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Abstract
Objective The primary research aim was to determine if the use of traditional or 3D printed prosthesis resulted in better 
functional outcome scores in hip arthroplasty.
Methods A systematic review and meta-analysis was conducted utilizing the PRISMA 2020 guidelines. Six databases 
(PubMed, Embase, Scopus, WebOfScience, and Cochrane Library, Google Scholar) were searched yielding 1117 article 
titles and abstracts. Rayyan.ai was used to detect duplicates (n = 246) and for manual screening for inclusion and exclusion 
criteria. Included were controlled studies of any publication time that assessed Harris Hip Score (HHS) at baseline and twelve 
months. Six papers were sought for full text review of which three studies totaling 195 hips met final inclusion.
Results Mean HHS in the control group went from 38.15 (± 6.02) at baseline to 80.30 (± 4.79) at twelve months follow-up, 
while the 3D group saw a change from 37.81 (± 5.84) to 90.60 (± 4.49). Significant and large improvements between time 
points were seen within the control group [p = .02, Cohen’s d = 8.57 (1.48, 15.56)] and 3D group [p < 0.01, Cohen’s d = 9.18 
(3.50, 14.86)]. The HHS score of the 3D group improved by 10.64 points more than the HHS score of the control group, 
which is a statistically insignificant (p = 0.89) amount.
Conclusion Group differences in pooled mean HHS scores at twelve months follow-up surpassed established minimum dif-
ferences for clinical importance. High quality research should be further pursued to elucidate these findings.
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Abbreviations
HSS  Harris hip score
THA  Total hip arthroplasty
3DP  3D-printing
PSI  Patient-specific instrumentation

Introduction

Total hip arthroplasty (THA) is one of the most frequently 
performed surgeries worldwide [1]. The procedure has 
consistently been proven to result in clinically significant 
improvements in outcomes and high patient satisfaction 
[2]. Recent innovations in hip arthroplasty aim to extend 
the lifespan of the implant, improve functional outcomes, 
and reduce complications and revision rates [1, 3–5]. The 
success of these improvements stem from the ability to 
surgically recreate an individual’s positional anatomy and 
functional load bearing of the hip joint—the femoral head 
on the acetabular cup [6–10]. Other initiatives to enhance 
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THA focus on patient expectations about postoperative 
quality of life and personalized joint replacement that can 
be tailored to each patient [11]. This can be accomplished 
through advancements in technology that enhance the preci-
sion of implantation, such as robotic navigation systems, and 
patient-specific instrumentation (PSI) [11].

Patient-reported outcome measures (PROMs) are an 
increasingly popular endpoint in clinical trials [12]. Vali-
dated PROMs ensure a standardized approach to assess 
participant perception of their outcomes, while providing 
unique information on the impact of a medical condition and 
patients’ experiences with treatment [13]. The Harris Hip 
Score (HHS) has been the most common PROM employed 
to assess the functionality of a patient with hip pathology 
before and after a surgical procedure [14, 15]. It is a patient 
and clinician report of pain, deformity, and range of motion 
[16]. The maximum score for the HHS is 100 signifying 
less dysfunction. A score of  < 70 is considered poor, 70–80 
is considered fair, 80–90 is considered good, and 90–100 is 
considered excellent [14]. HHS has been shown to be the 
best clinician-based tool for the evaluation of hip arthro-
plasty success due to its high validity, reliability, and respon-
siveness compared to other PROMs.

Despite an increasing focus on the applicability of 
3D-printing (3DP) technologies, there are currently no 
meta-analyses to determine the functional outcomes after 
receiving 3DP implants [17]. Research in 3DP prosthetic 
implants has demonstrated the technology’s capability to 
optimize implant-bone contact and filling of bone defects 
[18–20]. Mimicry of the biological extracellular bone matrix 
is thought to improve the osseointegration with the implant 
[21–25]. Additionally, 3DP cups are thought to better pro-
mote bone growth than traditionally manufactured cups due 
to increased porosity and homogeneity of the material [17]. 
In THA specifically, custom 3DP implants provide better 
rotational alignment and fit and are associated with lower 
blood loss, fewer adverse events, and decreased likelihood 
of discharge to a rehabilitation or acute care facility [26–28].

