential involvement in synapse formation 
and in the activity of cholinergic and glutamatergic neurons 
(Parnetti et al. 2019).

Elevated FABP3 levels have been detected in the serum of 
individuals diagnosed with DLB and PDD (Kawahata et al. 
2023). Additionally, FABP3 levels were higher in patients 
with DLB than in those with PDD. This suggests the poten-
tial of FABP3 as a distinctive biomarker for DLB (Kawahata 
and Fukunaga 2023).

Similar to DLB, FABP3 levels were higher in patients 
with AD than in those with PD and other neurological dis-
orders (p < 0.001). Notably, a combination of p-tau, FABP3, 
and α-syn successfully differentiated patients with AD from 

those with PDD, yielding an AUC of 0.96 (Chiasserini et al. 
2017).

Plasma homocysteine (Hcy)

In one study, Hcy levels were measured in patients with 
PDD and PD without dementia (PDwoD) as well as in HCs. 
Results showed that individuals with PDD demonstrated 
higher Hcy levels than PDwoD and HCs (Song et al. 2013). 
In our final search, Hcy was not found to have the ability to 
distinguish PD from related diseases (Sharma et al. 2015; 
Liu et al. 2023; Zhou 2024) (Fig. 4).

Emerging Technologies

At present, the research on PD’s biomarkers has been car-
ried out from quantification to pathological protein confor-
mation; the existing detection methods are constantly being 
improved in the direction of high specificity and sensitivity 
with high efficiency. The importance of novel technologies 
in identifying biomarkers has been emphasized as these 
advancements provided increased discriminatory capa-
bilities (Parnetti et al. 2019). Highly accurate methods are 
changing previously known but non-significant findings.

Fig. 4  The relative proportion of statistically significant content 
reported in the key literatures (represented by mean content of bio-
markers). PD Parkinson’s disease, MSA multiple system atrophy, 
PSP progressive supranuclear palsy, ET essential tremor, APS atypi-
cal Parkinson’s syndrome, PDD Parkinson’s disease dementia, DLB 

dementia with Lewy bodies, DDC DOPA decarboxylase, SIRT1 
NAD-dependent deacetylase sirtuin-1, GFAP glial fibrillary acidic 
protein, NfL neurofilament light chain protein, FABP3 fatty acid-bind-
ing protein 3, heart type,  Hcy homocysteine
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In short, from the perspective of technological evolu-
tion, the development of targeted detection methods is an 
inevitable requirement for the differential diagnosis of PD. 
Follow-up technologies may involve many steps, be time-
consuming, focus on scientific research targets, and be dif-
ficult to apply to patients, but technology is always a process 
of accumulation. After all, 20 years ago, no one would have 
thought of the high efficiency brought by the automation of 
testing technology.

Mass Spectrometry

Mass spectrometry-based assays may be useful in charac-
terizing and quantifying forms of protein molecules, and 
now detection of different pathological isomers can even be 
accomplished by it.

Capillary Electrophoresis‑Mass Spectrometry(CE‑MS) 
and Its Improved Version

CE-MS is a protein determination technique that combines 
chromatographic techniques with MS to improve resolution 
power and is a widely used method for proteomics analy-
sis (Valeriia et al. 2021). CE-MS proved to be an excellent 
platform for peptide analysis because of its multi-dimen-
sionality, rapidity, and high sensitivity (Gomes et al. 2019; 
Pero-Gascon et al. 2020).

On-line aptamer affinity solid-phase extraction direct 
mass spectrometry (AA-SPE-MS), as a simplification and 
improvement over CE-MS, is an on-line sample preparation 
method because they allow automation to minimize sam-
ple processing and improve analytical throughput. Overall, 
the method is repeatable between 0.025 and 5 μg/ml with 
satisfactory linear results which has a 1000 × LOD than the 
original CE-MS (Salim et al. 2023). But at the same time, 
this improvement sacrifices a certain degree of specificity.

Cyclic Ion Mobility‑Mass Spectrometry (CIM‑MS)

Traditional methods are difficult to distinguish between 
different structural a-syn protein quantitative information, 
whereas CIM-MS can be used to detect analytes exhibiting 
subtle differences in higher-order structures. This method 
can determine the relative amounts of three disease-asso-
ciated α-syn variants directly from artificial CSF (aCSF) 
(Makey et al. 2024).

Seed Amplification Assay (SAA)

SAA is inspired by the transmission process of prions and 
is used to detect misfolded protein aggregates (Fernandes 
Gomes et al. 2023). The core idea of this method is to use the 
intrinsic self-replicative characteristics of misfolded α-syn 

aggregates (seeds) to proliferate in vitro (Concha-Maram-
bio et al. 2023). SAA methodologies related to Aβ, tau, and 
α-syn have been expanded by researchers. The method has 
been employed to identify misfolded α-syn aggregates in the 
CSF and peripheral tissues (Ma et al. 2024). What has been 
demonstrated is the high sensitivity and specificity of SAA 
in the detection of α-syn in CSF of PD patients. Pathologi-
cally soluble α-syn is present in neuron-derived EVs (NEs), 
and these vesicles can be isolated and captured in peripheral 
blood. The use of these vesicles in peripheral blood to detect 
pathological α-syn is a conceptual approach. Research of 
Annika Kluge et al. (2022) and Kluge and Iranzo (2024) 
provides the proof of concept and process basis for this idea. 
They analyzed the structural and functional characteristics 
of pathological α-syn in EVs, not just the content, and the 
experimental results can reliably distinguish PD and non-
PD control groups, but there is no clear answer whether the 
pathological conformation is different in different APS and 
whether it can be distinguished from DLB. In studies that 
only quantify total α-syn in EVs, distinguishing PD from 
APS seems difficult and shows diametrically opposite con-
clusions (Hong et al. 2021). Moreover, researchers found 
that different sources of α-syn seeds have different optimal 
signal display conditions, making it possible to develop 
specific SAAs for a single disease such as MSA (Martinez-
Valbuena et al. 2022). We hope to have the opportunity to 
perform individual measurements in patients with several 
APS, VP, DLB, and ET.

Platform Technology from Protein Misfolding Cyclic 
Amplification (PMCA) to Its Modified Version: Real‑Time 
Quaking‑Induced Conversion(RT‑QuIC)

A lot of platform-related technologies for detection of final 
SAA product have been extended. PMCA and its evolu-
tionary body RT-QuIC, including immunoprecipitation-
based RT-QuIC (IP/RT-QuIC), which enables the detec-
tion of pathogenic α-syn seeds in the serum of individuals 
with synucleinopathy (Okuzumi et al. 2023) have shown 
high specificity (almost 100%) and sensitivity (> 90%) 
(Shahnawaz et al. 2017; Fairfoul et al. 2016). They can 
distinguish PD from other NDDs according to variations 
in α-syn aggregates. Their reliability in detection and the 
adaptability of RT-QuIC across different tissues and biologi-
cal fluids have allowed this technique to become the bench-
mark when investigating the aggregation of α-syn in humans 
(Goolla et al. 2023).

Surround Optical Fiber Immunoassay (SOFIA)

This technique does not use any seed polymerization or 
amplification, thus eliminating the possibility of cross-
contamination, and is based on immunocapture detection, 
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combined with a uniquely designed highly sensitive fiber 
laser-induced fluorescence detection protocol (Chang 
et al.2009; Soares et al.2021).

HANdai Amyloid Burst Inducer Technique

The HANdai Amyloid Burst Inducer technique has been 
suggested as a viable alternative to the PMCA and RT-QuIC 
for assessing pro-aggregating proteins in biofluids due to 
its faster assay speed than PMCA and RT-QuIC (Umemoto 
et al. 2014; Parnetti et al. 2019). It is currently being stud-
ied as a technique for measuring pro-aggregating forms of 
α-syn.