As a result of growing interest in 3DP applications for 
orthopedic applications and its significant potential to 
impact THA, we completed this systematic review and meta-
analysis of current evidence to assess functional outcomes 
when implementing 3DP acetabular cups in THA.

Methods

A systematic review and meta-analysis of Harris Hip scores 
(HHS) was conducted utilizing strict adherence to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA 2020) guidelines (Page, 2020) [29]. 
This review was registered on PROSPERO and approved 
on January 21, 2024 ID: CRD42024501-001. The aim of this 

study was to determine if 3DP hip arthroplasty improved on 
clinical outcomes compared to non-3DP hip arthroplasty.

Search procedure

A comprehensive and systematic review of several medical 
databases was conducted to search for articles investigat-
ing 3DP hip arthroplasty functional outcomes compared 
to non-3DP arthroplasty functional outcomes. On January 
21st, 2024, a primary search of PubMed, Embase, Scopus, 
Web of Science, and Cochrane Library was conducted to 
retrieve all available articles with no limitations on the date 
of article publication. A secondary search of Google Scholar 
was performed on February 15th, 2024 which also had no 
limitations on the date of article publication.

MeSH was utilized to identify key terms which were 
subsequently applied to Boolean operators. The search 
string utilized for the primary search was (“3D” OR “three 
dimensional” OR “three dimension”) AND (“printed” OR 
“bioprint” OR “additive manufactured” OR “additive manu-
facturing”) AND (“Total Hip Replacements” OR “Total Hip 
Replacement” OR “Total Hip Arthroplasty” OR “Arthro-
plasty, Total Hip” OR “Hip Replacement Arthroplasties” 
OR “Hip Replacement Arthroplasty” OR “Hip Prosthesis 
Implantation” OR “Hip Prosthesis Implantations”). 531 
retrieved studies were uploaded to Rayyan.ai after which 
duplicates were detected using the “Detect Duplicates” func-
tion within the platform. Two reviewers (RSJ and HB) then 
manually removed 246 articles and proceeded to confirm 
that no further duplicates were present. These same review-
ers conducted title and abstract appraisal on the remaining 
285 articles to determine which articles to further evaluate 
based on the predetermined inclusion and exclusion criteria.

The search string utilized for the secondary search was 
(“3D printing” OR “3D printed” OR “3D bioprinting” OR 
“additive manufacturing” OR “additively manufactured”) 
AND (“total hip replacement” OR “total hip arthroplasty” 
OR “hip prosthesis implantation” OR “hip replacement 
arthroplasty”) AND (“Harris Hip Score” OR “HHS”). 586 
studies were retrieved and manually screened by two review-
ers (RSJ and HB) to determine relevance based on estab-
lished inclusion and exclusion criteria (Fig. 1).

Inclusion and exclusion criteria

Included articles were controlled studies that investigated 
3DP hip components compared to non-3DP components. 
Articles also needed to have pre-procedure and post-proce-
dure measurements of the HHS to determine the effects of 
the intervention on functionality. All included articles fur-
ther required a post-procedure HHS measurement at twelve 
months. Excluded studies were articles that did not have a 
full text available and articles that did not have an English 
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translation. Furthermore, case reports, case series, system-
atic reviews, and review articles were excluded. 6 articles 
were reviewed in their entirety before elimination due to 
incomplete data (n = 2) or because full text could not be 
retrieved (n = 1). For the remaining 3 articles, RSJ and SS 
extracted the relevant data to be used for statistical analysis 
(Table 1).

Data collection and analysis

Once study selection was complete, quantitative and qualita-
tive data collection began. HHS was selected as the primary 
variable for our outcome study because it quantifies hip pain, 
function, and mobility. Some included studies reported 
multiple time points for follow-up evaluation of HHS, but 
all included studies shared follow-up evaluation at twelve 
months. Thus, mean, standard deviation, and sample size 
of the HHS data were collected at baseline and at twelve 

months follow-up. Weighted averages, standard deviations, 
and ranges of HHS scores were reported for both time points. 
Statistical analysis was performed using a meta-analysis 
with a random effects approach using IBM SPSS Statistics 
for Windows, version 29 (IBM Corp., Armonk, N.Y., USA) 
[30]. This approach pooled the effect sizes of individual 
studies, allowing for evaluation of the mean changes in HHS 
scores relative to variation. A p-value of less than 0.05 was 
utilized to determine statistical significance. The extent of 
improvement in HHS scores was represented by the pooled 
and individual effect size (Cohen’s D) with 95% confidence 
intervals [95% CI (LL, UL)]. Cohen’s D was used to repre-
sent the effect size (Fig. 2, Table2). 