Updates of ELISA

Novel ELISA assays have been developed by Majbour et al. 
(2016). Their method expanded the detection limit of α-syn 
to 50 pg/mL, which is 20-fold lower than that detected in 
human CSF. Meanwhile, the detection limits of pS129 and 
recombinant o-α-syn were expanded to 20 pg/mL and 10 pg/
mL, respectively. To exceed these limits, technologies, such 
as novel photochemical, electrochemical, and crystal biosen-
sors should be utilized (Jabbari et al. 2020).

Thus, its combination with electrochemical methods 
extends a range of ultra-high-precision quantitative methods. 
Based on the total α-synuclein assay, a modified Luminex 
assay, namely the Bead-based Luminex assays, was devel-
oped. Its sensitivity is approximately 9 pg/mL, providing 
a highly precise method for measuring pS129 (Wang et al. 
2012). Detection systems supported by the Simoa Bead tech-
nology can accurately quantify low-concentration proteins 
and peptides at the level of fM with excellent reproducibility. 
Kawahata et al.(2023) used this technique to quantify FABP 
levels. Currently, Meso Scale Discovery electrochemilu-
minescence technology has been gradually used to detect 
molecular markers of neurodegenerative diseases and has 
shown a higher sensitivity (Zhao et al. 2020).

For phosphorylated α-syn, some researchers have 
screened antibodies to specifically quantify the ps129 in 
human CSF, and have reached a different conclusion from 
previous studies. The ELISA method provides extreme sen-
sitivity and consistency (Silva et al. 2024). This suggests 
that we need to reconsider the possible sources of phospho-
rylated proteins and the consistency of different detection 
methods.

Conclusions

This review focused on the blood and CSF markers in PD 
as they are easily acquired, non-invasive, and in proxim-
ity to the brain in contrast to brain tissue biopsy or urine 

tests (Parnetti et al. 2019). Thus, facilitating the integration 
of clinical and scientific research for these biomarkers is 
essential.

The differences between t-α-syn, o-α-syn, pS-129, aggre-
gates of α-syn, Kallikrein 10, τT/Aβ42 ratio, α-syn concen-
trations in exosomes, NDEV concentrations of both o-α-syn 
and tau aggregates, the oEV/nEV pS129-α-syn ratio, and 
cNfL levels between PD and APS have been revealed. Future 
diagnostic studies on PD should focus on the differentially 
expressed molecules in this disease. miR-30c, miR-148b, 
miR-24, miR-223, and miR-324-3p exhibit specificity in 
identifying patient with PD with MSA. FABP3, the t-tau/t-
a-syn ratio, total α-syn levels in erythrocytes, and serum NfL 
concentrations may distinguish PDD from other dementias 
and movement disorders. Total α-syn levels in erythrocytes 
and serum NfL levels have distinctly different concentrations 
in ET compared to PD (Supplementary Table 1).

Currently, diagnosing PD primarily depends on clini-
cal symptoms, and the relationship between symptoms and 
prognosis has been partially established (Armstrong and 
Okun 2020). However, the differences between biomarkers 
among different neurodegenerative diseases should make us 
consider the occurrence and development of this disease at a 
more specific level. Differential diagnostic biomarkers of PD 
in the blood and CSF represent its unique onset and evolu-
tion, which should be further researched for insights into its 
etiology and pathogenesis (Kelly et al. 2023).

Clinical pathological studies and clinical trials should 
accurately classify study participants (Lin et al. 2020). The 
emergence of biomarkers makes it feasible to accurately 
identify patients and allows for a more reliable reference for 
distinguishing PD from other diseases (Tolosa et al. 2021). 
This is a practical significance of PD’s differential diagnostic 
biomarkers.

Several biomarkers in PD and related diseases have obvi-
ous differences, but only a few have excellent performance 
by relying on high-precision testing methods. The combina-
tion of multiple biomarkers or clinical signs can increase 
the ability to discriminate between diseases (Quadalti et al. 
2021; Dutta et al. 2021; Meloni et al. 2023; Taha et al. 2023; 
Kawahata et al. 2023). Developing a combined detection 
method based on multiple biomarkers may not be an urgent 
need for PD, which is an incurable disease; however, if 
patients can be accurately classified at disease onset, improv-
ing the efficiency of future scientific research and follow-up 
research in a large population will be beneficial.
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