Heterogeneity of the study results, representing vari-
ance, was primarily assessed using Q-statistics and the  I2 
ratio  (I2 = τ2/H2) (Fig. 2). A test of subgroup homogene-
ity was used to represent differences between the control 
and 3DP groups, where statistical significance signifies that 

Fig. 1  PRISMA flowchart illus-
trating the systematic review 
process. The flowchart outlines 
the selection and screening of 
studies, including search strate-
gies, eligibility criteria, and 
the final inclusion of relevant 
studies for data synthesis and 
analysis

Records identified (N = 1117):
Scopus (n = 126)
Embase (n =179)
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a difference is present. A larger  I2 suggests more variance 
between study results, with observed differences potentially 
coming from another variable, such as bias in the study 
design. Tau-squared (τ2) represents the absolute variation 
between effect sizes, without considering the variation that 
is expected from random chance. A random effects model 
was utilized; this allows for analysis of variance greater than 
what would be expected from chance, thus delineating the 
influence of an external variable different from the influ-
ence of the dependent variable, whereas the less conserva-
tive common effects model does not. An  H2 ratio was also 
reported to analyze variance, where a value of 1 represents 
equivalent variance between the two models. This would 
represent low heterogeneity as explained by no variation in 
study effect sizes greater than what is expected from random 
chance.

Descriptive analysis was used to determine the degree 
of osseointegration and cup stability following implan-
tation. The degree of osseointegration was commonly 
assessed using the criteria of the Anderson Orthopaedic 
Institute which determines if appropriate osseointegration 
has occurred if at least three of the following are present: 

absence of radiolucent lines; presence of superolateral but-
tresses; presence of medial stress shielding; presence of 
radial trabeculae; and the presence of inferomedial but-
tresses. The stability of the cup was evaluated using the 
zonal analysis of DeLee and Charnley. This evaluates the 
width of radiolucent lines, changes in cup abduction angle, 
and distance of cup displacement. Using this method, loos-
ening of the cup can be inferred if the abduction angle of 
the cup changes by more than 10 degrees or if there is cup 
migration of more than 6 mm in any direction. This same 
method determines adequate cup stability if radiolucent line 
width is less than 1 mm in two zones, no radiolucent lines 
in greater than two zones, and there is no cup displacement.

Risk of bias and certainty of evidence assessment

Included manuscripts were evaluated for methodological 
quality using the Grading of Recommendations Assessment, 
Development and Evaluation (GRADE) method (Table 3) 
[31]. Bias in the included articles was also assessed inde-
pendently by two authors (RSJ and HB) based on their 
respective study design. Cohort studies were subjected to 

Table 2  Data summary for the 
control and 3D groups

Control (CTR) vs
3D (3D Printed)

HIP
CTR-12mo

HIP
3D-12mo

Number per group 83 114
Pooled average HHS Pre (± SD) 38.15 (± 6.02) 37.81 (± 5.84)
Pooled average HHS Post (± SD) 80.30 (± 4.79) 90.60 (± 4.49)
Average difference 42.15 52.79
Effect size [95% CI (LL, UL)] 8.57 [1.48, 15.56] 9.18 [3.50, 14.86]
Subgroup analysis of homogeneity (p-value) 0.89 0.89

Fig. 2  Forest Plots of the individual and pooled effect size, statistical significance, measures of heterogeneity, and measures of non-inferiority. 
Group 1 is control, Group 2 is 3D print group 33
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evaluation with ROBINS-I and the data was presented in 
plot format (Figs. 3 and 4) [32].  

Included studies

Ma, M. et al. performed a retrospective non-randomized 
review on the short-term follow-up results of 3DP acetabu-
lar cups in total hip arthroplasty [34]. The control group had 
29 hips using Pinnacle socket cups (Johnson and Johnson 
Medical Device Co., LTD.), while the observation group 
included 69 hips using 3DP titanium alloy bone trabecu-
lar socket cups (Beijing Aikang Yicheng Medical Equip-
ment Co., LTD). Outcomes included pain visual analogue 
scale (VAS) scores, forgotten joint score, HHS, and imag-
ing. These endpoints were measured preoperatively and at 
one, six, and twelve months postoperatively. Radiographic 
images were taken to observe implant stability and bone 
ingrowth as determined by the DeLee- Charnley criteria and 
the Kawamura radiological evaluation criteria.

Shang, G. et  al. also conducted a retrospective non-
randomized review on short and mid-term outcomes of a 
new 3DP trabecular titanium acetabular socket cup (Aikang 
Corp., Beijing, China) in comparison to a standard porous 
coated titanium acetabular cup (Reflection Acetabular Sys-
tem, Smith and Nephew, Memphis, TN, USA) [35]. The 3DP 

cups group consisted of 23 hips, and 34 hips received the 
porous coated titanium cup as a control. Recorded measures 
included VAS scores, Harris Hip Score, and Short Form 36. 
Anteroposterior hip joint radiographs were also acquired to 
assess limb-length discrepancy, bone ingrowth, cup stabili-
zation, and upward movement of the hip center of rotation 
[36, 37]. Radiographs were taken preoperatively, one day 
postoperatively, and at the last follow-up. The other meas-
urements were taken preoperatively, three months postop-
eratively, twelve months postoperatively, and at the last 
follow-up.

Lastly, Wan, L et al. utilized a prospective non-rand-
omized controlled study design to explore the progno-
sis and effects of 3DP titanium alloy trabecular cups and 
pads in patients undergoing acetabular revision of the hip 
joint [38]. The control group non-3DP titanium trabecular 
cups and pads, while the experimental group utilized 3DP 
titanium alloy trabecular cups and pads. Pain VAS scores, 
HHS, and Quality of Life Health Survey (SF-36) scores were 
recorded and compared between the groups. Measurements 
were taken preoperatively as well as three months postop-
eratively, six months postoperatively, and twelve months 
postoperatively. Imaging was done to assess acetabular 
prosthesis position and bone ingrowth. Acetabular prosthe-
sis position was assessed with the zonal analysis of DeLee 

Fig. 3  ROBINS-I stoplight plot 
(below) 33

Fig. 4  ROBINS-I summary of 
findings plot (below) [33] 
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and Charnley [36]. Bone ingrowth followed criteria by the 
Anderson Orthopedic Research Institute. Images were taken 
at follow-ups, although the study only mentions results one 
week postoperatively, six months post-operatively, and at 
the 12 month follow-up.

Results

Baseline characteristics

Three studies were included comparing highly porous 3DP 
acetabular cups compared to non-3DP acetabular cups 
with conventional porosity. The number of participants in 
each study, as well as age, gender and baseline HHS can be 
found in Table 1. Patient age varied, with the majority of 
participants being 60 years of age or older. One study had a 
lower mean participant age compared to the other studies. 
All participants in the included studies had a mean HHS in 
the “very poor” range at baseline. Two of the included stud-
ies provided indications for the procedures which included 
femoral head necrosis, osteoarthritis, hip dysplasia, aseptic 
loosening and infection (Table 1). All of the 3DP acetabular 
cups used in the experimental group were highly porous, 
trabecular metal, hemispheric cups with pore sizes ranging 
from 600 to 1000 μm. Control group acetabular cups were 
also hemispheric cups with pore sizes ranging from 100 to 
400 μm.

Effect of intervention

HHS substantially improved in the control group and 3DP 
group in each of the three studies. The pooled mean HHS 
value for the control group was 38.15 (± 6.02) at baseline 
and 80.30 (± 4.79) at twelve months follow-up, an improve-
ment of 42.15. Within the 3DP group, HHS value was 37.81 
(± 5.84) at baseline and 90.60 (± 4.49) at twelve months 
follow-up, an improvement of 52.79 (Table 2). Improvement 
was seen between baseline and twelve months follow-up in 
the control group [p = 0.02, Cohen’s D = 8.57 (1.48, 15.56)] 
and the 3D group [p < 0.01, Cohen’s D = 9.18 (3.50, 14.86)]; 
however, subgroup analysis of homogeneity revealed no sig-
nificant differences between groups (p = 0.89) (Fig. 2).

Heterogeneity

In the control group, measures of heterogeneity were found 
to be  I2 = 98.6%, τ2 = 38.2, and  H2 = 71.0. In the 3DP group, 
 I2 = 97.5%, τ2 = 24.6, and  H2 = 40.5. The design variables, 

which may have affected the variance in results between 
studies, were examined in the risk of bias and quality of 
evidence assessments.

Radiographical findings

According to the zonal analysis of DeLee and Charnley, 
none of the cups in the 3DP groups displayed migration 
or changes in abduction angle throughout the follow-up 
period signifying stable fixation. Of note, two patients in 
the 3DP group did have radiolucent lines around the cup 
one week after surgery however these lines disappeared by 
6 months. Similarly, non-3DP cups also showed adequate 
fixation with no evidence of instability. Four patients did 
demonstrate radiolucent lines at one week, however the 
lines disappeared by 6 months as well.

Osseointegration was determined by the criteria defined 
by the Anderson Orthopedic Research Institute. In the 
studies by Ma, N. et al., and Wan L. et al., all patients dem-
onstrated a well-fixed acetabular component. However, 
Shang, G. et al. demonstrated a significant difference in 
bone ingrowth between the two groups with the 3DP hav-
ing a statistically significant higher rate of osseointegra-
tion (p = 0.037). In this study, only two patients in the 3DP 
group demonstrated less than three of the signs which are 
needed to signify adequate bone ingrowth. However, in the 
control group, ten of the non-3DP cups showed less than 
three of the necessary radiographical signs. Overall, this 
study demonstrated that rate of bone ingrowth for the 3DP 
and control groups was 91.3% and 70.59% respectively.

Risk of bias and certainty of evidence assessment

GRADE analysis revealed a moderate certainty of evi-
dence for this study (Table 3). Two studies were retro-
spective non-randomized controlled studies while the third 
was a prospective nonrandomized study. The lack of ran-
domization contributes to an inherent risk of bias in these 
studies. Due to the heterogeneity between studies, review-
ers determined there to be a serious risk of inconsistency; 
however, we are unable to determine its significance. Other 
factors that are taken into account for upgrading quality of 
evidence (i.e., large effect size, dose–response gradient, 
and plausible confounders that would have reduced effect 
size) were not applicable.

The Risk of Bias assessment revealed some concerns in 
the three included studies. All three studies were found to 
have some concerns with risk of bias due to confounders. 
One study was found to have moderate risk of bias due to 
missing data. One study was found to have moderate risk 
of bias due to selection of the reported result. However, 
the risk of bias across these two domains was not enough 
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to substantially lower confidence in the results of the study 
(Figs. 3 and 4).

Discussion

The goal of this meta-analysis was to assess if 3DP pros-
thetics improves patient outcomes compared to conventional 
approaches. This is the first meta-analysis to quantify func-
tional outcomes associated with this procedural technique. 
The retrospective cohorts reviewed provide a fresh perspec-
tive by comparing the clinical outcomes of 3DP intervention 
and conventional treatment in similar patient populations 
In the present study, the 3DP group HHS did not achieve 
a statistically significant increase in effect; however, since 
HHS scored increased greater than 10 points (10.64) relative 
to control, 3DP acetabular cups did achieve a significantly 
higher minimal clinically important difference compared 
to traditional acetabular cups. Given the high heterogene-
ity  (I2 = 98.6% in Group 1, 97.5% in Group 2) and small 
number of studies, these results provide moderate support to 
the hypothesis that 3DP implants result in better functional 
outcomes. This highlights how higher quality evidence in the 
form of randomized clinical trials are needed to corroborate 
these findings.

3DP implants have a few significant advantages in adapt-
ability and mechanical properties that may have contributed 
to the observed improvement in functional outcomes. It is 
unlikely that comorbidities played a role in the observed dif-
ferences due to the lack statistically significant differences 
between patient populations in each respective study. The 
high porosity of 3DP implants may offer better osseointegra-
tion and stability; this is consistent with the comparatively 
higher levels of bone in growth and stability in the 3DP 
groups [39, 40]. Shang G. et al.’s study found similar results, 
and the 3D group had statistically significant improvements 
of bone ingrowth compared to control (p = 0.037) [35]. The 
radiographic outcomes in both the Ma et al. study and Wan 
et al. study showed good stability and grow-in ability in both 
the 3DP and standard implant group [34, 38]. 3DP implants 
can also have their shape adapted to each patient’s specific 

anatomy, and 3DP joints may have a significant advantage 
in cases where bone is irregularly shaped [41]. This is espe-
cially important in reducing revisions for hip arthroplasty, 
as irregularly shaped bone is a significant risk factor [42]. If 
the observed results in the 3DP group are due to improved 
osseointegration and a more stable construct, they may also 
reduce the rate of revisions, significantly lowering costs and 
recovery time [43]. Regarding 3DP acetabular cups, which 
were used in all the studies, they are thinner, less expensive, 
and have a wider variety of diameter of femoral heads and 
shells [44]. This could contribute to a better fit and con-
sequently, better outcomes. Further research utilizing the 
adaptability and flexibility of 3DP acetabular cups could 
improve outcomes and reduce stress on neighboring joints in 
some cases. Different materials and structures are also being 
explored in the context of 3DP stems, such as those which 
use tuned porous architecture to simulate the natural stiff-
ness of bone and consequently reduce stress shielding [45].

There were a few limitations in this meta-analysis. All 
studies on 3DP hip arthroplasty were limited in scope, 
observing the outcome of 3DP acetabular cups in revision 
arthroplasty. Given that revision arthroplasty generally 
has worse outcomes than primary arthroplasty, research 
is needed to assess if the benefits of 3DP arthroplasty can 
be extrapolated to primary arthroplasty. Another point of 
note in our studies is that cohort studies are prone to con-
founding variables and limited in establishing causation. 
Conducting randomized controlled trials would strengthen 
the hypotheses on the impact of 3DP acetabular cups. The 
other main point of improvement is in outcome assessment. 
3DP currently shows promise in reducing operation time and 
improving outcomes in patients needing hip arthroplasty, 
such as by providing models for preoperative planning and 
patient-specific guides [46, 47]. A retrospective analysis on 
the usage of 3D printing technology in acetabular fracture 
fixation found that 3DP patient pre-contoured plates and 
computer-assisted virtual surgical procedures resulted in 
improved operative time and reduced intraoperative blood 
loss [48]. This analysis compared HHS scores, which were 
utilized by all the studies. While HHS is frequently used, 
operation time and tests reliant on patient input such as Hip 

Table 3  GRADE chart

Participants
(Studies)

Risk of Bias Inconsistency Indirectness Imprecision Other Considerations Overall 
certainty of 
evidence

Does the use of 3D printed prosthesis result in better functional outcomes following hip arthroplasty?
195
(2 retrospective non-randomized 

controlled studies, 1 prospective 
review)

Not serious Serious Not serious Not serious Undetected Moderate

Explanation High heterogeneity
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Disability and Osteoarthritis (HOOS) scores and Oxford Hip 
scores may provide different perspectives. Lastly, there are 
differences in design between manufacturers that may influ-
ence clinical outcomes [49].

Conclusion

Based on current studies, 3DP hip arthroplasty shows prom-
ise in improving hip outcomes compared to conventional 
treatment in the short term. However, given the limited data 
and lack of randomized controlled trials in the field and cur-
rent studies being limited to outcomes at up to 12 months, 
more research is needed to confirm this hypothesis and the 
long term utility of 3DP acetabular cups. If findings are posi-
tive, the adaptability and flexibility of 3DP acetabular cups 
and joints could reduce complications, improve recovery 
time, and potentially be applied to other joint replacement 
surgery.
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